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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,

p
8) and (1, 1,

p
2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .

S

Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).



Given a distribution of voters in a metric 
space, what regions in the space does a 
voting algorithm favor?

Pew Research Center, 2004

E.g., will a given voting algorithm tend to elect moderates?

Ojer et al, Nature Human Behavior, 2025
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Abstract

Instant runoff voting (IRV) has recently gained popularity as
an alternative to plurality voting for political elections, with
advocates claiming a range of advantages, including that it
produces more moderate winners than plurality and could
thus help address polarization. However, there is little theo-
retical backing for this claim, with existing evidence focused
on case studies and simulations. In this work, we prove that
IRV has a moderating effect relative to plurality voting in a
precise sense, developed in a 1-dimensional Euclidean model
of voter preferences. We develop a theory of exclusion zones,
derived from properties of the voter distribution, which serve
to show how moderate and extreme candidates interact dur-
ing IRV vote tabulation. The theory allows us to prove that
if voters are symmetrically distributed and not too concen-
trated at the extremes, IRV cannot elect an extreme candidate
over a moderate. In contrast, we show plurality can and val-
idate our results computationally. Our methods provide new
frameworks for the analysis of voting systems, deriving exact
winner distributions geometrically and establishing a connec-
tion between plurality voting and stick-breaking processes.

Introduction
Instant runoff voting (IRV) elections ask voters to rank can-
didates in order of preference and use a sequence of “instant
runoffs” to determine a winner.1 IRV selects a winner by re-
peatedly eliminating the candidate with the fewest first-place
votes, redistributing those votes to the next-ranked candi-
date on each ballot, and removing the eliminated candidate
from all ballots. The final remaining candidate is declared
the winner (equivalently, one can terminate when a majority
of the remaining ballots list the winner first). By compari-
son, in a plurality election the winner is simply the candi-
date with the most first-place votes. While plurality has his-
torically been the predominant single-winner voting system,
IRV is among the most popular alternatives; for instance,
Australia and Ireland have used IRV since the early 20th
century. In the United States, IRV has recently been gaining

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1IRV is also called ranked choice voting in the United States.
Other names for IRV include alternative vote, preferential voting,
and the Hare method. Multi-winner IRV is also called single trans-
ferrable vote. Plurality is also called first-past-the-post.

traction to address issues with plurality voting (Wang et al.
2021), with three states (Maine, Alaska, and Nevada) vot-
ing to adopt IRV for federal elections in the last decade. IRV
has also seen increasing adoption in local elections and/or
primaries, for instance in San Francisco (since 2004), Min-
neapolis (since 2009), and New York City (since 2021).
Proponents of IRV claim that it encourages moderation,

compromise, and civility, since candidates are incentivized
to be ranked highly by as many voters as possible, including
by those who do not rank them first (Dean 2016; Diamond
2016). Analyses of campaign communication materials and
voter surveys have supported the theory that IRV increases
campaign civility (Donovan, Tolbert, and Gracey 2016; John
and Douglas 2017; Kropf 2021), with extensive debate about
whether this greater civility translates into winners who are
also more moderate in their positions (Fraenkel and Grof-
man 2006a,b; Horowitz 2006, 2007). Analyses of potential
moderating effects of IRV have primarily been based on case
studies (Fraenkel and Grofman 2004; Mitchell 2014; Reilly
2018) and simulation (Chamberlin and Cohen 1978; Mer-
rill 1984; McGann, Grofman, and Koetzle 2002), as well
as empirical evidence for a moderating effect in a related
voting system, two-round runoff (Bordignon, Nannicini, and
Tabellini 2016). In contrast, there has been almost no theo-
retical work on the subject; most social choice theory has
focused on problems other than moderation, such as min-
imizing metric distortion and ensuring fairness or repre-
sentation (Halpern et al. 2023; Aziz et al. 2017; Boutilier
et al. 2012; Brill et al. 2022; Ebadian et al. 2022; Gkatzelis,
Halpern, and Shah 2020; Kahng, Latifian, and Shah 2023).
Two interesting specific exceptions can be found in the
works of Grofman and Feld (2004) and Dellis, Gauthier-
Belzile, and Oak (2017). Grofman and Feld (2004) show that
for single-peaked preferences and four or fewer candidates,
IRV is at least as likely as plurality to elect the median candi-
date. Dellis, Gauthier-Belzile, and Oak (2017) show that in
a citizen-candidate model, if the voter distribution is asym-
metric then two-party equilibria under plurality can be more
extreme than under IRV.
There is clear value in mathematical analyses that identify

