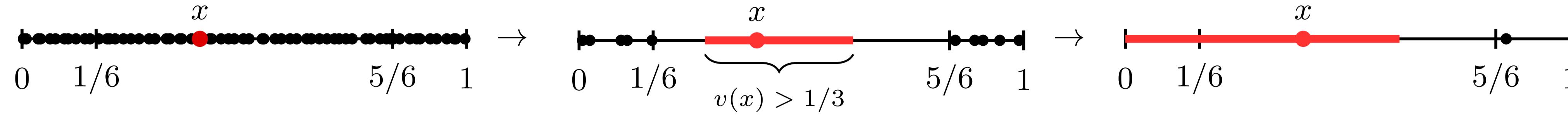


What positions does a voting system favor?

d-Euclidean preferences

voters and candidates in $[0, 1]^d$,
voters rank candidates by distance

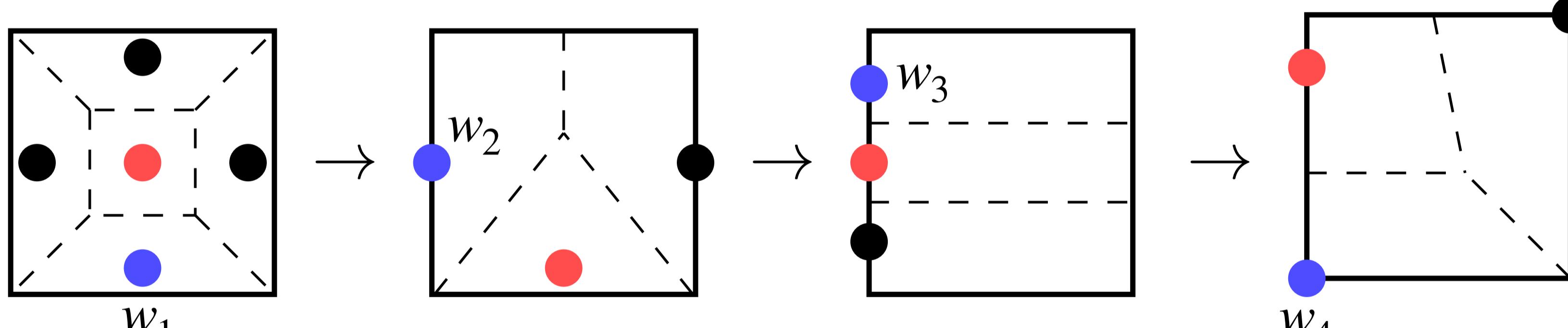
IRV

voters rank all candidates; repeatedly eliminate
candidate with fewest first-place votes, last left wins**Theorem [TUK, AAAI '24]** With uniform 1-Euclidean voters, IRV can only elect candidates in $[1/6, 5/6]$ (unless no such candidate is present). This is the smallest such *exclusion zone*.**Key Definition** Given a distribution V of voters over a metric space M , an *exclusion zone* of a voting rule r is a set $S \subseteq M$ that is guaranteed to contain the winner of any election over r, M, V containing at least one candidate from S .

1. For any two exclusion zones S, T , either $S \subset T$ or $T \subset S$.
2. The intersection of all exclusion zones gives the unique *minimal exclusion zone*.
3. Any weak Condorcet position is in the minimal exclusion zone.
4. The only exclusion zone containing a weak anti-Condorcet position the trivial one.
5. If S is an exclusion zone containing x and wins some election with x , then $y \in S$.

Condorcet Chain Lemma Given r, M, V , if there exists some sequence of elections C_1, \dots, C_n won by w_1, \dots, w_n such that:

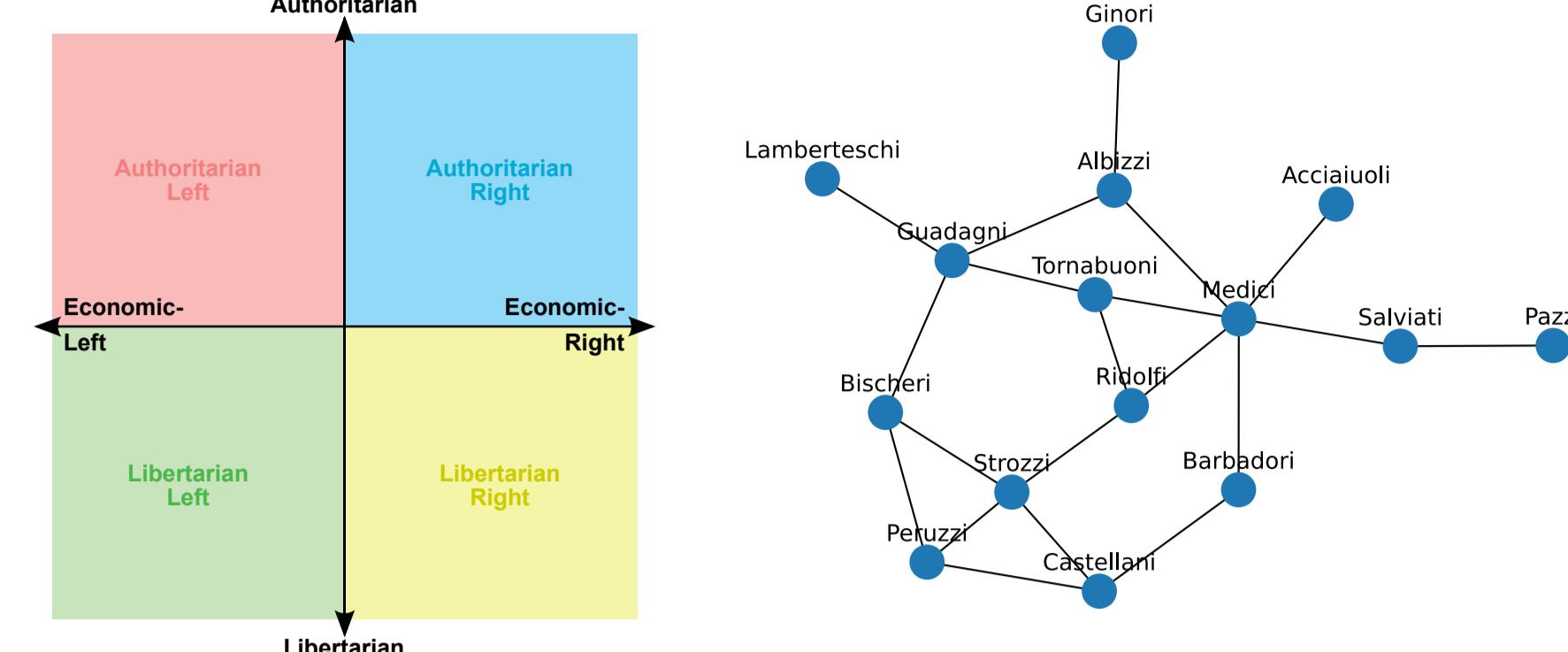
1. C_1 contains a weak Condorcet position that isn't w_1
 2. For $i = 1, \dots, n-1$, $w_i \in C_{i+1}$, but $w_{i+1} \neq w_i$
 3. w_n is a weak anti-Condorcet position
- then r, M, V has no nontrivial exclusion zones.

**Proposition** The square with uniform L_2 voters has no nontrivial IRV exclusion zone.*The Condorcet Chain Lemma converts a nonexistence proof into a construction exercise!*

With some more geometry (see right), this idea generalizes a lot. 1d was special!

Theorem All hyperrectangles with $d \geq 2$ and uniform L_1 or L_2 voters have no nontrivial IRV exclusion zones.

So do IRV exclusion zones only exist in one dimension? No!

Theorem With uniform L_1 voters over the shape to the right, the shaded region is an IRV exclusion zone.**Does IRV have exclusion zones in higher dimensions?****In other metric spaces?**trivial
exclusion
zone (M)minimal
exclusion
zone**Condorcet position (= core)**

