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What positions do candidates 
choose if they want to win elections? 



h"ps://roughlydaily.com/tag/hotelling/



h"ps://roughlydaily.com/tag/hotelling/

Hotelling-Downs model of candidate positioning
(Hotelling 1929, Downs 1957)



h"ps://roughlydaily.com/tag/hotelling/

Hotelling-Downs model of candidate positioning
(Hotelling 1929, Downs 1957)

Issues:



h"ps://roughlydaily.com/tag/hotelling/

Hotelling-Downs model of candidate positioning
(Hotelling 1929, Downs 1957)

Issues:

Duverger’s Law
(Duverger 1959)



h"ps://roughlydaily.com/tag/hotelling/

Hotelling-Downs model of candidate positioning
(Hotelling 1929, Downs 1957)

Issues:

Duverger’s Law
(Duverger 1959)

No equilibrium with 
odd # of candidates
(Cox 1987)



h"ps://roughlydaily.com/tag/hotelling/

Hotelling-Downs model of candidate positioning
(Hotelling 1929, Downs 1957)

Issues:

Duverger’s Law
(Duverger 1959)

No equilibrium with 
odd # of candidates
(Cox 1987)

Assumes full 
information and 
perfect rationality
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evolutionary dynamics 





In short, there are good reasons for 
believing that the basic properties of 
experiential learning—becoming 
more likely to use something that 
has worked in the past and less 
likely to repeat something that has 
failed—hold in presidential 
campaigns.

Bendor, Diermeier, Siegel, and Ting.

A Behavioral Theory of Elections, 2011.
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Figure 2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each plot shows 50 runs stacked on top of each other;
each run has 100,000 elections per generation. Darker regions indicate higher candidate density with a log-scaled colormap. As
our theory establishes, the candidate distribution converges to the center for k = 2, 3, 4, but not for k � 5.

Martinelli 2017; Nunnari and Zápal 2017; Forand 2014;
Chappell and Keech 1986; Rosenthal 1982; Kramer 1977;
Wittman 1977), including in the computational social choice
community (Feldman, Fiat, and Obraztsova 2016; Harren-
stein et al. 2021). There has been some work on boundedly-
rational candidates (Kollman, Miller, and Page 1992, 1998;
Bendor et al. 2011). Our paper is set apart in our replicator
dynamics approach, and our success deriving analytical re-
sults for more than two candidates. We are aware of one pa-
per (Laslier and Ozturk Goktuna 2016) combining a spatial
model of elections and replicator dynamics, but the number
of parties is fixed to two and the focus is instead on compe-
tition between office- and policy-motivated party members.

Replicator Dynamics for Candidate

Positioning

We now formally introduce our model. We consider a one-
dimensional policy space: the unit interval [0, 1]. Candi-
dates and voters reside at points in the interval. To model a
large voting population and for tractability, we assume vot-
ers are uniform over [0, 1], but we later relax this assumption
in simulation. We assume voters have 1-Euclidean prefer-
ences (Elkind, Lackner, and Peters 2016)—that is, they vote
for the closest candidate. The vote share of a candidate i
is the fraction of voters who vote for i. With uniform vot-
ers, the vote share of a candidate is equal to half the distance
between the candidates to its left and right (a candidate adja-
cent to a boundary gets the entire vote share on its boundary
side). Under plurality voting, the candidate with the largest
vote share wins; in the case of tied maximum vote shares,
the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning
supposes that elections proceed in generations t = 1, 2, . . . ,
with (infinitely) many elections per generation. We assume
the number of candidates in each election is fixed at k (later,
we relax this assumption in simulation). The core idea of
our model is that candidates in generation t chose their pol-
icy positions by copying the position of a winner from the
previous generation t � 1. More formally, let F0 be the ini-
tial candidate distribution and let Fk,t denote the distribution
of winner positions in generation t with k candidates per
election. We define Fk,0 = F0 for all k, although we usu-
ally write F0 since the initial distribution does not depend
on k. In generation t, each election consists of k candidates