more general moderating tendencies. At present—beyond
the noted exceptions—the arguments for IRV’s moderating
effects summarized above have tended to point to institu-
tional or behavioral properties of the way candidates run
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son, in a plurality election the winner is simply the candi-
date with the most first-place votes. While plurality has his-
torically been the predominant single-winner voting system,
IRV is among the most popular alternatives; for instance,
Australia and Ireland have used IRV since the early 20th
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traction to address issues with plurality voting (Wang et al.
2021), with three states (Maine, Alaska, and Nevada) vot-
ing to adopt IRV for federal elections in the last decade. IRV
has also seen increasing adoption in local elections and/or
primaries, for instance in San Francisco (since 2004), Min-
neapolis (since 2009), and New York City (since 2021).
Proponents of IRV claim that it encourages moderation,

compromise, and civility, since candidates are incentivized
to be ranked highly by as many voters as possible, including
by those who do not rank them first (Dean 2016; Diamond
2016). Analyses of campaign communication materials and
voter surveys have supported the theory that IRV increases
campaign civility (Donovan, Tolbert, and Gracey 2016; John
and Douglas 2017; Kropf 2021), with extensive debate about
whether this greater civility translates into winners who are
also more moderate in their positions (Fraenkel and Grof-
man 2006a,b; Horowitz 2006, 2007). Analyses of potential
moderating effects of IRV have primarily been based on case
studies (Fraenkel and Grofman 2004; Mitchell 2014; Reilly
2018) and simulation (Chamberlin and Cohen 1978; Mer-
rill 1984; McGann, Grofman, and Koetzle 2002), as well
as empirical evidence for a moderating effect in a related
voting system, two-round runoff (Bordignon, Nannicini, and
Tabellini 2016). In contrast, there has been almost no theo-
retical work on the subject; most social choice theory has
focused on problems other than moderation, such as min-
imizing metric distortion and ensuring fairness or repre-
sentation (Halpern et al. 2023; Aziz et al. 2017; Boutilier
et al. 2012; Brill et al. 2022; Ebadian et al. 2022; Gkatzelis,
Halpern, and Shah 2020; Kahng, Latifian, and Shah 2023).
Two interesting specific exceptions can be found in the
works of Grofman and Feld (2004) and Dellis, Gauthier-
Belzile, and Oak (2017). Grofman and Feld (2004) show that
for single-peaked preferences and four or fewer candidates,
IRV is at least as likely as plurality to elect the median candi-
date. Dellis, Gauthier-Belzile, and Oak (2017) show that in
a citizen-candidate model, if the voter distribution is asym-
metric then two-party equilibria under plurality can be more
extreme than under IRV.
There is clear value in mathematical analyses that identify

more general moderating tendencies. At present—beyond
the noted exceptions—the arguments for IRV’s moderating
effects summarized above have tended to point to institu-
tional or behavioral properties of the way candidates run
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Fig. 2. Visual depiction of the proof of Theorem 1. IRV eliminates candidates until a final candidate x remains in the exclusion zone [1/6, 5/6]. At this point, x gets more than
1/3 of the votes and cannot be eliminated next (regardless of where they are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated until x wins.

A corollary of Theorem 1 is that if candidates are dis-271

tributed uniformly at random (for instance, if voters indepen-272

dently and identically decide whether to run for o�ce), then273

IRV elects extreme candidates with probability going to 0 as274

the number of candidates grows, since the probability of having275

no moderate candidates in [1/6, 5/6] is (1/3)k. In the language276

defined earlier, IRV thus has a probabilistic moderating e�ect277

in the simplest case with uniform voters and candidates.278

Corollary 1. (Probabilistic moderation for uniform IRV.)

Let Rk be the position of the IRV winner with k candidates

distributed uniformly at random and uniform voters.

lim
kæŒ

Pr(Rk /œ [1/6, 5/6]) = 0.

