
COMPUTATIONAL PERSPECTIVES ON INDIVIDUAL
AND COLLECTIVE DECISION-MAKING

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Kiran Tomlinson

August 2024



© 2024 Kiran Tomlinson

ALL RIGHTS RESERVED



COMPUTATIONAL PERSPECTIVES ON INDIVIDUAL AND COLLECTIVE

DECISION-MAKING

Kiran Tomlinson, Ph.D.

Cornell University 2024

Individual decisions determine the success of companies (Pepsi or Coke?) and

the structure of our social networks (Alice or Bob?), while collective decisions

determine the composition of our governments and the outcomes of criminal trials,

among countless other facets of our lives. As such, understanding the factors that

contribute to these decisions is crucial, both for predicting future decisions and for

designing interventions. In this dissertation, we use computational techniques to

address two core questions towards this end. First, can we learn about how people

make choices from individual decision-making data? Second, how do we aggregate

group preferences in collective decision-making and what are the consequences of

different aggregation mechanisms?

After a brief introduction in Part I, Part II describes several methods to learn

the effects of social and contextual factors on preferences in individual discrete

choice settings, synthesizing tools from interpretable machine learning, causal in-

ference, and graph learning. In Part III, we turn to collective decisions, focusing

on theoretically characterizing the behavior of two commonly used voting systems,

plurality and instant runoff voting (IRV). In particular, we explore what happens

under IRV when voters are forced to submit top-truncated preferences, prove that

IRV favors moderate candidates in a way plurality does not, and examine the

dynamics of candidate policies under a boundedly-rational imitative model. We

conclude in Part IV with closing thoughts and directions for future work.
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CHAPTER 1

INTRODUCTION

Decision-making is the fundamental human task that shapes the trajectories

of our lives and of our societies; as such, it has been the focus of intense study

for decades (and even centuries) in fields as varied as mathematics, psychology,

economics, political science, and—most recently—computer science. While ap-

proaches from behavioral economics and psychology can experimentally reveal the

underlying factors that govern our choices, computational tools provide a powerful

means for extracting useful insights from large-scale decision-making datasets, de-

signing efficient and flexible predictive models, designing optimal decision-making

interventions, and examining decision-making procedures as algorithms. By better

understanding decision-making through these tools, we can design more effective

public policies, create more successful products and media, and identify biases.

This dissertation addresses two types of decision-making: at the individual and

collective level. First, we design interpretable models to reveal how contextual

and social factors influence individual discrete choices, where people choose from

a set of available items. We show how these models provide improved prediction

by accounting for contextual and social effects on preferences. We also examine

the causal inference challenges in learning such factors from observational data. In

the second part of the dissertation, we focus on collective decision-making, where

a large number of individuals combine their preferences through voting to make

a decision for the group. We focus on the two single-winner voting systems in

most common use (plurality and instant runoff) and analyze them as algorithms,

understanding their worst- and average-case behavior. To bridge the two parts, we

also explore optimal interventions in group decisions using individual-level models
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of choice.

We begin by providing the reader with some background on the areas of discrete

choice and voting, which will be useful in understanding how our work is positioned

in the literature. We also provide a summary of our contributions in both individual

and collective decision-making.

1.1 Discrete choice background

Discrete choice describes settings where individuals are faced with a set of options

and select one of them (Train, 2009). Such settings occur constantly in our lives,

from the mundane to the highly consequential. For instance, will you drive, walk,

or take the bus to work? Will you buy Chobani, Fage, or Oikos yogurt? Which

graduate school will you attend? Which city will you move to? The answers to

these questions (even the apparently mundane ones) have significant impacts on

urban transit systems and yogurt companies, as well as university enrollments and

the economic fates of cities—indeed, it is hard to conceive of any aspect of our lives

which is not affected by discrete choices. Given the ubiquity of discrete choice, it

is not surprising that there has been a substantial quantity of research in this area

in the last century.

The core goal of the study of discrete choice is to provide an explanatory

model for the choices people make. Ideally, such a model can tell us the factors

that contribute to a choice and can also provide predictions for future choices.

These models can then be used for downstream tasks like designing new products

that align with people’s preferences (Wassenaar et al., 2005) or deciding what

to stock in a store to maximize revenue (Rusmevichientong et al., 2014). The

conventional wisdom is that choice models need to be stochastic, since we cannot
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hope to capture every single factor that might determine an action: sometimes you

might buy Fage and sometimes Oikos, and since we should never expect to know all

the micro-level factors that go into this variation, it is often useful to model them

as random. On the other hand, the classical approach in economics is to posit that

individuals are rational utility maximizers. The theory of random utility models

(RUMs) (Thurstone, 1927; Marschak, 1959; Block and Marschak, 1960; Manski,

1977) bridges these two ideas, positing that individuals sample random utilities

for each item and then select the one with highest observed utility (these random

utilities may differ in different instances, making choice stochastic). Much of the

early work in discrete choice is based on another rationality assumption known

as the independence of irrelevant alternatives (IIA) or Luce’s choice axiom (Luce,

1959), which informally states that the utility of an item should be independent

of the set of alternatives in which it appears. Interestingly, there is a unique RUM

satisfying IIA, where the random utility of each item is equal to its mean utility plus

i.i.d. Gumbel noise (Luce and Suppes, 1965; McFadden, 1974; Yellott Jr, 1977).

In a seminal paper, McFadden (1974) showed that this Gumbel-noise RUM, which

he called the conditional logit, can be estimated from population-level choice data

and that utilities can be parameterized by covariates of the items or choosers to

understand how those features influence preferences. This work eventually led

to the 2000 Nobel Prize in Economics, awarded to McFadden (and shared with

James Heckman) for “his development of theory and methods for analyzing discrete

choice” (NobelPrize.org, 2000).

After this early work on rational choice, the study of discrete choice took a

major turn in the ’80s and ’90s—along with much of behavioral economics and

psychology—as increasing doubt was cast on traditional rationality assumptions.

In particular, laboratory experiments found that people consistently violate as-
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sumptions like IIA, changing their apparent preferences depending on the context

of the choice (Tversky and Kahneman, 1981; Huber et al., 1982; Simonson and

Tversky, 1992; Shafir et al., 1993). For instance, people tend to choose a compro-

mise among the available items (Simonson, 1989), such as the middle-priced wine

on a menu (different menus then result in violations of IIA). Such violations are

called context effects, and much of the work on discrete choice in the last several

decades has focused on detecting and modeling context effects.

Most recently, the increasing availability of large online choice datasets has

led to significant interest in discrete choice in the computer science community,

including in models of context effects (Chen and Joachims, 2016a; Benson et al.,

2016, 2018b; Seshadri et al., 2019; Bower and Balzano, 2020; Rosenfeld et al., 2020)

and applications of discrete choice to social network growth (Overgoor et al., 2019,

2020; Gupta and Porter, 2022; Ma et al., 2022). This line of work is solidly based

in the random utility theory pioneered by McFadden and Manski, but also draws

on Tversky and Simonson’s findings about the context-dependence of preferences.

Meanwhile, these papers bring in tools from computer science and machine learn-

ing, including neural networks (Rosenfeld et al., 2020), sample complexity anal-

ysis (Seshadri et al., 2019), and algorithm design (Benson et al., 2016). These

computational techniques have helped make discrete choice modeling more effi-

cient and powerful in the age of big data. It is in this computational discrete

choice literature that Chapters 2 to 5 of this dissertation reside.
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1.2 Voting background

Now that we have established some context for the individual decision-making

portion of this dissertation, we turn to collective decision-making. In order to

make society-level decisions, such as electing a president or deciding on city policies,

democracies need to combine the preferences of a large number of individuals into a

single choice. Such a voting system is comprised of two components: an elicitation

mechanism (how do we ask people about their preferences?) and an aggregation

mechanism (how do we combine the elicited preferences into a final decision?).

Discrete choice models tell us about how people might reply to the elicitation

mechanism, but the aggregation mechanism is something quite different: we must

impose a particular algorithm to combine preferences into a societal choice.

A huge number of different voting systems have been proposed, dating back

hundreds and even thousands of years; ancient Athens used majority voting in the

5th century BCE (Tridimas, 2019), Borda count was proposed in 1435 by Nicholas

of Cusa for electing the Holy Roman Emperor (Emerson, 2013), and approval

voting was used to elect the Doge of Venice from 1268 to 1789 (Lines, 1986). Each

of these systems can be understood as an algorithm whose input is the set of

preferences of the population and whose output is the winner. Analyzing these

algorithms (or designing new ones) is the purview of computational social choice,

where computational techniques have proven very useful for better understanding

voting systems. Some voting systems are even NP-hard to evaluate; one notable

example is Dodgson’s method (Bartholdi et al., 1989; Ratliff, 2001), invented by

Charles Dodgson in 1876 (also known by his pen name, Lewis Carroll), although

he did not know of its NP-hardness at the time.