with positions X1,t, . . . , Xk,t ⇠ Fk,t�1. We use Fk,t(x) to
denote the CDF of the winner distribution in generation t
and fk,t(x) to denote the PDF. Let Plur(X1,t, . . . , Xk,t) be
the position of the plurality winner given candidate positions
X1,t, . . . , Xk,t and uniformly distributed voters.
Definition 1. Given an initial candidate distribution F0 and
a candidate count k, the replicator dynamics for candidate
positioning (under plurality with uniform 1-Euclidean vot-
ers) are, for all t > 0,

Fk,t(x) = Pr(Plur(X1,t, . . . , Xk,t)  x), (1)
Xi,t ⇠ Fk,t�1, 8i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = kPr(Plur(x,X2,t . . . Xk,t) = x)fk,t�1(x). (2)

This model is closely linked to evolutionary replicator
dynamics (Taylor and Jonker 1978; Schuster and Sigmund
1983), where there are n strategies which increase in fre-
quency proportionally to their fitness against the current
population. This is exactly what Equation (2) captures in our
continuous setting: strategy x increases in density propor-
tional to its plurality win rate against the current population.

The main question we study is how the candidate distri-
bution evolves over time under the replicator dynamics. We
focus on cases where F0 is symmetric about 1/2 and con-
tains no point masses; we call such distributions symmetric
and atomless (ensuring that the probability multiple candi-
dates share the exact same point is 0). Since we assume F0 is
symmetric, all subsequent winner distributions are also sym-
metric by the symmetry of plurality with a uniform voter
distribution—we make heavy use of this fact in our analy-
sis. Some of our results require an additional assumptions
on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all
x < 1/2 (equivalently, f0(x) > 0 in an interval around 1/2,
by symmetry). We define F to be the set of all symmetric
and atomless distributions over [0, 1] and F+ ⇢ F to be the
subset of such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.
Theorem 1. Let F0 2 F+. For k 2 {2, 3, 4}, the candi-
date distribution converges to a point mass at 1/2 under the
replicator dynamics. In contrast, for k � 5, the candidate
distribution does not converge to a point mass at 1/2.

Theorem 1 follows from Theorems 2 to 5. Our results for
k 2 {2, 3, 4} give fine-grained characterizations of the dy-

candidate position in round t winner distribution in round t-1
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Figure 2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each plot shows 50 runs stacked on top of each other;
each run has 100,000 elections per generation. Darker regions indicate higher candidate density with a log-scaled colormap. As
our theory establishes, the candidate distribution converges to the center for k = 2, 3, 4, but not for k � 5.

Martinelli 2017; Nunnari and Zápal 2017; Forand 2014;
Chappell and Keech 1986; Rosenthal 1982; Kramer 1977;
Wittman 1977), including in the computational social choice
community (Feldman, Fiat, and Obraztsova 2016; Harren-
stein et al. 2021). There has been some work on boundedly-
rational candidates (Kollman, Miller, and Page 1992, 1998;
Bendor et al. 2011). Our paper is set apart in our replicator
dynamics approach, and our success deriving analytical re-
sults for more than two candidates. We are aware of one pa-
per (Laslier and Ozturk Goktuna 2016) combining a spatial
model of elections and replicator dynamics, but the number
of parties is fixed to two and the focus is instead on compe-
tition between office- and policy-motivated party members.