In contrast to IRV, where the presence of candidates with279

moderate positions (namely, inside [1/6, 5/6]) precludes ex-280

treme candidates from winning, we now show that no such fact281

is true for plurality (excluding the extreme points 0 and 1).282

In other words, plurality voting does not have a combinatorial283

moderating e�ect with uniform voters. Later, we generalize284

this result to non-uniform voter distributions. The idea be-285

hind the proof is relatively straightforward: given a set of286

candidates, keep adding candidates to reduce the vote count287

of everyone except the desired winner.288

Theorem 2. (No combinatorial moderation for uniform plu-289

rality.) Suppose voters are uniformly distributed over [0, 1].290

Given any set of Ÿ Ø 1 distinct candidate positions x1, . . . , xŸ291

with x1 /œ {0, 1}, there exists a configuration of k Ø Ÿ candi-292

dates (including x1, . . . , xŸ) such that the candidate at x1 wins293

under plurality.294

Proof. We show how to add candidates to the initial set295

x1, . . . , xŸ so that x1 becomes the plurality winner (as long as296

x1 /œ {0, 1}). First, add candidates at x0 = 0 and xŸ+1 = 1297

to guarantee that x1 is between two candidates. Let x¸ be298

the candidate to the left of x1 and let xr be the candidate to299

the right of x1. Let v¸ = (x1 ≠ x¸)/2 be the number of votes300

x1 gets on its left and let vr = (xr ≠ x1)/2 be the number301

of votes x1 gets on its right. Add new candidates spaced by302
1
2 min{v¸, vr} in the intervals [0, x¸] and [xr, 1]. This causes303

every candidate in the intervals [0, x¸) and (xr, 1] to have304

strictly less than 1
2 min{v¸, vr} votes (whether they are part305

of the original Ÿ or new). Additionally, x¸ and xr have at306

most 1
2 min{v¸, vr} + max{v¸, vr} votes. Meanwhile, x1 has307

v¸ + vr votes, so x1 is the plurality winner in the new configu-308

ration.309

In addition, we prove that plurality with uniform voters310

and candidates has strictly positive probability of electing311

candidates in every subinterval of [0, 1], including subintervals312

near the endpoints, as the number of candidates grows. In313

other words, plurality does not have a probabilistic moderating314

e�ect: it does not preclude extreme candidates from winning315

(in some candidate configuration) when the voter distribution316

is uniform and there are many moderate candidates to choose 317

from. The proof is significantly more lengthy and can be found 318

in the SI Appendix, but we describe the approach below. Note 319

that this result implies plurality also has no combinatorial 320

moderation, but Theorem 2 is considerably easier to prove. 321

Theorem 3. (No probabilistic moderation for uniform plu-

rality.) Let Pk be the position of the plurality winner with k

candidates distributed uniformly at random and uniform voters.

For any [¸, r] ™ (0, 1) with ” = r ≠ ¸ > 0,

lim
kæŒ

Pr(Pk œ [¸, r]) Ø 1 ≠ e
”/(e2 log ”)

2e
.