One of the central themes in the mathematical theory of voting is that a per-
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fect voting system is fundamentally impossible. Indeed, this is one of the reasons

for the huge proliferation of different systems. The first impossibility in voting

was discovered by the Marquis de Condorcet in 1785 (de Condorcet, 1785): when

preferences are expressed as rankings over candidates, it is possible that a majority

of voters prefers A to B, a majority prefers B to C, and a majority prefers C to

A—creating a Condorcet cycle. This is known as the Condorcet paradox, and can

arise even with only three voters with preference rankings ABC, CAB, and BCA.

If there does exist some candidate which is preferred by a majority of voters to

every other candidate, they are known as the Condorcet winner. A voting sys-

tem that always elects the Condorcet winner when one exists is called Condorcet

consistent. In some sense, the Condorcet paradox shows that there are some pro-

files (as collections of rankings are termed in voting theory) in which no “good”

winner can be chosen. Another famous impossibility result in voting is due to Ar-

row, who showed that no ranking-based voting system can simultaneously satisfy

three seemingly desirable properties: non-dictatorship, Pareto efficiency, and the

independence of irrelevant alternatives1 (Arrow, 1950). Yet another impossibility

result is the Gibbard–Satterthwaite theorem, which essentially states that any vot-

ing system can be strategically manipulated (Gibbard, 1973; Satterthwaite, 1975).

In sum, we cannot hope to identify a perfect voting system. Rather, we are left

to choose between a number of suboptimal options—although some exhibit more

desirable properties than others.

There are many properties which might be considered desirable in a voting

system, such as the likelihood of selecting the Condorcet winner (if one exists), the

simplicity and explainability of the system, and a myriad of theoretical properties

devised by voting theorists (monotonicity, unanimity, and participation, to name
1This IIA property is different from Luce’s IIA axiom in discrete choice, although they are

similar in spirit. The precise definitions of Arrow’s properties are not important for our purposes.
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just a few; see Nurmi (1987) for a discussion of different voting systems and their

properties). Despite the extensive research into various voting systems, real-world

elections often use very simple systems like plurality. As Niemi and Riker observe,

“in the real world, however, the adoption of a voting system is determined largely by

considerations of expense, convenience and familiarity” (1976). This is especially

apparent in the United States, which primarily uses plurality voting, despite the

fact that voting experts widely agree that plurality is among the worst voting

systems used in practice (for instance, a survey of experts ranked plurality last

among nine possible voting systems (Bowler et al., 2005)). However, there has been

a recent push to adopt instant runoff voting (IRV, commonly called ranked-choice

voting) in the United States as a better alternative to plurality. IRV is already

used by two states, Maine and Alaska, as well as a number of local municipalities

including Minneapolis, San Francisco, and New York City. It is this context that

frames the second part of this dissertation, which seeks to better understand how

IRV and plurality behave through mathematical analysis and simulation, with the

goal of informing the ongoing debate between the two systems.

A crucial tool in the analysis of voting systems that we will use extensively is the

concept of preference restrictions (Elkind et al., 2016, 2022). As discussed earlier,

general preference profiles can be very complex and messy, exhibiting features

like Condorcet cycles. However, if we assume that voter preferences have some

additional structure, then much of this complexity is resolved. Indeed, real-world

preferences do appear to have such structure; many of the pathological worst cases

occur rarely in practice. Perhaps the most famous preference restriction is single-

peakedness (Black, 1948; Arrow, 1951), where candidates lie on a one-dimensional

axis and voters each have an ideal point along the axis, preferring candidates closer

to this point. With single-peaked preferences, a Condorcet winner always exists
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and is the candidate closest to the median voter. We will use this and other

preference restrictions in Chapters 6 to 8.

1.3 Overview of individual decision-making contributions

Given this brief overview of discrete choice and voting, the two areas covered in this

dissertation, we provide a summary of our contributions, beginning with individual

decision-making.

In Chapter 2, we introduce a novel choice model for contextual preferences

which is easy to fit to data and interpret. The model, which we call the linear

context logit (LCL) is an extension of the conditional logit (McFadden, 1974) that

captures how different features of available items influence each others’ valuations.

For instance, how do people’s preferences differ when choosing from a set of expen-

sive restaurants compared to a set of cheap restaurants? We might hypothesize

that service speed is more important when choosing between cheap restaurants;

this is exactly the type of effect that the LCL captures. We show that the LCL has

a negative log-likelihood, so it is easy to perform maximum likelihood estimation

by gradient descent methods. We also prove a necessary and sufficient identifiabil-

ity condition, which is typically satisfied in practice. We fit the LCL to a variety of

real-world choice datasets, including preferences over cars, hotel bookings on Ex-

pedia, and sushi types. We find a number of statistically significant context effects

(using a likelihood ratio test against conditional logit), including that people paid

for more expensive hotels on Expedia when many options had high star ratings,

but less expensive hotels when many options had high review scores. Additionally,

we apply the LCL to a variety of social network link-formation datasets, where the
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discrete choice is which node to connect with (Overgoor et al., 2019). We find a

variety of shared effects among datasets of similar kinds; for instance, in several

online commenting datasets, we find that individuals are more likely to prioritize

shared connections when choosing from a popular group with high in-degree.

Next, in Chapter 3, we turn to a major challenge in identifying context effects

from observational choice data: the possibility of confounding factors. Without

additional knowledge, we cannot conclude that the effects we observe using the

LCL and other models of context effects are capturing actual causal influences

on preferences rather than coincidental associations in the data. We formalize

this issue as choice set confounding and establish the conditions when we can be

confident that apparent context effects are in fact causal. We also demonstrate that

the San Fransisco transportation datasets (Koppelman and Bhat, 2006) commonly

used as testbeds for context effect models (Koppelman and Bhat, 2006; Ragain

and Ugander, 2016; Benson et al., 2016; Seshadri et al., 2019) very likely have

choice set confounding rather than true context effects. Then, we adapt tools

from causal inference to the discrete choice setting, allowing us to recover true

context effects using regression controls and inverse probability weighting (given

certain independence assumptions, as is standard in causal inference). We find in

the Expedia hotel choice data that much of the apparent deviation from IIA we

observed in Chapter 2 is due to choice set confounding, although LCL continues to

fit the data better than conditional logit even after adding controls. These causal

inference methods rely on having access to features of the choosers, but we also

develop a clustering-based method which allows us to mitigate confounding even

without chooser features.

We conclude the first part of this dissertation by addressing another factor that
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influences preferences: social ties. There are several ways in which social networks

can inform choice prediction, as preferences are shaped by social context through

word-of-mouth and effects like conformity (Feinberg et al., 2020; Axsen and Ku-

rani, 2012). Additionally, people with similar preferences are more likely to be

friends (McPherson et al., 2001), making social structures even more informative

about preference correlations. In Chapter 4, we adapt methods from graph learning

for use in discrete choice, taking advantage of this relationship between social ties

and similarity in preferences. We apply Laplacian regularization to discrete choice

models, and adapt label propagation and graph neural networks for choice predic-

tion. We find significant improvement in choice prediction in an app-downloading

dataset, where individuals in close contact are more likely to download the same

apps. We also use geographic adjacency networks to improve county-level election

models using our graph-based discrete choice approach, which is especially useful

in a semi-supervised setting where data is only available in a subset of counties.

1.4 Overview of collective decision-making contributions

Chapter 5 provides a bridge between the two sections of the dissertation, as it uses

discrete choice models in a collective decision-making scenario. In that chapter,

we consider a setting where a group of agents makes a choice over a shared set

of options, such as friends deciding where to go for dinner or a hiring commit-

tee deciding over a set of candidates. Each agent has their own preferences and

chooses according to a discrete choice model. The primary goal we consider is

to help the decision-makers agree on the available options by suggesting new al-

ternatives. This is a combinatorial optimization problem, as introducing different

sets of alternatives has different effects on the consensus of the group. We prove

11



that this optimization problem is NP-hard and develop a fully polynomial time

approximation scheme (FPTAS) with an additive approximation guarantee. We

also consider two other objectives, promoting a particular item and minimizing

rather than maximizing agreement, which we also show are NP-hard and admit

the same approximation algorithm. These results hold across multiple discrete

choice models, including the logit and several models of context effects. Interest-

ingly, we show that natural preference restrictions can make promoting an item

easy but leave optimizing agreement NP-hard. In this sense, we show that promo-

tion is easier than consensus (when suggesting additional items). We demonstrate

the effectiveness and efficiency of our approximation algorithm in three real-world

choice datasets.