Replicator Dynamics for Candidate

Positioning

We now formally introduce our model. We consider a one-
dimensional policy space: the unit interval [0, 1]. Candi-
dates and voters reside at points in the interval. To model a
large voting population and for tractability, we assume vot-
ers are uniform over [0, 1], but we later relax this assumption
in simulation. We assume voters have 1-Euclidean prefer-
ences (Elkind, Lackner, and Peters 2016)—that is, they vote
for the closest candidate. The vote share of a candidate i
is the fraction of voters who vote for i. With uniform vot-
ers, the vote share of a candidate is equal to half the distance
between the candidates to its left and right (a candidate adja-
cent to a boundary gets the entire vote share on its boundary
side). Under plurality voting, the candidate with the largest
vote share wins; in the case of tied maximum vote shares,
the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning
supposes that elections proceed in generations t = 1, 2, . . . ,
with (infinitely) many elections per generation. We assume
the number of candidates in each election is fixed at k (later,
we relax this assumption in simulation). The core idea of
our model is that candidates in generation t chose their pol-
icy positions by copying the position of a winner from the
previous generation t � 1. More formally, let F0 be the ini-
tial candidate distribution and let Fk,t denote the distribution
of winner positions in generation t with k candidates per
election. We define Fk,0 = F0 for all k, although we usu-
ally write F0 since the initial distribution does not depend
on k. In generation t, each election consists of k candidates

with positions X1,t, . . . , Xk,t ⇠ Fk,t�1. We use Fk,t(x) to
denote the CDF of the winner distribution in generation t
and fk,t(x) to denote the PDF. Let Plur(X1,t, . . . , Xk,t) be
the position of the plurality winner given candidate positions
X1,t, . . . , Xk,t and uniformly distributed voters.
Definition 1. Given an initial candidate distribution F0 and
a candidate count k, the replicator dynamics for candidate
positioning (under plurality with uniform 1-Euclidean vot-
ers) are, for all t > 0,

Fk,t(x) = Pr(Plur(X1,t, . . . , Xk,t)  x), (1)
Xi,t ⇠ Fk,t�1, 8i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = kPr(Plur(x,X2,t . . . Xk,t) = x)fk,t�1(x). (2)

This model is closely linked to evolutionary replicator
dynamics (Taylor and Jonker 1978; Schuster and Sigmund
1983), where there are n strategies which increase in fre-
quency proportionally to their fitness against the current
population. This is exactly what Equation (2) captures in our
continuous setting: strategy x increases in density propor-
tional to its plurality win rate against the current population.

The main question we study is how the candidate distri-
bution evolves over time under the replicator dynamics. We
focus on cases where F0 is symmetric about 1/2 and con-
tains no point masses; we call such distributions symmetric
and atomless (ensuring that the probability multiple candi-
dates share the exact same point is 0). Since we assume F0 is
symmetric, all subsequent winner distributions are also sym-
metric by the symmetry of plurality with a uniform voter
distribution—we make heavy use of this fact in our analy-
sis. Some of our results require an additional assumptions
on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all
x < 1/2 (equivalently, f0(x) > 0 in an interval around 1/2,
by symmetry). We define F to be the set of all symmetric
and atomless distributions over [0, 1] and F+ ⇢ F to be the
subset of such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.
Theorem 1. Let F0 2 F+. For k 2 {2, 3, 4}, the candi-
date distribution converges to a point mass at 1/2 under the
replicator dynamics. In contrast, for k � 5, the candidate
distribution does not converge to a point mass at 1/2.

Theorem 1 follows from Theorems 2 to 5. Our results for
k 2 {2, 3, 4} give fine-grained characterizations of the dy-

� ��� ���
�

�

��


�

��

� ��� ���
�

��

� ��� ���
�

�	

� ��� ���
�

�


� ��� ���
�

��

� ��� ���
�

��

Figure 2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each plot shows 50 runs stacked on top of each other;
each run has 100,000 elections per generation. Darker regions indicate higher candidate density with a log-scaled colormap. As
our theory establishes, the candidate distribution converges to the center for k = 2, 3, 4, but not for k � 5.