The idea behind the proof of Theorem 3 is to find a lower 322

bound on the probability that the highest vote share of any 323

candidate in [¸, r] exceeds the highest vote share of any candi- 324

date outside [¸, r]. Conditioned on the number of candidates 325

that lie inside [¸, r], these vote shares converge to independent 326

distributions as k æ Œ (although they are dependent for any 327

fixed k). Intuitively, we can then consider two independent 328

plurality elections, one with ”k candidates on an interval of 329

size ” and one with (1 ≠ ”)k candidates on an interval of size 330

(1 ≠ ”). We prove a lower bound on the probability that the 331

first election has a winning vote share higher than x and that 332

the second election has a winning vote share lower than x (for 333

a carefully chosen x). 334

A key step is therefore deriving the asymptotic distribution 335

of the winning plurality vote share. This vote share distribu- 336

tion may be useful for other asymptotic analyses of plurality 337

voting, so we describe it here. The winning plurality vote share 338

is closely related to a category of probabilistic problems known 339

as stick-breaking problems, which focus on the properties of a 340

stick of length 1 broken into n pieces uniformly at random (29). 341

Setting n = k + 1, these stick pieces can be viewed as the gaps 342

between candidates (equivalently, candidates are the break- 343

points of the stick). A classic result in stick-breaking is that 344

the biggest piece Bn will have size almost exactly log n/n as 345

n grows large (29, 30) and that nBn ≠ log n converges to a 346

Gumbel(1, 0) distribution as n æ Œ. The plurality vote set- 347

ting is slightly di�erent, since candidates get votes from half of 348

the gap to their left plus half of the gap to their right (except 349

the left- and rightmost candidates, who get the full gap on one 350

side). We show that as the number of candidates grows large, 351

the winning vote count Vk with k = n ≠ 1 candidates is almost 352

exactly (log n+log log n)/2n and that nVk≠(log n+log log n)/2 353

also converges to Gumbel(1, 0) as k æ Œ. Intuitively, the 354

largest pair of adjacent gaps have size log n/n and log log n/n, 355

and the candidate between these gaps gets votes from half of 356

each gap (more correctly, the total size of the largest pair of 357

adjacent gaps is (log n + log log n)/n). This is formalized in 358

the following lemma used to prove Theorem 3. 359

Lemma 1. Let Vk be the winning plurality vote share with

k candidates distributed uniformly at random over [0, 1] and

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tomlinson et al.
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270

Tomlinson et al. PNAS | April 15, 2023 | vol. XXX | no. XX | 3

S

e.g.,

{1/2}

[0,1]
[c,1 − c]

(c,1 − c)



Does the 1-Euclidean moderating effect for IRV extend to 
d-Euclidean space?



Does the 1-Euclidean moderating effect for IRV extend to 
d-Euclidean space?

Proposition 
The square with uniform  voters has no nontrivial IRV exclusion zone.
L2



Does the 1-Euclidean moderating effect for IRV extend to 
d-Euclidean space?

! ! !

Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,

p
8) and (1, 1,

p
2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .

S

Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,

p
8) and (1, 1,

p
2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .

S

Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,

p
8) and (1, 1,

p
2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .
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Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
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Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,

p
8) and (1, 1,

p
2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .

S

Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,
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8) and (1, 1,
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2) placed on the top left and bottom

right of the rectangle. The set S = {(x, y) 2 F | x�y  6}
is an IRV exclusion zone with uniform L1 voters over F .
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Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Figure 1: A visual sketch of our proof of Proposition 7,
showing a sequence of elections satisfying the Condorcet
Chain Lemma, proving that it has no nontrivial IRV exclu-
sion zones with uniform L2 voters. In each configuration,
the red candidate is eliminated first and the blue candidate
is a possible winner of the resulting tiebreak. Critically, the
red candidate was a possible winner of the previous config-
uration. The first configuration includes the center, the Con-
dorcet position, and the winner of the last configuration is
a corner, a weak anti-Condorcet position. The positions and
vote shares are given in the proof in the extended version.

Proposition 7. The square with uniform L2 voters has no
nontrivial IRV exclusion zone.

As a visual sketch of proof, Figure 1 shows a sequence
of configurations that satisfies the requirements of the Con-
dorcet Chain Lemma, where the red candidate loses at each
step, but was a blue possible winner in the previous step.

Moving on from the square, we now provide a much
more general result, although the sequence of configura-
tions requires many more steps. We begin by showing that
it suffices to construct such a sequence for two-dimensional
rectangles—we can essentially decompose a hyperrectangle
into a sequence of rectangles, one for each dimension, and
make progress towards a corner one dimension at a time.
Lemma 3. Let p � 1. If there is a sequence of configura-
tions satisfying Lemma 1 for any rectangle with uniform Lp

voters, then every d-dimensional hyperrectangle for d � 2
has no nontrivial exclusion zones with uniform Lp voters.

By providing such sequences for arbitrary rectangles with
uniform L1 and L2 voters, we obtain our main result for
higher dimensional preferences.
Theorem 1. Every d-dimensional hyperrectangle (d � 2)
has no nontrivial exclusion zones with uniform L1 or L2

voters.
This strong result seems to suggest that nontrivial ex-

clusion zones for IRV are a purely one-dimensional phe-
nomenon. However, we find that this is not the case. Indeed,
a second dimension does make it much easier for non-central
candidates to combine and squeeze out a more central can-
didate, but this needs to be paired with the strong symmetry
of hyperrectangles with uniform voters in order to make the
minimal exclusion zone trivial. By breaking this symmetry,
we can find higher-dimensional preference spaces with non-
trivial IRV exclusion zones.
Theorem 2. Consider the shape F (see Figure 2) formed by
a rectangle of height 1/10 and width 8 (having its lower left
corner at the origin) with two right triangles of side lengths
(2, 2,
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Figure 2: The shape F from Theorem 2, which has a nontriv-
ial IRV exclusion zone with uniform L1 voters. The shaded
set S is a nontrivial IRV exclusion zone.