We then turn our attention squarely to voting for the remainder of the disserta-

tion. In Chapter 6, we ask how the length of a ballot (i.e., the number of available

ranking slots) can influence the winner of an IRV election. This is particularly rel-

evant to the ongoing debate around IRV and plurality, as plurality can be viewed

as IRV with only a single ranking slot (ballot length 1), while different municipal-

ities using IRV use ballot lengths ranging from 3 (as in San Francisco) to the total

number of candidates running (as in Maine). The extent to which ballot length

might influence the outcome of an election was previously unknown. We establish

that in a k-candidate election with fixed voter preferences, there can be up to k−1

different winners depending on which ballot length is chosen. Moreover, the se-

quences of winners at different ballot lengths can be nearly arbitrary, subject only

to a simple feasibility constraint, and we provide explicit constructions achieving

any feasible sequence. For instance, we can construct a profile such that candidate

A wins at prime ballot lengths and candidate B wins at composite ballot lengths.

We show that these pathological profiles need only a quadratic number of voters (in
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k, the number of candidates) and do not rely on tie-breaking. We also investigate

the extent to which preference restrictions eliminate these pathologies; we can still

achieve O(
√
k) different winners across ballot lengths with single-peaked profiles.

In a large collection of 168 real-world election datasets, we find different winners

across ballot lengths in 25% of them; but we only a find a single instance with more

than two different winners. Simulations confirm this finding: ballot length often

has some impact on the winner (particularly going from ranking only top 1 or 2

to 5 or more), but pathological cases are very rare. These results help highlight

ballot length as a consequential degree of freedom in designing IRV elections. We

have received some feedback that these results may be seen as critical of IRV as

a voting system, but we remind the reader that plurality is IRV with only top-1

rankings and that well-behaved voting systems are provably impossible; IRV is

indeed imperfect, but we still see it as an improvement to plurality.

Next, in Chapter 7, we address a common point of contention between support-

ers and critics of IRV: whether it benefits moderates or extreme candidates. To

do this, we use a one-dimension model of political ideology, from the political left

to the right, adding a Euclidean metric to single-peaked preferences. In this set-

ting, we prove a very surprising yet simple new result: when voters are uniformly

distributed along the political spectrum, IRV always elects a moderate candidate

from the middle two-thirds of the spectrum (when one is available). In contrast,

plurality can elect arbitrarily extreme candidates. Note that in this setting, any

Condorcet consistent voting system would elect the most moderate candidate, but

neither IRV nor plurality are Condorcet consistent. We show that IRV’s moder-

ating effect generalizes to other symmetric voter distributions. In addition, we

use a stick-breaking argument to derive the asymptotic winning vote share under

plurality with uniform voters and candidates. This allows us to prove that the po-
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sition of the plurality winner approaches uniform over the interval as the number

of uniformly distributed candidates grows. Finally, we also describe a geometric

approach of deriving the exact plurality winner distribution with uniform voters

and candidates and apply it for the case of k = 3 candidates. Overall, the results of

this chapter demonstrate that IRV exhibits a preference for moderate candidates

in a way that plurality does not.

In this dissertation’s final chapter, Chapter 8, we continue using a one-

dimensional model of ideology, but begin to consider strategic behavior by can-

didates. The previous two chapters dealt only with the mechanics of the voting

system, setting aside the possibility of candidate strategy. Of course, real candi-

dates are motivated to choose policies in such a way that benefits their chances of

election. Previous work in this area often assumes candidates play strategic games

and analyzes Nash equilibria of these games. However, real-world elections are

so complex that we argue candidates are unable to play optimally. We therefore

explore a boundedly-rational heuristic that candidates might follow: imitate the

policy of a previous winner. This results in a discrete-time evolutionary replica-

tor dynamics model of candidate positioning. We prove that this model has two

different asymptotic behaviors depending on how many candidates run in each

election. When there are fewer than five candidates per election, we prove that

imitating previous winner policies results in all candidates converging to the me-

dian of a uniformly distributed voting population. In contrast, we prove that the

candidate distribution does not converge to the center with k ≥ 5 candidates per

election. When all candidates are in the middle half of the interval, we also show

the stronger statement that the candidate density in an interval around the center

goes to zero. We tie these replicator dynamics convergence results in with prior

strategic work and demonstrate our theoretical results in simulation.
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CHAPTER 2

LEARNING INTERPRETABLE FEATURE CONTEXT EFFECTS

IN DISCRETE CHOICE

In a discrete choice setting, an individual chooses between a finite set of avail-

able items called a choice set. This general framework describes a host of im-

portant scenarios, including purchasing (Anderson et al., 1992), transportation

decisions (Train, 2009), voting (Dow and Endersby, 2004), and the formation of

new social connections (Overgoor et al., 2019; Gupta and Porter, 2022). Discover-

ing and understanding the factors that contribute to the choices people make has

broad applications in, e.g., recommender systems (Yang et al., 2011; Ruiz et al.,

2020), Web search (Ieong et al., 2012), online dating platforms (Bruch et al., 2016),

and policy design (Brownstone et al., 1996).

The conditional logit (McFadden, 1974) (also called the multinomial logit) is

the most famous and widely used discrete choice model. This model obeys the

axiom of independence of irrelevant alternatives (IIA) (Luce, 1959), that relative

preferences between items are unaffected by the choice set—if someone prefers x

to y, they should still do so when z is also an option. However, experiments on

human decisions (Huber et al., 1982; Simonson and Tversky, 1992; Shafir et al.,

1993; Trueblood et al., 2013) as well as direct measurement on choice data (Small

and Hsiao, 1985; Benson et al., 2016; Seshadri et al., 2019) have found that this

assumption often does not hold in practice. These “IIA violations” are termed

context effects (Prelec et al., 1997; Rooderkerk et al., 2011). Examples include

the attraction effect (Huber et al., 1982), where including an inferior item makes

a better option more attractive, and the similarity effect (Tversky, 1972), where

similar items split the preferences of the chooser.
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The ubiquity of context effects has driven the development of more nuanced

models capable of capturing them. In machine learning, the goal is typically to de-

sign models for better predictions via learned context effects (Chen and Joachims,

2016a,b; Seshadri et al., 2019; Pfannschmidt et al., 2022; Rosenfeld et al., 2020;

Bower and Balzano, 2020; Ruiz et al., 2020). However, the effects accounted for

by models using neural networks or item embeddings (Pfannschmidt et al., 2022;

Chen and Joachims, 2016b; Rosenfeld et al., 2020) are difficult to interpret. Other

models learn context effects at the level of individual items (Chen and Joachims,

2016a; Seshadri et al., 2019; Natenzon, 2019; Ruiz et al., 2020), preventing gener-

alization to items not in the training set and making it difficult to discover context

effects coming from item features (e.g., price). Within behavioral economics, con-

text effect models tend to be engineered for specific effects and are often only

applied to controlled special-purpose datasets (Rooderkerk et al., 2011; Tversky

and Simonson, 1993; Masatlioglu et al., 2012).

Here, we provide methods for learning a wide class of context effects from large,

pre-existing choice datasets in a variety of domains. The key advantage of our

approach is that we can take a choice dataset collected in any domain (possibly

collected passively), efficiently train a model, and directly interpret the learned

parameters as intuitive context effects. For example, we find in a hotel booking

dataset that users presented with more hotels on sale showed increased willingness

to pay. This lets us hypothesize that “on sale” tags on hotels exerts a context

effect on the user, making them feel better about selecting a more expensive option.

Context effects extracted by our methods could then motivate further experimental

work such as A/B testing or choice set design to steer behavior. We focus on the

setting where items are described by a set of features (e.g., for hotels: price, star

rating) and where the utility of each item is a function of its features. This setup
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has two major benefits, as it enables (i) making predictions about new items not

observed in training data, and (ii) learning generalizable and testable effects that

can inform marketing, advertising, or recommendation.

We define feature context effects that describe changes in importance of features

when determining choice as a function of features of the choice set. For instance,

suppose a diner has two choice sets on two different occasions, one consisting of

fast food chains and the other of high-end restaurants. In the choice set with lower

prices, the diner could value service speed relatively more, and in the choice set with

higher prices, the diner might place more weight on wine selection. We introduce

two models, the linear context logit (LCL) and decomposed linear context logit

(DLCL), to learn these types of feature context effects directly from choice data.

We perform an extensive analysis of choice datasets using our models, showing

that statistically significant feature context effects occur in empirical data and

recovering intuitive effects. For example, we find evidence that people pick more

expensive hotels when their choice sets have high star ratings, that people offered

more oily sushi show more aversion to oiliness (a possible similarity effect), and

that when deciding whose Facebook wall to post on, people care more about mutual

connections when choosing from popular friends.1 Accounting for feature context

effects also improves prediction accuracy in many datasets, although our primary

focus is learning interpretable context effects. Additionally, we show to statistically

test for effects and how sparsity-encouraging regularization can identify the most

influential context effects.