Martinelli 2017; Nunnari and Zápal 2017; Forand 2014;
Chappell and Keech 1986; Rosenthal 1982; Kramer 1977;
Wittman 1977), including in the computational social choice
community (Feldman, Fiat, and Obraztsova 2016; Harren-
stein et al. 2021). There has been some work on boundedly-
rational candidates (Kollman, Miller, and Page 1992, 1998;
Bendor et al. 2011). Our paper is set apart in our replicator
dynamics approach, and our success deriving analytical re-
sults for more than two candidates. We are aware of one pa-
per (Laslier and Ozturk Goktuna 2016) combining a spatial
model of elections and replicator dynamics, but the number
of parties is fixed to two and the focus is instead on compe-
tition between office- and policy-motivated party members.

Replicator Dynamics for Candidate

Positioning

We now formally introduce our model. We consider a one-
dimensional policy space: the unit interval [0, 1]. Candi-
dates and voters reside at points in the interval. To model a
large voting population and for tractability, we assume vot-
ers are uniform over [0, 1], but we later relax this assumption
in simulation. We assume voters have 1-Euclidean prefer-
ences (Elkind, Lackner, and Peters 2016)—that is, they vote
for the closest candidate. The vote share of a candidate i
is the fraction of voters who vote for i. With uniform vot-
ers, the vote share of a candidate is equal to half the distance
between the candidates to its left and right (a candidate adja-
cent to a boundary gets the entire vote share on its boundary
side). Under plurality voting, the candidate with the largest
vote share wins; in the case of tied maximum vote shares,
the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning
supposes that elections proceed in generations t = 1, 2, . . . ,
with (infinitely) many elections per generation. We assume
the number of candidates in each election is fixed at k (later,
we relax this assumption in simulation). The core idea of
our model is that candidates in generation t chose their pol-
icy positions by copying the position of a winner from the
previous generation t � 1. More formally, let F0 be the ini-
tial candidate distribution and let Fk,t denote the distribution
of winner positions in generation t with k candidates per
election. We define Fk,0 = F0 for all k, although we usu-
ally write F0 since the initial distribution does not depend
on k. In generation t, each election consists of k candidates

with positions X1,t, . . . , Xk,t ⇠ Fk,t�1. We use Fk,t(x) to
denote the CDF of the winner distribution in generation t
and fk,t(x) to denote the PDF. Let Plur(X1,t, . . . , Xk,t) be
the position of the plurality winner given candidate positions
X1,t, . . . , Xk,t and uniformly distributed voters.
Definition 1. Given an initial candidate distribution F0 and
a candidate count k, the replicator dynamics for candidate
positioning (under plurality with uniform 1-Euclidean vot-
ers) are, for all t > 0,

Fk,t(x) = Pr(Plur(X1,t, . . . , Xk,t)  x), (1)
Xi,t ⇠ Fk,t�1, 8i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = kPr(Plur(x,X2,t . . . Xk,t) = x)fk,t�1(x). (2)

This model is closely linked to evolutionary replicator
dynamics (Taylor and Jonker 1978; Schuster and Sigmund
1983), where there are n strategies which increase in fre-
quency proportionally to their fitness against the current
population. This is exactly what Equation (2) captures in our
continuous setting: strategy x increases in density propor-
tional to its plurality win rate against the current population.

The main question we study is how the candidate distri-
bution evolves over time under the replicator dynamics. We
focus on cases where F0 is symmetric about 1/2 and con-
tains no point masses; we call such distributions symmetric
and atomless (ensuring that the probability multiple candi-
dates share the exact same point is 0). Since we assume F0 is
symmetric, all subsequent winner distributions are also sym-
metric by the symmetry of plurality with a uniform voter
distribution—we make heavy use of this fact in our analy-
sis. Some of our results require an additional assumptions
on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all
x < 1/2 (equivalently, f0(x) > 0 in an interval around 1/2,
by symmetry). We define F to be the set of all symmetric
and atomless distributions over [0, 1] and F+ ⇢ F to be the
subset of such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.
Theorem 1. Let F0 2 F+. For k 2 {2, 3, 4}, the candi-
date distribution converges to a point mass at 1/2 under the
replicator dynamics. In contrast, for k � 5, the candidate
distribution does not converge to a point mass at 1/2.