The preference space F in Theorem 2 has a natural in-
terpretation: there are two relevant policy dimensions, one
in which voters are strongly polarized towards opposite ex-
tremes (the x dimension) and one in which voters are mostly
moderate (the y dimension), but tend to have opposite lean-
ings on opposite sides of the x dimension. In this setting,
IRV can never elect a candidate on the smaller extreme side.
The same idea can be generalized to higher dimensions.
However, the construction does not seem to work for L2

preferences; it remains an open question whether there are
connected higher-dimensional preference spaces with non-
trivial IRV exclusion zones for L2 voters (if we allow dis-
connected spaces, consider uniform voters over a large poly-
tope and a small polytope that are very far apart: only candi-
dates in the large polytope can win).

Voting With Graph-Based Preferences

We now turn our attention to a different metric space: un-
weighted graphs. In this setting, voters and candidates are
nodes in a graph, with preferences determined by path dis-
tance. We assume every node in the graph represents a sin-
gle voter and some subset of these nodes run as candidates.
Note that distance ties are common in unweighted graphs;
we say that each node has vote share 1 that it evenly dis-
tributes among all closest candidates.4 Formally, we define
an election with graph-based preferences as follows.

Definition 3. An election on a graph G = (V,E) has elec-
tion setting (V, dG,Uniform(V ), r), where dG is the path
distance metric of G and voters are uniform over V . The
candidates are positioned at nodes in the graph, with C ✓ V .

Such graph-based preferences are used in the facility loca-
tion literature (Wendell and McKelvey 1981; Bandelt 1985;
Hansen, Thisse, and Wendell 1986), and in our voting set-
ting can model friendship- or allegiance-based voting (Telek
2016). For instance, consider a class president election. If
every student votes for the candidate they are closest friends
with (measured by path distance in the friendship graph),
then their preferences are given by the graph metric.

4This approach to resolving indifference among voters has re-
cently been called Split-IRV to contrast it with Approval-IRV,
where each tied candidate receives one full approval vote (Dele-
mazure and Peters 2024). We use Split-IRV rather than Approval-
IRV as it more closely parallels the continuous metric space
case. Split-IRV has also been used in real-world elections (Mol-
lison 2023), although there are good theoretical reasons to prefer
Approval-IRV (Delemazure and Peters 2024).
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Voting with the graph metric

• Nodes = voters


• Some subset of voters run for office


• Voters prefer closer candidates


• Resolve ties with Split-IRV (vote share 1 
evenly split among equidistant candidates)
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IRV exclusion zones in graphs

Finding IRV Exclusion Zones in General Graphs

Given our graph-based preference setting, we begin by con-
sidering a general algorithmic problem: can we identify the
IRV exclusion zones of a given graph?
Definition 4. Given a graph G = (V,E) and a set of nodes
S ✓ V , IRV-EXCLUSION is the decision problem ask-
ing whether S is an IRV exclusion zone of G. MIN-IRV-
EXCLUSION is the optimization problem whose solution is
the minimal IRV exclusion zone of G.

We show that exclusion zones are very difficult to identify
in general—even checking whether a given set is an IRV
exclusion zone is computationally hard.
Theorem 3. IRV-EXCLUSION is co-NP-complete and
MIN-IRV-EXCLUSION is NP-hard.

Despite the hardness of identifying exclusion zones, we
show that we can identify approximate exclusion zones,
which we define to be node sets that behave like exclusion
zones most of the time.
Definition 5. A set of nodes S is a (1 � ✏)-approximate
exclusion zone for voting rule r if, drawing a uniformly ran-
dom candidate configuration C ✓ V with C \ S 6= ;, the
winner under r is in S w.p. at least 1� ✏.