Our empirical study is split into two parts. First, we examine datasets col-

lected to understand preferences, covering a variety of choices including sushi,
1These are all correlative rather than causal claims; Chapter 3 deals at length with the

challenge of causality in modeling context effects.
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hotel bookings, and cars. Second, we apply our methods to social network analy-

sis, where we demonstrate context effects in competing theories of triadic closure,

the of new friendships to form among friends-of-friends (Easley and Kleinberg,

2010; Granovetter, 1973). Discrete choice models have recently found compelling

use in analyzing social network dynamics (Overgoor et al., 2019, 2020; Gupta and

Porter, 2022; Feinberg et al., 2020). Here, we find new insights by incorporating

context effects.

Additional related work

Within machine learning, our LCL model is similar in spirit to the context-

dependent random utility model (CDM) (Seshadri et al., 2019) in that we consider

pairwise contextual interactions, but with the important distinction that our model

operates on features rather than on items, allowing for the discovery of general,

non-item-specific effects. Our framework for context-dependent utilities is related

to set-dependent weights (Rosenfeld et al., 2020) and FETA (Pfannschmidt et al.,

2022); these methods are optimized for prediction accuracy and are difficult to in-

terpret. Other models for context effects include the blade-chest model (Chen and

Joachims, 2016a,b) for pairwise comparisons and the salient features model (Bower

and Balzano, 2020), which considers different subsets of features in each choice set.

Recent research has framed network growth (the formation of new connec-

tions in, e.g., communication or friendship networks) as discrete choice and have

suggested context effects as a means for more flexible modeling (Overgoor et al.,

2019). The models we introduce are a step in this direction, and we find context

effects useful for both improved predictions and gaining new social insights. Other

research has explored mixed (Gupta and Porter, 2022) and de-mixed (Overgoor

et al., 2020) choice models for network growth, but these approaches do not reveal
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if or how the features of items in each choice set affect the preferences of choosers.

2.1 Discrete choice background

We briefly review the discrete choice modeling framework (see the book by

Train (Train, 2009) for a thorough treatment). In a discrete choice setting, an

individual selects one item from a set of available items, the choice set. We use U

to denote the universe of all items and C ⊆ U the choice set in a particular choice

instance. A choice dataset D is a set of n pairs (i, C), where i ∈ C is the item

selected. Each item i is described by a vector of d features yi ∈ Rd that determine

the preferences of the chooser.

A popular class of discrete choice models, random utility models (Marschak,

1959) (RUMs), are based on the idea that individuals try to maximize their utility,

but can only do so noisily. In a RUM, an individual draws a random utility for

each item (where each item has its own utility distribution) and selects the item

with maximum observed utility. The workhorse RUM using item features is the

conditional logit (CL) (McFadden, 1974), which has interpretable parameters that

are readily estimated from data.2 In the CL model, the observed utility of each item

i is the random quantity θTyi+ϵ, where the latent parameter θ ∈ Rd (the preference

vector) stores the relative importance of each feature (the preference coefficients)

and the random noise term ϵ follows a standard Gumbel distribution with CDF

e−e
−x . This noise distribution is chosen so that the CL choice probabilities have

a simple closed form (Train, 2009): a softmax over the utilities. Under a CL, the
2Many sources call this model the multinomial logit (e.g., Hausman and McFadden, 1984).
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probability that i is chosen from the choice set C, denoted Pr(i | C), is

Pr(i | C) = exp(θTyi)∑
j∈C exp(θTyj)

. (2.1)

The CL model famously obeys the axiom of independence of irrelevant alter-

natives (IIA) (Luce, 1959), stating that relative choice probabilities are unaffected

by the choice set. Formally, a model satisfies IIA if for any two choice sets C,C ′

and items i, j ∈ C ∩ C ′,
Pr(i | C)
Pr(j | C)

=
Pr(i | C ′)
Pr(j | C ′)

.

As we have discussed, this assumption is often violated in practice due to

context effects. One model that can account for (some) context effects is the

mixed logit. The DLCL model that we will introduce is related to a mixed logit,

so we briefly describe it here. In a (discrete) mixed logit, there are M populations,

each of which has its own preference vector θm. The mixing parameters π1, . . . , πM ,

with
∑M

m=1 πm = 1, describe the relative sizes of the populations. This results in

choice probabilities

Pr(i | C) =
M∑
m=1

πm
exp(θTmyi)∑
j∈C exp(θTmyj)

. (2.2)

While mixed logit can produce IIA violations, it does so by hypothesizing popu-

lations each with their own context-effect-free preferences, meaning that context

effects only appear in the aggregate data. In contrast, our models are designed to

identify context effects in individual preferences.

2.2 Models of feature context effects

In order to capture context effects at the individual level, the choice set itself needs

to influence the preferences of a chooser. In the most general extension of the CL,
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we could replace θ with θ + F (C), where F : P(U) → Rd is an arbitrary function

of the choice set (this is analogous to the set-dependent weights model (Rosenfeld

et al., 2020), but framed as a RUM). This allows each feature to exert an arbitrary

influence on the base preference coefficient of each other feature. We say that a

feature context effect occurs when F (C) ̸= 0.

We make two simplifying assumptions on the choice set effect function F (C)

that will aid interpretability. The first is that the effect of a choice set additively

decomposes into effects of its items, i.e., F (C) is proportional to
∑

j∈C f(yj) for

some function f : U → Rd. While in principle higher-order interactions are pos-

sible, the number of such interactions is exponential in the size of the choice set.

This makes it difficult to extract such effects from typical choice datasets that do

not contain observations from every possible choice set; moreover, higher-order

interactions are usually sparse (Batsell and Polking, 1985). Second, we assume

that the effect of each item is diluted in large choice sets and we model this with

a proportionality constant of 1/|C| so that F (C) = 1/|C|
∑

j∈C f(yj).

2.2.1 Linear context logit

In principle, features could exert arbitrary influences on each other, but we focus

on the case when context effects are linear, which makes inference tractable and,

crucially, preserves interpretability. We use yC = 1/|C|
∑

j∈C yj to denote the

mean feature vector of the choice set C. For f linear, we can write f(yj) = Ayj

for some matrix A ∈ Rd×d, and the choice set context function F is

F (C) =
1

|C|
∑
j∈C

f(yj) =
1

|C|
∑
j∈C

Ayj = AyC .
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We call this model the linear context logit (LCL), and it produces choice probabil-

ities

Pr(i | C) = exp([θ + AyC ]
T yi)∑

j∈C exp([θ + AyC ]
T yj)

. (2.3)

In the LCL, Apq specifies the effect of feature q on the coefficient of feature p. If

Apq is positive (resp. negative), then higher values of q in the choice set result in

a higher (resp. lower) preference coefficient for p. If A = 0, then the LCL reduces

to CL.

When analyzing data in Section 2.5, we often see large diagonal entries of A.

The signs of the diagonal entries of A can be explained by known context effects.

The case of App > 0 relates to the attraction effect (high values of a feature amplify

fine-grained differences along that dimension), and the case of App < 0 is consistent

with the similarity effect (high values of a feature devalue it),

Just as in the CL, we can derive the closed form in (2.3) if choosers have ran-

dom utilities [θ + AyC ]
T yi + ϵ, where ϵ follows a standard Gumbel distribution

and the random variable samples are i.i.d. If we want a more parsimonious model,

we can impose sparsity on A through L1 regularization (we do this in our empir-

ical analysis) or we could use a low-rank approximation of A. A constant-rank

approximation makes the number of parameters linear in d.

2.2.2 Decomposed linear context logit

The LCL implicitly assumes that the intercepts of all linear context effects exerted

by one feature are the same (we have d2 slopes in A, but only d intercepts in

θ). Motivated by varying intercepts in empirical data (Figure 2.1), we develop

a second model that decomposes the LCL into context effects exerted by each
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feature, which we call the decomposed linear context logit (DLCL). In the language

of choice set effect functions, we now have d context effect functions F1, . . . , Fd

where Fk only depends on the values of feature k. We also replace θ with d base

preference vectors B1, . . . , Bd (which we combine into a d×d matrix B; subscripts

index columns) that provide varying intercepts. This gives us d contextual utilities

B1 + F1(C), . . . , Bd + Fd(C) that we combine in a mixture model.

Making the same assumptions as for the LCL, we decompose each choice set

effect function Fk(C) =
1
|C|
∑

j∈C fk((yj)k) (here, fk is a function of only the kth

feature, (yj)k). Assuming linearity (and storing context effects exerted by feature

k in the kth column of A), we arrive at

Fk(C) =
1

|C|
∑
j∈C

fk((yj)k) =
1

|C|
∑
j∈C

Ak(yj)k = Ak(yC)k.

We use mixture weights π1, . . . , πd with
∑d

k=1 πk = 1 to describe the relative

strengths of effects exerted by each feature. The DLCL is then a mixture of d

logits, where each component captures the context effects from a single feature.