Theorem 1 follows from Theorems 2 to 5. Our results for
k 2 {2, 3, 4} give fine-grained characterizations of the dy-
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Figure 2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each plot shows 50 runs stacked on top of each other;
each run has 100,000 elections per generation. Darker regions indicate higher candidate density with a log-scaled colormap. As
our theory establishes, the candidate distribution converges to the center for k = 2, 3, 4, but not for k � 5.

Martinelli 2017; Nunnari and Zápal 2017; Forand 2014;
Chappell and Keech 1986; Rosenthal 1982; Kramer 1977;
Wittman 1977), including in the computational social choice
community (Feldman, Fiat, and Obraztsova 2016; Harren-
stein et al. 2021). There has been some work on boundedly-
rational candidates (Kollman, Miller, and Page 1992, 1998;
Bendor et al. 2011). Our paper is set apart in our replicator
dynamics approach, and our success deriving analytical re-
sults for more than two candidates. We are aware of one pa-
per (Laslier and Ozturk Goktuna 2016) combining a spatial
model of elections and replicator dynamics, but the number
of parties is fixed to two and the focus is instead on compe-
tition between office- and policy-motivated party members.

Replicator Dynamics for Candidate

Positioning

We now formally introduce our model. We consider a one-
dimensional policy space: the unit interval [0, 1]. Candi-
dates and voters reside at points in the interval. To model a
large voting population and for tractability, we assume vot-
ers are uniform over [0, 1], but we later relax this assumption
in simulation. We assume voters have 1-Euclidean prefer-
ences (Elkind, Lackner, and Peters 2016)—that is, they vote
for the closest candidate. The vote share of a candidate i
is the fraction of voters who vote for i. With uniform vot-
ers, the vote share of a candidate is equal to half the distance
between the candidates to its left and right (a candidate adja-
cent to a boundary gets the entire vote share on its boundary
side). Under plurality voting, the candidate with the largest
vote share wins; in the case of tied maximum vote shares,
the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning
supposes that elections proceed in generations t = 1, 2, . . . ,
with (infinitely) many elections per generation. We assume
the number of candidates in each election is fixed at k (later,
we relax this assumption in simulation). The core idea of
our model is that candidates in generation t chose their pol-
icy positions by copying the position of a winner from the
previous generation t � 1. More formally, let F0 be the ini-
tial candidate distribution and let Fk,t denote the distribution
of winner positions in generation t with k candidates per
election. We define Fk,0 = F0 for all k, although we usu-
ally write F0 since the initial distribution does not depend
on k. In generation t, each election consists of k candidates

with positions X1,t, . . . , Xk,t ⇠ Fk,t�1. We use Fk,t(x) to
denote the CDF of the winner distribution in generation t
and fk,t(x) to denote the PDF. Let Plur(X1,t, . . . , Xk,t) be
the position of the plurality winner given candidate positions
X1,t, . . . , Xk,t and uniformly distributed voters.
Definition 1. Given an initial candidate distribution F0 and
a candidate count k, the replicator dynamics for candidate
positioning (under plurality with uniform 1-Euclidean vot-
ers) are, for all t > 0,

Fk,t(x) = Pr(Plur(X1,t, . . . , Xk,t)  x), (1)
Xi,t ⇠ Fk,t�1, 8i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = kPr(Plur(x,X2,t . . . Xk,t) = x)fk,t�1(x). (2)

This model is closely linked to evolutionary replicator
dynamics (Taylor and Jonker 1978; Schuster and Sigmund
1983), where there are n strategies which increase in fre-
quency proportionally to their fitness against the current
population. This is exactly what Equation (2) captures in our
continuous setting: strategy x increases in density propor-
tional to its plurality win rate against the current population.