We show that by keeping track of pairwise wins and losses
in sufficiently many sampled elections, we can identify ap-
proximate exclusion zones with high probability.
Theorem 4. Let G be a graph with n nodes and m

edges, and pick any desired ✏, � 2 (0, 1). There is a ran-
domized algorithm returning a set S in time O((n3 +
n
2
m) log(1/�)/✏2) such that:

1. S is a subset of the minimal IRV exclusion zone of G, and
2. S is a (1�✏)-approximate IRV exclusion zone with prob-

ability at least 1� �.
We can also show that the computational hardness arises

specifically from checking whether small node sets are ex-
clusion zones. Intuitively, for small node sets, there are ex-
ponentially many candidate configurations (in the number
of nodes outside the set) which could be counterexamples.
Formally, we show that IRV-EXCLUSION is fixed-parameter
tractable for the parameter |V \ S|.
Theorem 5. Let G be a graph with n nodes and m edges.
For |S| = n� c, there is an algorithm for IRV-EXCLUSION
with runtime O(2cn(n+m)).

For MIN-IRV-EXCLUSION, we can test progressively
larger node sets with the algorithm from Theorem 5 (see the
extended version for details). We did this to find the minimal
IRV exclusion zones of all connected graphs on 3–7 nodes
and all trees on 3–15 nodes. Some examples are shown in
Figure 3. In the extended version, we list the number of
graphs and trees with nontrivial and 2-node IRV exclusion
zones. (No graph can have a one-node exclusion zone, since
any one node can be the first eliminated by a tiebreak when
there is a candidate at every node.) We find that the vast
majority of small graphs and trees have nontrivial exclusion
zones, indicating that it is common for small graphs to have
sets of nodes that are easily excluded under IRV.

(a) (b) (c)

(d) (e) (f)

Figure 3: Some graphs with their minimal IRV exclusion
zones in blue and excluded nodes in red: (a) the 4-cycle,
(b) the 6-path, (c) the 6-leaf bistar, (d) the height-2 perfect
binary tree, (e) the smallest connected cyclic graph with a
nontrivial IRV exclusion zone, and (f) the smallest (in nodes,
then in edges) connected graph whose minimal IRV exclu-
sion zone does not consist of all non-leaf nodes.

Graph Families With Known IRV Exclusion Zones

While finding exact IRV exclusion zones in graphs is hard
in general, we can identify them in some families of graphs.
First, in any graph where every pairwise contest is a tie
(i.e., every node is a weak Condorcet position), the minimal
exclusion zone is trivial by Proposition 4. Such graphs in-
clude complete graphs, cycles, and all other distance-regular
graphs (van Dam, Koolen, and Tanaka 2016). We also show
that paths, bistars, and even-height perfect binary trees have
nontrivial IRV exclusion zones. The bistar graph, consisting
of two star graphs of equal size whose centers are joined by
an edge, is the simplest example of a graph with the smallest
possible IRV exclusion zone: two nodes.
Proposition 8. The minimal IRV exclusion zone of a bistar
graph consists of its two hub nodes.

The result of Tomlinson, Ugander, and Kleinberg (2024)
on uniform 1-Euclidean preferences extends naturally to
path graphs, although with some additional messiness
caused by discretizing the interval. Recall that a path is a
graph with edges {1, 2}, {2, 3}, . . . , {n� 1, n}.
Proposition 9. The minimal IRV exclusion zone of the path
on n nodes is S = {dn/6+1/2e, . . . , n�dn/6+1/2e+1}.

Next, we consider a case showing how exclusion zones
can behave in unexpected ways: perfect binary trees. We
show that perfect binary trees have nontrivial IRV exclusion
zones if and only if they have even (and nonzero) height.
This occurs because the root has an advantage in even-height
trees, but can be tied by a set of leaves in odd-height trees.
Theorem 6. Perfect binary trees with odd height have no
nontrivial IRV exclusion zones. However, for perfect binary
trees with even height h > 0, the minimal IRV exclusion
zone is the set of internal nodes.

IRV Exclusion Zones in Real-World Graphs

We now ask whether real-world social networks, especially
ones where we might expect distance-based preferences,
have nontrivial IRV exclusion zones. To this end, we use a
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Given our graph-based preference setting, we begin by con-
sidering a general algorithmic problem: can we identify the
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S ✓ V , IRV-EXCLUSION is the decision problem ask-
ing whether S is an IRV exclusion zone of G. MIN-IRV-
EXCLUSION is the optimization problem whose solution is
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We show that exclusion zones are very difficult to identify
in general—even checking whether a given set is an IRV
exclusion zone is computationally hard.
Theorem 3. IRV-EXCLUSION is co-NP-complete and
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dom candidate configuration C ✓ V with C \ S 6= ;, the
winner under r is in S w.p. at least 1� ✏.