The choice probabilities are

Pr(i | C) =
d∑

k=1

πk
exp

(
[Bk + Ak(yC)k]

Tyi
)∑

j∈C exp ([Bk + Ak(yC)k]Tyj)
. (2.4)

Each component corresponds to an LCL with the constraint that all columns of A

except the kth are zero. The matrix A has the same interpretation as in the LCL,

while Bpq represents the importance of feature p when feature q is zero (i.e., the

intercept of the linear context effect exerted on p by q).
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2.3 Identifiability of the LCL

Identifiability is a key feature of models that ensures we can uniquely learn pa-

rameters and thus interpret them meaningfully. We provide three results charac-

terizing the identifiability of the LCL. Most significantly, we prove a necessary and

sufficient condition that exactly determines when the model is identifiable (The-

orem 1). However, the condition is somewhat hard to reason about, so we also

prove a simple necessary condition (Proposition 1) and a simple sufficient condition

(Proposition 2). These results give further insight into the main theorem. Proofs

are in Appendix A.

Following Seshadri et al. (2019), we use CD to denote the set of unique choice

sets appearing in the dataset D, and we say that an LCL is identifiable from a

dataset if there do not exist two distinct sets of parameters (θ, A) and (θ′, A′) that

produce identical probability distributions over every choice set C ∈ CD. In the

following, ⊗ denotes the Kronecker product.

Theorem 1. A d-feature linear context logit is identifiable from a dataset D if and

only if

span


yC
1

⊗ (yi − yC) | C ∈ CD, i ∈ C

 = Rd2+d. (2.5)

Theorem 1 says that identification requires enough choice sets with sufficiently

different mean features containing enough sufficiently different items (with coupling

between the two requirements). The condition of Theorem 1 is often satisfied in

practice if there are no redundant features (18 out of 22 that we analyze uniquely

identify the LCL).

To better understand the span condition, we provide a simple necessary con-
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dition for indentifiability. Recall that a set of vectors {y0, . . . , yd} ⊂ Rd is affinely

independent if the set of vectors {y1 − y0, . . . , yd − y0} is linearly independent.

Propostion 1. If a d-feature linear context logit is uniquely identifiable from a

dataset D, then the dataset must contain d+1 choice sets with affinely independent

mean feature vectors.

This necessary condition stems from formulating item utility as the affine trans-

formation θ+AyC , which requires d+1 points to be identified. The span condition

in Theorem 1 is more difficult to reason about because of the coupling between

individual feature vectors yi and mean feature vectors yC . We therefore provide

a simple sufficient condition for identifiability that decouples these requirements

and is optimal in the number of distinct choice sets.

Propostion 2. If a dataset D contains d+ 1 distinct choice sets C0, . . . , Cd such

that

i. the set of mean feature vectors {yC0 , . . . , yCd} is affinely independent (the

necessary condition from Proposition 1) and

ii. in each choice set Ci, there is some set of d+1 items with affinely independent

features,

then we can uniquely identify a d-feature LCL.

We leave characterization of DLCL identifiability for future work, as even mixed

logits have notoriously complex identifiability conditions (Grün and Leisch, 2008;

Zhao et al.; Chierichetti et al., 2018b).
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2.4 Estimation

Given a dataset D consisting of observations (i, C), where i was selected from the

choice set C, we wish to recover the parameters of a model that best describe

the dataset. In this section, we describe estimation procedures for the LCL and

DLCL. First, we show that the likelihood function of the LCL is log-concave and

simple to optimize. On the other hand, the DLCL does not have a log-concave

likelihood, but we derive an expectation-maximization algorithm that only requires

optimizing convex subproblems.

We wish to find parameters that minimize the negative log-liklihood (NLL) of

a model, which is equivalent to maximizing the likelihood. The NLL of the linear

context logit is

−ℓ(θ, A;D) = −
∑

(i,C)∈D

log
exp([θ + AyC ]

T yi)∑
j∈C exp([θ + AyC ]

T yj)
(2.6)

=
∑

(i,C)∈D

− (θ + AyC)
T yi + log

∑
j∈C

exp([θ + AyC ]
T yj). (2.7)

This function is convex in θ and A (equivalently, the likelihood is log-concave). To

see this, notice that the first term in the summand of (2.7) is a linear combination

of entries of θ and A, so it is jointly convex in θ and A. Meanwhile, log-sum-exp is

convex and monotonically increasing, so its composition with the linear functions

[θ + AyC ]
T yj is also convex. We then have that −ℓ(θ, A;D) is convex, as the sum

of convex functions is convex. Moreover, the second partial derivatives of the NLL

function are all bounded (by a constant depending on the dataset), so its gradient

is Lipschitz continuous. We can therefore use gradient descent to efficiently find a

global optimum of −ℓ(θ, A;D).

On the other hand, the NLL of the DLCL (like that of the mixed logit) is not

29



convex, so we can only hope to find a local optimum with gradient descent. To ad-

dress this challenge, we develop an expectation-maximization (EM) algorithm for

DLCL estimation. The algorithm mirrors the EM algorithm for estimating a mixed

logit (Train, 2009), except that the M step updates estimates for A and B. (see

Appendix A.2). An advantage of EM for DLCL is that it only requires optimiz-

ing convex functions with Lipschitz-continuous gradients, and EM is guaranteed

to improve the log-likelihood at each step. While EM may still arrive at a local

optimum, we find that for most of our datasets, it finds better model parameters

than stochastic gradient descent on the likelihood.

2.5 Data analysis

We apply our LCL and DLCL models to two collections of empirical choice

datasets. First, we examine datasets specifically collected to understand preference

in various domains, such as car purchasing and hotel booking. The features de-

scribing items naturally differ in these datasets. The second collection of datasets

comes from a particular choice process in social networks, namely the formation of

new connections. Here, we use graph properties as features (such as in-degree, a

proxy for popularity (Moody et al., 2011)), allowing us to compare social dynamics

across email, SMS, trust, and comment networks. In both dataset collections, we

first establish that context effects occur and that our models better describe the

data than traditional context-effect-free models, CL, and mixed logit. We then

show how the learned models can be interpreted to recover intuitive feature con-

text effects. Our code, results, and links to documented versions of every dataset

are available at https://github.com/tomlinsonk/feature-context-effects.
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2.5.1 Estimation details

For prediction experiments, we use 60% of samples for training, 20% for vali-

dation, and 20% for testing. When testing model fit with likelihood-ratio tests,

we estimate models from the entire dataset. We use PyTorch’s Adam optimizer

for maximum likelihood estimation, with batch size 128 and the amsgrad flag.

We run the optimizer for 500 epochs or 1 hour, whichever comes first. For

the whole-data fits, we use weight decay 0.001 and search over learning rates of

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, selecting the one that results in the highest like-

lihood. For our prediction experiments, we perform a grid search over the weight

decays 0, 0.0001, 0.0005, 0.001, 0.005, 0.01 and the same learning rates as above,

selecting the pair with the best likelihood on the validation set. Predictions are

evaluated on the held-out test set. We use d (the number of features) components

for mixed logit to provide a fair comparison against DLCL (which always uses d

components).

2.5.2 General choice datasets

We analyze six choice datasets from online and survey data (Table 2.1) previ-

ously used in discrete choice research: sushi (Kamishima, 2003); expedia (Kag-

gle, 2013a); district and district-smart (Kaufman et al., 2017; Bower

and Balzano, 2020); car-a and car-b (Abbasnejad et al., 2013); and car-

alt (Brownstone et al., 1996; McFadden and Train, 2000). In all datasets, we

standardize the features to have zero mean and unit variance, which allows us to

more meaningfully compare learned parameters across datasets. The LCL is iden-

tifiable in district-smart, expedia, and sushi, but not the others. However,
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Table 2.1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

district 5376 27 2
district-smart 5376 6 2
sushi 5000 6 10
expedia 276593 5 38
car-a 2675 4 2
car-b 2206 5 2
car-alt 4654 21 6

the L2 regularization we apply (via weight decay) identifies the model in all cases.

2.5.3 Network datasets

Recent work cast many network growth models in terms of discrete choice (Over-

goor et al., 2019). In a directed graph, the formation of the edge u → v can be

thought of as a choice by the node u to initiate new contact with v (the graph

might be a citation, communication, or friendship network). The set from which

u chooses can vary, including all nodes in the graph or only a subset of “close”

nodes. We focus specifically on directed triadic closure (Granovetter, 1973; Easley

and Kleinberg, 2010), where the node u closes a triangle u → v → w by adding

the edge u → w. This phenomenon is used in many influential network growth

models (Jin et al., 2001; Holme and Kim, 2002; Vázquez, 2003) and real-world

networks show evidence of triadic closure in the form of high clustering coefficients

(Easley and Kleinberg, 2010) and closure coefficients (Yin et al., 2020).
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Choices from temporal network data

Our network analysis assumes that the graphs grow according to a multi-mode

model that combines triadic closure with a method of global edge formation. In

particular, we assume that at each step, an initiating node decides to either form an

edge to any node in the graph with probability r or close a triangle with probability

1 − r. This setup, also used by the Jackson–Rogers model (Jackson and Rogers,

2007) and the (r, p)-model (Overgoor et al., 2019), singles out instances of triadic

closure to study separately from global edge formation. When a node u chooses to

close a triangle, we assume u first picks one of its neighbors v uniformly at random

before choosing one of v’s neighbors as a new connection.