The main question we study is how the candidate distri-
bution evolves over time under the replicator dynamics. We
focus on cases where F0 is symmetric about 1/2 and con-
tains no point masses; we call such distributions symmetric
and atomless (ensuring that the probability multiple candi-
dates share the exact same point is 0). Since we assume F0 is
symmetric, all subsequent winner distributions are also sym-
metric by the symmetry of plurality with a uniform voter
distribution—we make heavy use of this fact in our analy-
sis. Some of our results require an additional assumptions
on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all
x < 1/2 (equivalently, f0(x) > 0 in an interval around 1/2,
by symmetry). We define F to be the set of all symmetric
and atomless distributions over [0, 1] and F+ ⇢ F to be the
subset of such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.
Theorem 1. Let F0 2 F+. For k 2 {2, 3, 4}, the candi-
date distribution converges to a point mass at 1/2 under the
replicator dynamics. In contrast, for k � 5, the candidate
distribution does not converge to a point mass at 1/2.

Theorem 1 follows from Theorems 2 to 5. Our results for
k 2 {2, 3, 4} give fine-grained characterizations of the dy-
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Figure 2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each plot shows 50 runs stacked on top of each other;
each run has 100,000 elections per generation. Darker regions indicate higher candidate density with a log-scaled colormap. As
our theory establishes, the candidate distribution converges to the center for k = 2, 3, 4, but not for k � 5.

Martinelli 2017; Nunnari and Zápal 2017; Forand 2014;
Chappell and Keech 1986; Rosenthal 1982; Kramer 1977;
Wittman 1977), including in the computational social choice
community (Feldman, Fiat, and Obraztsova 2016; Harren-
stein et al. 2021). There has been some work on boundedly-
rational candidates (Kollman, Miller, and Page 1992, 1998;
Bendor et al. 2011). Our paper is set apart in our replicator
dynamics approach, and our success deriving analytical re-
sults for more than two candidates. We are aware of one pa-
per (Laslier and Ozturk Goktuna 2016) combining a spatial
model of elections and replicator dynamics, but the number
of parties is fixed to two and the focus is instead on compe-
tition between office- and policy-motivated party members.

Replicator Dynamics for Candidate

Positioning

We now formally introduce our model. We consider a one-
dimensional policy space: the unit interval [0, 1]. Candi-
dates and voters reside at points in the interval. To model a
large voting population and for tractability, we assume vot-
ers are uniform over [0, 1], but we later relax this assumption
in simulation. We assume voters have 1-Euclidean prefer-
ences (Elkind, Lackner, and Peters 2016)—that is, they vote
for the closest candidate. The vote share of a candidate i
is the fraction of voters who vote for i. With uniform vot-
ers, the vote share of a candidate is equal to half the distance
between the candidates to its left and right (a candidate adja-
cent to a boundary gets the entire vote share on its boundary
side). Under plurality voting, the candidate with the largest
vote share wins; in the case of tied maximum vote shares,
the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning
supposes that elections proceed in generations t = 1, 2, . . . ,
with (infinitely) many elections per generation. We assume
the number of candidates in each election is fixed at k (later,
we relax this assumption in simulation). The core idea of
our model is that candidates in generation t chose their pol-
icy positions by copying the position of a winner from the
previous generation t � 1. More formally, let F0 be the ini-
tial candidate distribution and let Fk,t denote the distribution
of winner positions in generation t with k candidates per
election. We define Fk,0 = F0 for all k, although we usu-
ally write F0 since the initial distribution does not depend
on k. In generation t, each election consists of k candidates

with positions X1,t, . . . , Xk,t ⇠ Fk,t�1. We use Fk,t(x) to
denote the CDF of the winner distribution in generation t
and fk,t(x) to denote the PDF. Let Plur(X1,t, . . . , Xk,t) be
the position of the plurality winner given candidate positions
X1,t, . . . , Xk,t and uniformly distributed voters.
Definition 1. Given an initial candidate distribution F0 and
a candidate count k, the replicator dynamics for candidate
positioning (under plurality with uniform 1-Euclidean vot-
ers) are, for all t > 0,