majority-preferred to all other positions

anti-Condorcet position

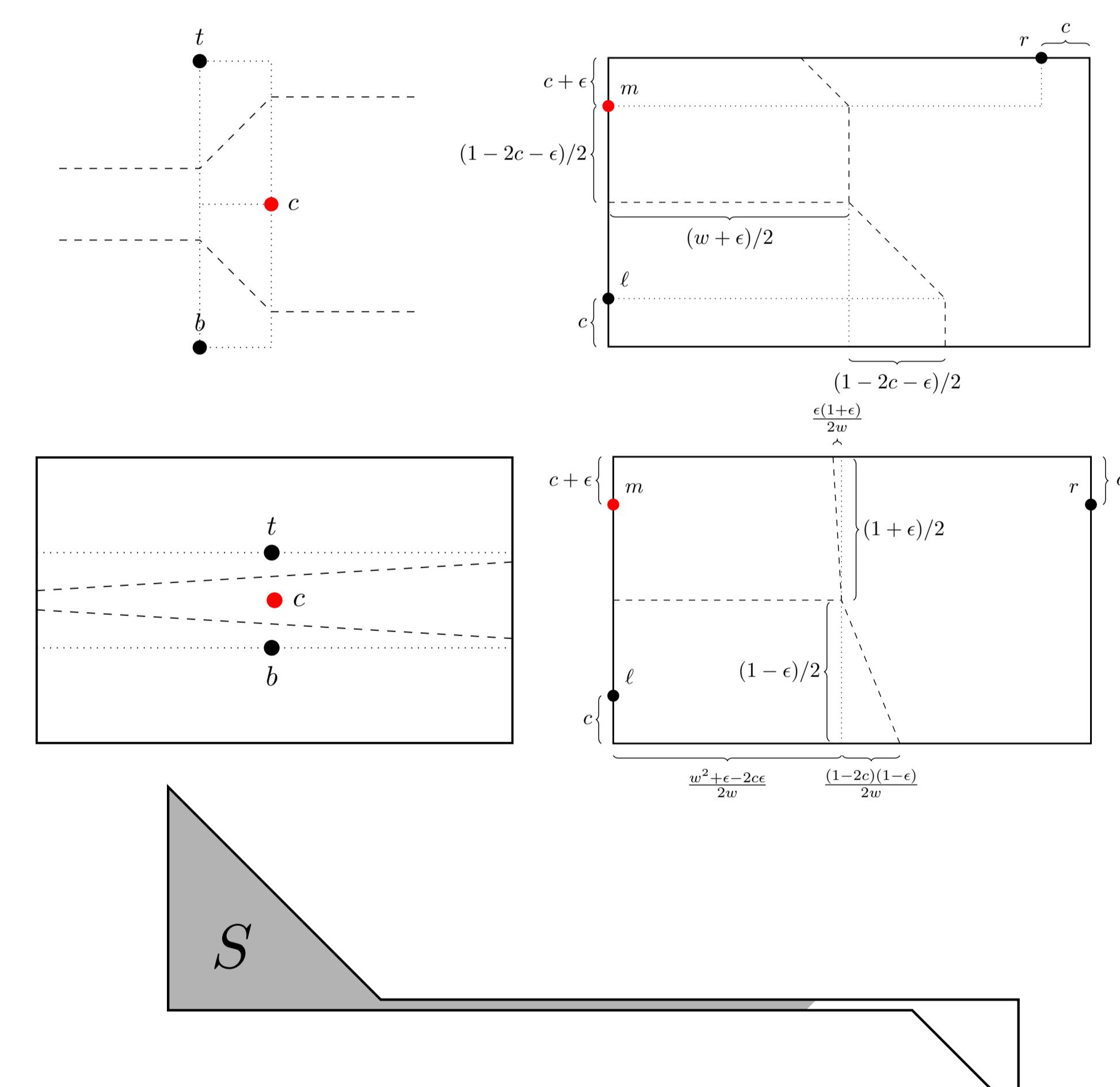
all other positions majority-preferred

Proposition For any Condorcet method and symmetric 1-Euclidean voters, the collection of all exclusion zones is:

$$S = [c, 1-c] \text{ for any } c \in [0, 1/2]$$

$$S = (c, 1-c) \text{ for any } c \in [0, 1/2]$$

$$S = \{1/2\}$$



Voting on graphs

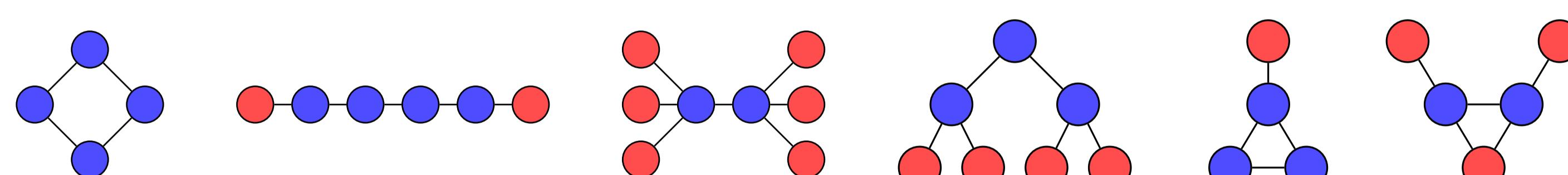
Nodes = voters

Candidates = subset of nodes

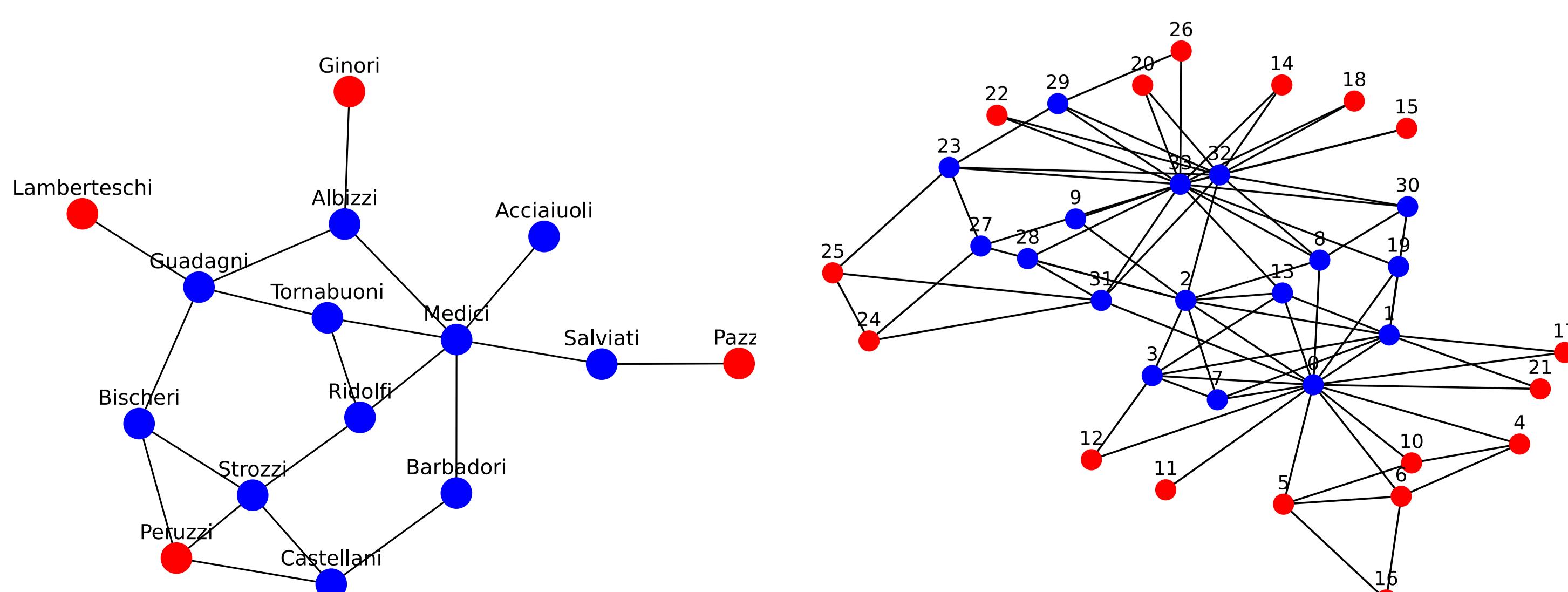
Voters prefer closer candidates by path distance