Each time we observe a new edge u→ w closing a previously unclosed triangle,

we select a hypothesized intermediate v uniformly at random (u → w can close

multiple triangles at once through different intermediates). We consider the choice

set for the closure to be the out-neighbors of v that are not out-neighbors of u.

Node features

The features of each node in the choice set are computed at the instant before

the edge is closed (the features evolve as the network grows). In our datasets, we

have timestamps on each edge and an edge may be observed many times (e.g., in

an email network, u may send w many emails). The number of times an edge is

observed is its weight ; an edge not in the graph has weight 0. We use six features

to describe each node w that could be selected by the chooser u: (1) in-degree:

the number of edges entering the target node w; (2) shared neighbors : the number

of in- or out-neighbors of u that are also in- or out-neighbors of w; (3) reciprocal
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Table 2.2: Network datasets summary.

Dataset Nodes Edges Triangle closures

synthetic-cl 1000 391294 50000
synthetic-lcl 1000 380584 50000
email-enron 18592 53477 19900
email-eu 986 24929 19603
email-w3c 20082 33409 3271
sms-a 44430 68834 6311
sms-b 72146 100974 9376
sms-c 14433 23285 2732
bitcoin-alpha 3783 24186 8823
bitcoin-otc 5881 35592 12750
reddit-hyperlink 23499 91946 37115
wiki-talk 22067 81125 27505
facebook-wall 46952 274086 68776
mathoverflow 24818 239978 137455
college-msg 1899 20296 6267

weight : the weight of the reverse edge u ← w; (4) send recency : the number of

seconds since w initiated any outgoing edge; (5) receive recency : the number of

seconds since w received any incoming edge; (6) reciprocal recency : the number of

seconds since the reverse edge u← w was last observed.

Following Overgoor et al. (2020), we log-transform features 1 and 2. We take

log(1 + feature 3) to handle weight 0 (in-degree and shared neighbors are never 0,

since v is always a shared neighbor of u and w). Lastly, we transform the temporal

features with log−1(2 + feature) and set them to 0 if the event has never occurred.

This ensures that (1) we can handle 0 seconds since the last event, (2) higher values

mean more recency, and (3) “no occurrence” results in the lowest possible value of

the transformed feature.
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Network datasets

We examine 13 network datasets: three email datasets (email-enron (Benson

et al., 2018a), email-eu (Leskovec et al., 2007; Yin et al., 2017), email-w3c

(Craswell et al., 2005; Benson and Kleinberg, 2018)); three SMS datasets (sms-

a, sms-b, and sms-c (Wu et al., 2010)), two Bitcoin trust datasets (bitcoin-

alpha and bitcoin-otc (Kumar et al., 2016, 2018b)), an online messaging

dataset (college-msg (Panzarasa et al., 2009)), a hyperlink dataset (reddit-

hyperlink (Kumar et al., 2018a)), and three online forum datasets (facebook-

wall (Viswanath et al., 2009), mathoverflow (Paranjape et al., 2017), and

wiki-talk (Leskovec et al., 2010b,a)). In addition, we generate two synthetic

networks, synthetic-cl and synthetic-lcl. Specifically, we begin with 1000

isolated nodes. At each step, we add an edge uniformly at random with probability

0.9. With probability 0.1, we close a triangle by selecting a node u and one of its

neighbors v uniformly at random. We then use either a CL (for synthetic-cl)

or LCL (for synthetic-lcl) to choose which triangle u→ v → ? to close (if there

are no triangles for u to close, we add a random edge). We use the same features

as in the empirical datasets, with Poisson-distributed simulated timestamp gaps

between successive edges until 50000 triangles are closed.

Table 2.2 summarizes the network data. Using Theorem 1, we find that the

LCL is uniquely identifiable in every network dataset. Whereas we split the general

choice datasets into training, validation, and testing sets uniformly at random, we

instead split the network datasets temporally so that future edges are predicted

based on parameters estimated from past edges.
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Figure 2.1: Learned preference coefficients of CLs trained on samples binned by
mean choice set feature. Each point shows the preference coefficient of the shared
neighbors feature in choice sets with varying mean in-degree (left column) and
shared neighbor counts (right column). These coefficients were found by splitting
observations into 100 bins according to their mean feature values and learning a
CL for each bin separately. The area of each point is proportional to the square
root of the number of observations in its bin. The red lines are weighted least
squares fits.

2.5.4 Results

Our analysis focuses on two issues: whether significant linear feature context effects

appear in practice and if so, how we can identify and interpret them using our

models.
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Binned CLs for visualizing feature context effects

As a first step towards identifying whether linear context effects occur, we bin the

samples of each dataset according to the mean feature values in the choice set.

We then fit CLs within each bin, examining whether the preference coefficients of

features vary with the mean choice set features. Figure 2.1 shows two clear linear

(with the respect to the log-transformed feature) context effects in mathover-

flow: (1) as the mean in-degree of the choice set increases, so does the shared

neighbors preference coefficient and (2) the shared neighbors coefficient decreases

in choice sets with higher mean shared neighbors. Colloquially, (1) close ties are

a stronger predictor of new connections when selecting between a set of popular

individuals and (2) common connections matter less when choosing from a closely

connected group. The different intercepts of these two effects in mathoverflow

also motivate decomposing the LCL to the DLCL. The figure also shows some evi-

dence of non-linear context effects in email-enron, which is of interest for future

work.

Evaluating model fit

With our evidence that context effects are worth capturing, we compare our LCL

and DLCL models to the traditional choice models they subsume (CL and mixed

logit) with likelihood-ratio tests. To correct for multiple hypotheses, we use p <

0.001 as our significance threshold.

Table 2.3 shows the total NLL of every dataset under the four models, along

with markers indicating the significant likelihood-ratio tests. In the empirical

network datasets, all likelihood-ratio tests are significant (all with p < 10−9),
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Table 2.3: Dataset negative log-likelihoods. Bolded entries indicate the highest
likelihood for a dataset.

CL LCL Mixed
logit DLCL

district 3313 3130 3258 3206
district-smart 3426 3278∗ 3351 3303†
expedia 839505 837649∗ 839055 837569†

sushi 9821 9773∗ 9793 9764
car-a 1702 1694 1696 1692
car-b 1305 1295 1297 1284
car-alt 7393 6733∗ 7301 7011†

synthetic-cl 210473 210486 210503 210504
synthetic-lcl 140279 137232∗ 139539 137937†
wiki-talk 99608 97748∗ 95761 95134†

reddit-hyperlink 135108 132880∗ 133766 132473†

bitcoin-alpha 19675 19190∗ 19093 18877†

bitcoin-otc 26968 26101∗ 25768 25348†

sms-a 8252 8056∗ 8239 8154†
sms-b 13153 12823∗ 13147 12975†
sms-c 4988 4880∗ 4928 4871†

email-enron 73015 70061∗ 71450 69254†

email-eu 53025 51822∗ 51988 51431†

email-w3c 11012 10677∗ 9898 9758†

facebook-wall 118208 116062∗ 117210 116328†
college-msg 14575 14120∗ 13849 13712†

mathoverflow 500537 479999∗ 440482 435932†

∗Significant likelihood-ratio test vs. CL (p < 0.001)
†Significant likelihood-ratio test vs. mixed logit (p < 0.001)

indicating that feature context effects are occurring. In the general choice datasets,

expedia (p < 10−16), district-smart (p < 10−16), sushi (p = 1.6× 10−7), and

car-alt (p < 10−16) have significant tests for the LCL.
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Figure 2.2: Mean relative rank of predictions on held-out test data (lower is better).
Error bars show standard error of the mean.

Evaluating predictive power

The likelihood-ratio tests provide strong evidence for the presence of feature con-

text effects. A related question is whether our methods improve out-of-sample

predictions. To address this question, we measure the mean relative rank of the

true selected item in the output ranking of each method. We define the relative

rank of an item i to be its index when the choice set C is sorted in descending

probability order (with ties resolved by taking the mean of all possible indices),

divided by |C| − 1. The mean relative rank is a measure of how good the model’s

predictions are, from 0 (best) to 1 (worst). We use this rather than mean recipro-

cal rank because the choice sets have variable sizes (Fuhr, 2018). Figure 2.2 shows

that LCL and DLCL make better predictions than CL and mixed logit across

many datasets. In some cases, the improvement are quite large; for example, in

bitcoin-otc, the mean relative rank is 24% better in LCL than in CL.