Fk,t(x) = Pr(Plur(X1,t, . . . , Xk,t)  x), (1)
Xi,t ⇠ Fk,t�1, 8i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = kPr(Plur(x,X2,t . . . Xk,t) = x)fk,t�1(x). (2)

This model is closely linked to evolutionary replicator
dynamics (Taylor and Jonker 1978; Schuster and Sigmund
1983), where there are n strategies which increase in fre-
quency proportionally to their fitness against the current
population. This is exactly what Equation (2) captures in our
continuous setting: strategy x increases in density propor-
tional to its plurality win rate against the current population.

The main question we study is how the candidate distri-
bution evolves over time under the replicator dynamics. We
focus on cases where F0 is symmetric about 1/2 and con-
tains no point masses; we call such distributions symmetric
and atomless (ensuring that the probability multiple candi-
dates share the exact same point is 0). Since we assume F0 is
symmetric, all subsequent winner distributions are also sym-
metric by the symmetry of plurality with a uniform voter
distribution—we make heavy use of this fact in our analy-
sis. Some of our results require an additional assumptions
on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all
x < 1/2 (equivalently, f0(x) > 0 in an interval around 1/2,
by symmetry). We define F to be the set of all symmetric
and atomless distributions over [0, 1] and F+ ⇢ F to be the
subset of such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.
Theorem 1. Let F0 2 F+. For k 2 {2, 3, 4}, the candi-
date distribution converges to a point mass at 1/2 under the
replicator dynamics. In contrast, for k � 5, the candidate
distribution does not converge to a point mass at 1/2.

Theorem 1 follows from Theorems 2 to 5. Our results for
k 2 {2, 3, 4} give fine-grained characterizations of the dy-
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Initial distribution: uniform

Phase transition?

Does this only happen when we start from uniform? 
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Theorem 
With  candidates per election, the candidate distribution converges to 1/2 
for any symmetric initial distribution.

k ≤ 4



Characterizing the dynamics

� 
�

���

��	

��


���

���

��

� �
��
��
�

����	�

��
����

������

��
��������

� 	� 
�
�

�����������

� 
� ��
�

�����������

Theorem 
With  candidates per election, the candidate distribution converges to 1/2 
for any symmetric initial distribution.

k ≤ 4



Characterizing the dynamics
Theorem 
With  candidates per election, the candidate distribution does not 
converge to 1/2.

k ≥ 5
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Why does the behavior change dramatically at k = 5?

0.5

0.5

0.5

0.5

1. When everyone is near the center, only the left- or rightmost can win

2. Whichever of these is closer to the center has an advantage

more likely to be flanked

being closer to the center 
outweighs risk of being flanked

for , there are more flanked candidates than flanking candidatesk ≥ 5

tipping point!



Our results are robust to noise
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Theorem 
With  candidates per election, some of which are positioned at random, 
the candidate distribution approximately converges to 1/2, but not when .

k ≤ 4
k ≥ 5
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The same pattern occurs with: other voter distributions

Beta(1/2, 1/2)
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The same pattern occurs with: other voter distributions

Beta(1/2, 1/2)

Beta(2, 2)
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The same pattern occurs with: a mixture of candidate counts
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The same pattern occurs with: memory of prior rounds

2 round memory
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The same pattern occurs with: memory of prior rounds

2 round memory

3 round memory
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With imperfect imitation (copy + noise), chaos! 
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Takeaways

1. Imitation of successful policies can produce two divergent clusters as in 
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2. The replicator dynamics are very robust to variants, in contrast with 
Nash equilibria (more in paper). We get stable theoretical results with 
> 2 candidates!
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Thank you!

📝 arxiv.org/abs/2402.17109

🧑💻 github.com/tomlinsonk/plurality-replicator-dynamics
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