Voters have vote share 1 split among equidistant nodes

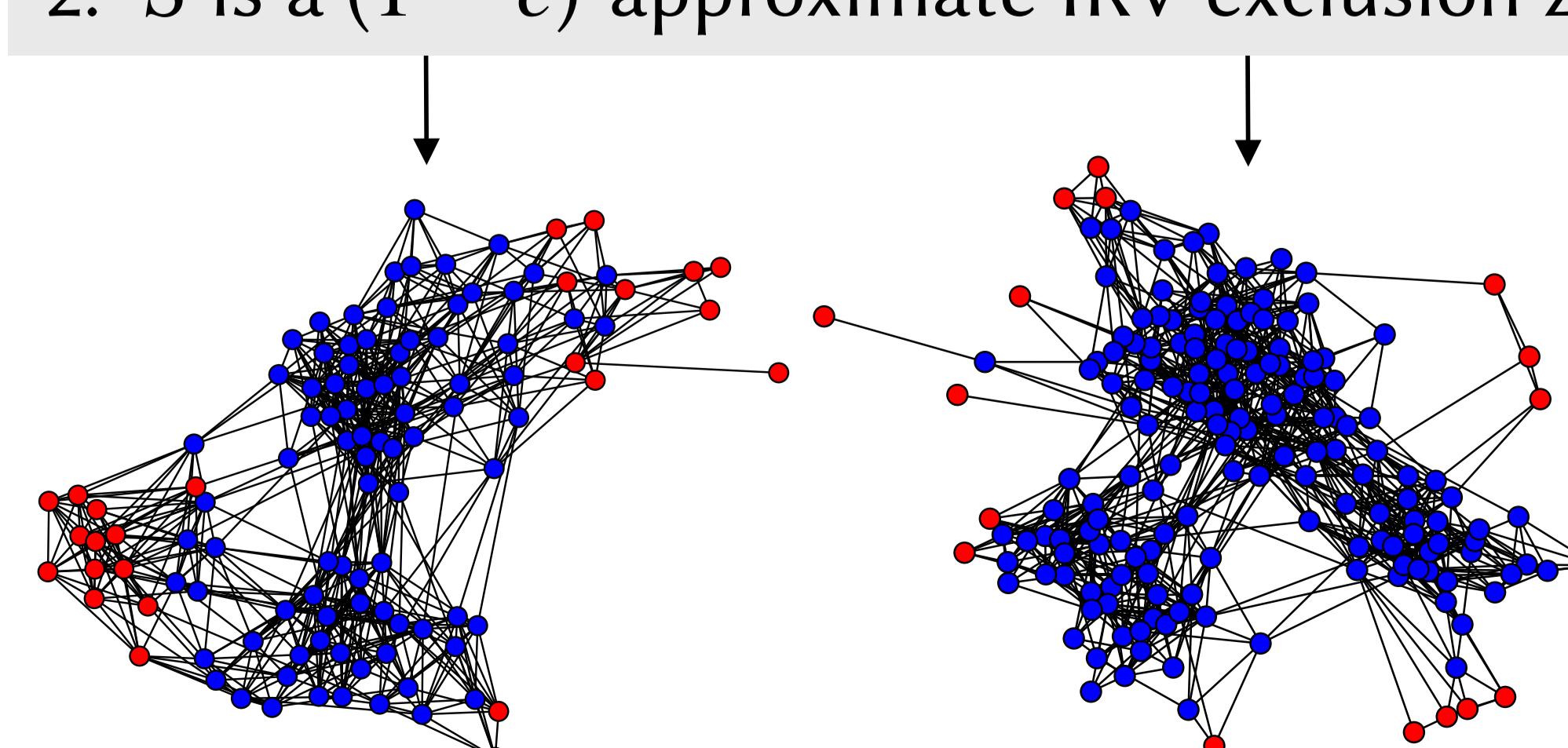
Minimal IRV exclusion zones of small graphs:

**Theorem** Perfect binary trees with odd height have no nontrivial IRV exclusion zones. For perfect binary trees with even height $h > 0$, the set of internal nodes is the minimal IRV exclusion zone.

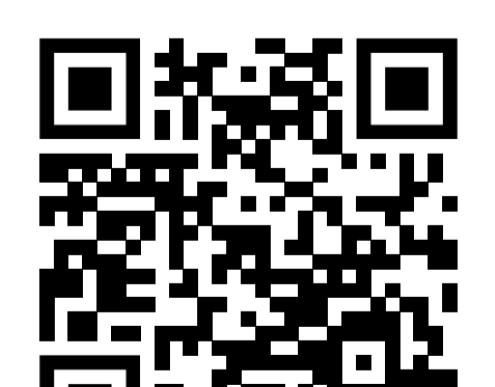
Minimal IRV exclusion zones of real social networks:

**IRV-Exclusion** Given a graph G and a set of nodes S , is S an IRV exclusion zone of G ?**Theorem** IRV-Exclusion is co-NP-complete.**Definition** A set of nodes S is a $(1 - \epsilon)$ -approximate exclusion zone for a voting rule if, drawing a uniformly random election $C \subseteq V$ with $C \cap S \neq \emptyset$, the winner is in S w.p. at least $1 - \epsilon$.**Theorem** Let $\epsilon, \delta \in (0, 1)$ and G be an n -node, m -edge graph. There is a randomized algorithm with runtime $O((n^3 + n^2m)\log(1/\delta)/\epsilon^2)$ returning a set S such that:

1. S is a subset of the minimal IRV exclusion zone of G
2. S is a $(1 - \epsilon)$ -approximate IRV exclusion zone w.p. at least $1 - \delta$.



Paper:

Funding from:
ARO MURI
The Simons Foundation
The MacArthur Foundation
Vannevar Bush Faculty Fellowship
NSF CAREER Award #2143176
AFOSR Grant #FA9550-19-1-0183