Interpreting learned models on general choice datasets

The previous analyses of model fit and predictive power indicate that linear context

effects are indeed a significant factor. We now investigate what these effects are
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Table 2.4: Five largest context effects in sushi.

Effect (q on p) Apq (std. err.) p-value

popularity on popularity −0.28 (0.15) 0.066
availability on is maki 0.24 (0.14) 0.087
oiliness on oiliness −0.20 (0.08) 0.0089
popularity on availability 0.19 (0.14) 0.16
availability on oiliness −0.18 (0.10) 0.064

and show how our models can be interpreted to discover choice behaviors. We

focus on the LCL because of its simpler structure and convex objective. For the

general choice datasets, we select two datasets for detailed examination: expedia

and sushi. The five context effects with largest magnitude in each dataset are

shown in Tables 2.4 and 2.5. Note that features are all standardized, so picking

the largest entries of A is meaningful.

Using the asymptotic normality of the maximum likelihood estimator (Wasser-

man, 2013), we can compute standard errors for the parameter estimates and

p-values for the null hypothesis that a particular context effect is zero. This pro-

cedure is inexpensive: we need a single pass over the dataset after training to

estimate the Fisher information matrix, from which standard errors can be di-

rectly computed (this is a standard procedure in statistical inference (Wasserman,

2013)).3

First, we examine sushi, which has randomly chosen choice sets. The most

significant effect is that respondents given more oily sushi options showed more

aversion to oily sushi (Table 2.4). The randomization of choice sets allows us to

hypothesize that this is causal: too much oiliness on the menu makes oily foods less

appealing, which could be an example of the similarity effect. The other context
3Another useful (but more computationally expensive) approach is to constrain A to zero in

all but one entry of interest. This preserves NLL convexity, still allows for likelihood ratio tests,
and can be used to determine the effect size of a context effect.
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Table 2.5: Five largest context effects in expedia.

Effect (q on p) Apq (std. err.) p-value

location score on price −0.47 (0.05) < 10−16

on promotion on price 0.27 (0.03) < 10−16

review score on price −0.19 (0.03) 1.4× 10−9

star rating on price 0.15 (0.04) 6.7× 10−5

price on star rating 0.10 (0.00) < 10−16

effects with largest magnitude in A are not significant.

In expedia, all five of the largest-magnitude effects are statistically significant

(Table 2.5). The largest effect in the full model is a decrease in willingness to pay

(i.e., cheaper options are more preferred) when the mean location score of the choice

set is high. Additionally, if many of the options are marked as “on promotion,”

people seem more willing to book higher priced hotels. Interestingly, when the

available hotels tend to be well-reviewed by other Expedia users, people are more

price-averse, but they are less price-averse when the available hotels tend to have

high star ratings. This may be because people searching for five-star hotels are not

looking for the cheapest options, whereas people searching for well-reviewed hotels

are looking for good deals. (The dataset does not include this information, only the

location, length of stay, booking window, adult/children count, and room count of

the search.) Finally, people choosing between more expensive hotels placed more

weight on high star rating. When interpreting these effects, it is important to keep

in mind that the choice sets in expedia may be influenced by user preferences to

begin with, so we cannot determine whether the effects are causal. Nonetheless,

the learned LCL model could motivate a randomized controlled trial aimed at

determining causal effects. It also illustrates an important point to keep in mind

when using choice data from recommender systems: choice sets are not necessarily

independent from preferences.
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Interpreting learned models on network growth datasets

We take a different approach to examine context effects in the network datasets,

showcasing another useful application of the LCL. To visualize what context effects

influence choice in the network datasets, we apply L1 regularization of varying

strength to the LCL matrix A during training, which encourages sparsity. Fig-

ure 2.3 visualizes the learned A matrices. Recall that a column of A corresponds

to the feature exerting an effect and a row to the influenced feature.

Figure 2.3 reveals several effects shared by multiple datasets. For example, in

mathoverflow, facebook-wall, sms-a, sms-b, and reddit-hyperlink, fea-

ture 1 (in-degree) has a positive effect on feature 2’s coefficient (shared neighbors).

This suggests that close connections matter more when choosing from a popular

group. And in email-enron and email-w3c, there is a negative effect of feature

6 (reciprocal recency) on feature 1 (in-degree): high-volume email recipients are

less likely to be targeted when the sender’s inbox has recent messages from other

potential targets.

In both of these examples, when increasing regularization causes those entries

of A to go to 0, we see a jump in the likelihood, indicating that these are important

effects to capture (note that we plot NLL, so lower is better). Additionally, we see

in the top row how a dataset with no context effects (synthetic-cl) behaves: A

immediately goes to 0 when any L1 regularization is applied, without any worsening

of the likelihood.
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Figure 2.3: Effect of L1 regularization on the LCL context effect matrix. The
parameter λ (increasing left to right) controls the strength of regularization. Each
box visualizes the learned matrix A (blue = negative, red = positive, white = zero;
consistent color scales within but not between rows) at the given λ value. Features
in A are in the order from Section 2.5.3, top-down and left-right. The black line
tracks the total NLL of the LCL (the % on the y-axes is relative to the NLL of
the best model plotted for that dataset). The dotted green line is the significance
threshold of a likelihood-ratio test against a CL (p < 0.001; black line below the
threshold means the LCL is a significantly better fit than CL).
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2.6 Discussion

Discovering intuitive context effects from choice data using our models has a num-

ber of potential applications. In recommender systems, insight into context effects

could inform the set of options suggested to the user. Our models can also pro-

duce hypotheses for more controlled investigation in economics or psychology. A

key contribution is showing how intuitive and general context effects can be au-

tomatically recovered from observed choices and tested for significance. While we

focused on linear context effects for simplicity, some datasets (e.g., email-enron

in Figure 2.1) show evidence of non-linearity. Capturing these more complex effects

while retaining ease of training and interpretation would be valuable.

Our network analysis revealed several context effects in network growth, which

can aid modeling within network science and social network analysis. We focused

on triadic closure, where context effects can be observed in small choice sets. In-

corporating context effects in other modes of network growth (such as connections

with unrelated nodes) is an interesting avenue for future research. A challenge

is that global modes of edge formation have large choice sets, requiring negative

sampling for effective estimation (Overgoor et al., 2020), which seems difficult to

adapt for models with context effects.

A limitation of our approach is that the generalizability of identified effects

is constrained by correlations in the data. For example, choice sets arising from

recommender systems (such as expedia) are correlated with the preferences of

their users by design. This makes it difficult to distinguish between how a user’s

preferences are affected by the choice set and how the user’s preferences influence

the choice set. In the following chapter, we adapt causal inference methods to the

discrete choice setting to address this issue.
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In other situations, we might have random choice sets (as in sushi) or we might

have no information about how choice sets are determined. In the latter case, our

approach could also be used to find evidence of choice sets targeted at chooser

preferences: if we observe many positive self-effects (i.e., preference for star-rating

is higher in sets with high star-rating), this could mean that choice sets are being

catered to people’s preferences. In some cases, this could be undesirable (e.g., if

the party presenting individuals with options is supposed to be impartial), and our

methods could provide a mechanism for identifying unwanted interventions.

Another challenging direction for future work would be a method of discover-

ing more complex relational context effects from choice data. The feature context

effects we study describe the influence of one feature on another, but some of the

traditional context effects studied in economics and psychology (e.g., the compro-

mise effect) are based on the relationship between the features of several items.

These effects are typically studied with targeted models that are hand-crafted to

capture the desired effect. A general method of encoding and learning relational

context effects could enable the discovery of new complex effects not yet envisioned

by choice theorists, but that nonetheless appear in choice data.
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CHAPTER 3

CHOICE SET CONFOUNDING IN DISCRETE CHOICE

In this chapter, we turn to the issue of identifying whether context effects are

causal rather than merely correlational. For instance, does observing well-reviewed

hotels in the expedia dataset actually cause choosers to prefer less expensive

hotels, or is there another explanation for the significant context effect we observed

in Table 2.5?

As discussed in the previous chapter, machine learning approaches have enabled

more accurate choice modeling and prediction (Seshadri et al., 2019; Rosenfeld

et al., 2020; Bower and Balzano, 2020). However, observational choice data anal-

ysis has thus far overlooked a crucial fact: the choice set assignment mechanism

underlying a dataset can have a significant impact on the generalization of learned

choice models, in particular their validity on counterfactuals. Understanding how

new choice sets affect preferences in such counterfactuals is key to many appli-

cations, such as determining which alternative-fuel vehicles to subsidize or which

movies to recommend. In particular, chooser-dependent choice set assignment cou-

pled with heterogeneous preferences can severely mislead choice models, as they

do not model the influence of preferences on choice set assignment. Recommender

systems are one extreme case, where items are selected specifically to appeal to

a user. Such situations also arise in transportation decisions, online shopping,

and personalized Web search, resulting in widespread (but often invisible) error in

choice models learned from this data.