We show that by keeping track of pairwise wins and losses
in sufficiently many sampled elections, we can identify ap-
proximate exclusion zones with high probability.
Theorem 4. Let G be a graph with n nodes and m

edges, and pick any desired ✏, � 2 (0, 1). There is a ran-
domized algorithm returning a set S in time O((n3 +
n
2
m) log(1/�)/✏2) such that:

1. S is a subset of the minimal IRV exclusion zone of G, and
2. S is a (1�✏)-approximate IRV exclusion zone with prob-

ability at least 1� �.
We can also show that the computational hardness arises

specifically from checking whether small node sets are ex-
clusion zones. Intuitively, for small node sets, there are ex-
ponentially many candidate configurations (in the number
of nodes outside the set) which could be counterexamples.
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tractable for the parameter |V \ S|.
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zones in blue and excluded nodes in red: (a) the 4-cycle,
(b) the 6-path, (c) the 6-leaf bistar, (d) the height-2 perfect
binary tree, (e) the smallest connected cyclic graph with a
nontrivial IRV exclusion zone, and (f) the smallest (in nodes,
then in edges) connected graph whose minimal IRV exclu-
sion zone does not consist of all non-leaf nodes.

Graph Families With Known IRV Exclusion Zones

While finding exact IRV exclusion zones in graphs is hard
in general, we can identify them in some families of graphs.
First, in any graph where every pairwise contest is a tie
(i.e., every node is a weak Condorcet position), the minimal
exclusion zone is trivial by Proposition 4. Such graphs in-
clude complete graphs, cycles, and all other distance-regular
graphs (van Dam, Koolen, and Tanaka 2016). We also show
that paths, bistars, and even-height perfect binary trees have
nontrivial IRV exclusion zones. The bistar graph, consisting
of two star graphs of equal size whose centers are joined by
an edge, is the simplest example of a graph with the smallest
possible IRV exclusion zone: two nodes.
Proposition 8. The minimal IRV exclusion zone of a bistar
graph consists of its two hub nodes.
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on uniform 1-Euclidean preferences extends naturally to
path graphs, although with some additional messiness
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This occurs because the root has an advantage in even-height
trees, but can be tied by a set of leaves in odd-height trees.
Theorem 6. Perfect binary trees with odd height have no
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Theorem 
Let G be a graph with n nodes and m edges. For any , there is a 
randomized algorithm returning a set S in time  s.t.


1. S is a subset of the minimal IRV exclusion zone of G and

2. S is a ( )-approximate IRV exlusion zone of G w.p. at least .

 

ϵ, δ ∈ (0,1)
O((n3 + n2m)log(1/δ)/e2)

1 − ϵ 1 − δ
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Background: Condorcet winners
Definition 
A winner of every pairwise contest is a Condorcet winner. 
A Condorcet method elects the Condorcet winner when one exists. 

Nicolas de Condorcet 
(1743 - 1794)

Condorcet Winner: No Condorcet Winner

Median Voter Theorem (Black, 1948)  
With 1-Euclidean preferences, the candidate closest to the median voter is the 
Condorcet winner. 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A recipe for proving the minimal exclusion zone is trivial

Condorcet Chain Lemma 
Given an election setting, if there exist elections  with candidates 

 such that:

1.  includes a weak Condorcet position, but a different candidate  wins

2. each  includes , but some other candidate  wins

3.  is a weak anti-Condorcet position,

then the election setting has no nontrivial exclusion zones.

C1, …, Cn
w1 ∈ C1, …, w1 ∈ Cn

C1 w1
Ci+1 wi wi+1

wn

Proposition 
For any exclusion zone , if there is some election including  
where  wins, then .

S ⊆ M x ∈ S
y y ∈ S
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Given a metric space  and a voter distribution:


 

M
strong Condorcet position

weak anti-Condorcet positions
(assuming this dsn is symmetric)

Proposition 
For any reasonable* voting rule:

1. Any weak Condorcet position is in the minimal exclusion zone.

2. The only exclusion zone containing weak anti-Condorcet positions is trivial. 
*satisfies majority criterion in two-candidate elections
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