Drawing on connections with causal inference (Imbens and Rubin, 2015), we

term the issue of chooser-dependent choice set assignment choice set confound-

ing. Choice set confounding is a major issue for recent machine learning meth-
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ods whose success is due to capturing context effects. While context effects are

widespread and worth capturing (e.g., Huber et al., 1982; Simonson, 1989), choice

set confounding can result in spurious effects and over-fitting, and it is unclear if

recent machine learning models are learning true effects or simply being misled by

chooser-dependent choice set assignment.

In this chapter, we formalize when choice set confounding is an issue and show

that it can result in arbitrary systems of choice probabilities, even if choosers are

rational utility-maximizers (in contrast, tractable choice models only describe a

tiny fraction of possible choice systems). We also provide strong evidence of choice

set confounding in two transportation datasets commonly used to demonstrate the

presence of context effects and to test new models (Koppelman and Bhat, 2006; Se-

shadri et al., 2019; Ragain and Ugander, 2016; Benson et al., 2016). Then, to man-

age choice set confounding, we first adapt two causal inference methods—inverse

probability weighting (IPW) and regression controls—to train choice models in

the presence of confounding. These methods require chooser covariates satisfying

certain assumptions that differ from the traditional causal inference setting. For

instance, given access to the same covariates used by a recommender system to

construct choice sets, we can reweight the dataset to learn a choice model as if

choice sets had been user-independent. Alternatively, we can incorporate covari-

ates into the choice model itself, recovering individual preferences as long as those

covariates capture preference heterogeneity.

We also show how to manage choice set confounding without such covariates, as

many observational datasets have little information about the individuals making

choices. We demonstrate a link between models accounting for context effects and

models for choice systems induced by choice set confounding. For example, we

47



derive the context-dependent random utility model (CDM) (Seshadri et al., 2020)

from the perspective of choice set confounding, by treating the choice set as a

vector of substitute covariates (e.g., “someone who is offered item i”).

We develop spectral clustering methods typically used for co-clustering (Dhillon,

2001) that exploit choice set assignment as a signal for chooser preferences, as a

way to improve counterfactual predictions for observed choosers. To show why and

when this can work, we frame the problem of finding sufficient chooser covariates

as a problem of recovering latent cluster membership in a stochastic block model

(SBM) of the bipartite graph that connects choosers to the items in their choice

sets.

In addition to theoretical analysis, we demonstrate the efficacy of our methods

on real-world choice data. We provide evidence that IPW reduces confounding

when modeling hotel booking data, making the choice system more consistent

with utility-maximization and making inferred parameters more plausible. For

example, the confounded data overweights the importance of price, since many

users are shown hotels matching their preferences and select the cheapest one.

Factors such as star rating would play a more important role in counterfactuals.

We also evaluate our clustering approach on online shopping data. By training

separate models for different chooser clusters, we outperform a mixture model

that attempts to discover preference heterogeneity from choices alone, ignoring

the signal from choice set assignment.

All of the code, results, and links to the data used in this chapter are available

at https://github.com/tomlinsonk/choice-set-confounding.
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Additional related work

This research is inspired by recent computational advances in learning context-

dependent preferences (Seshadri et al., 2019; Rosenfeld et al., 2020; Bower and

Balzano, 2020; Tomlinson and Benson, 2021; Pfannschmidt et al., 2022), including

the LCL. These methods exhibit strong gains by exploiting context effects but

are often evaluated on data with possible choice set confounding. Similar con-

founding issues are well-studied in rating and ranking data within recommender

systems (Marlin et al., 2007; Schnabel et al., 2016; Wang et al., 2020, 2019), but

these approaches do not directly apply to choice data. The causal inference ideas

that we develop are based on long-standing methods (Imbens, 2004; Imbens and

Rubin, 2015); the challenge we address is how to adapt them for discrete choice

data.

The role of choice set assignment does occasionally appear in the choice lit-

erature. For instance, Manski (1977) used choice set assignment probabilities to

derive random utility models (Manski, 1977). More often, traditional choice the-

ory has focused on latent consideration sets, which are subsets of alternatives

that are actually considered by choosers (Ben-Akiva and Boccara, 1995; Bierlaire

et al., 2010) where non-uniform choice set probabilities play a key role. In another

setting, Manski and Lerman (1977) used an approach similar to our inverse proba-

bility weighting. They were concerned with “choice-based samples,” where we first

sample an item and then get an observation of a chooser who selected that item

(usually, we sample a chooser and then observe their choice).

The use of regression controls in discrete choice (i.e., including chooser covari-

ates in the utility function) is standard in econometrics (Stratton et al., 2008;

Bhat and Gossen, 2004; Train, 2009). However, in these settings, regression aims
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to understand how the attributes of an individual affect decision-making, which

can unknowingly and accidentally help with confounding. This may explain why

choice set confounding has not been widely recognized (additionally, in an inter-

view, Manksi discusses that choice set generation has been under-explored (Tamer,

2019)). We formalize when and how regression adjusts for choice set confounding.

3.1 Discrete choice background

We will need some additional notation and definitions beyond what we already

introduced in Chapter 2. For clarity, we also remind the reader of the basics. Let

U denote a universe of n items and A a population of individuals. In a discrete

choice setting, a chooser a ∈ A is presented a nonempty choice set C ⊆ U and

they choose one item i ∈ C. Specifically, a is sampled with probability Pr(a),

then C is presented to a with probability Pr(C | a), and finally a selects i with

probability Pr(i | a, C). Most discrete choice analysis focuses only on Pr(i | a, C)

or Pr(i | C)—for instance, in Chapter 2, we only dealt with Pr(i | C)—here we

consider this entire process. A discrete choice dataset D is a collection of tuples

(C, i) generated by this process. We use CD to denote the set of unique choice sets

in D.

Discrete choice models posit a parametric form for choice probabilities, with

parameters learned from data. The universal logit (McFadden et al., 1977) can

express any system of choice probabilities (called a choice system). Under a uni-

versal logit, each chooser a has a scalar utility ui(C, a) for item i in choice set C.

Choice probabilities are then a softmax of these utilities:

Pr(i | a, C) = exp(ui(C, a))∑
j∈C exp(uj(C, a))

.
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As we discussed in the context of conditional logit, the softmax arises from a notion

of rational utility-maximization (Train, 2009): these are the choice probabilities if

a observes random utilities ui(C, a) + ϵ (where the ϵ are i.i.d. Gumbel-distributed

for each item and choice) and selects the item with maximum observed utility. The

above model has too many degrees of freedom to be practical (e.g., it has entirely

separate parameters for every chooser a), and typically one assumes utilities are

fixed across sets and individuals. This is what we will call the logit model (Mc-

Fadden, 1974), where ui(C, a) = ui,∀C, ∀a.

Other discrete choice models come from different assumptions on ui(C, a), trad-

ing off descriptive power for ease of inference and interpretation. For example, we

may have access to a vector of covariates xa ∈ Rdx for person a. Similarly, an

item i may be described by a vector of features yi ∈ Rdy . We can write ui(C, a)

as a function of xa,yi, or both, yielding several choice models (Table 3.1), which

we will refer to as the multinomial logit (MNL), conditional logit (CL), and condi-

tional multinomial logit (CML).1 All of these models obey a common assumption,

the independence of irrelevant alternatives (IIA) (Train, 2009). IIA states that

relative choice probabilities are conserved across choice sets:

Pr(i | a, C)
Pr(j | a, C)

=
Pr(i | a, C ′)
Pr(j | a, C ′)

.

To be precise, this is individual-level rather than group-level IIA, which was what

we stated in Chapter 2. Among the models in Table 3.1, the latter is only obeyed

by the logit and conditional logit. In general, models obey individual-level IIA
1“MNL” and “CL” are both sometimes used as blanket terms encompassing all of these mod-

els, sometimes even by the same author in different papers (McFadden, 1974; Hausman and
McFadden, 1984). As it will be useful to easily distinguish between them, we follow the con-
vention (Hoffman and Duncan, 1988) that “multinomial” means chooser covariates are used and
“conditional” means item features are used. Additionally, for CML, we assume γi = BTxa, which
reduces the number of parameters from dy + ndx to dy(dx + 1), allowing us to use the model
when the number of items is prohibitively large.
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Table 3.1: Discrete choice models. The item and chooser feature vectors yi and
xa are part of the dataset, while ui ∈ R,θ ∈ Rdy ,γi ∈ Rdx , and B ∈ Rdy×dx are
learned parameters.

Model ui(C, a) # Parameters

logit ui n
multinomial logit (MNL) ui + xTaγi n(dx + 1)
conditional logit (CL) yTi θ dy
conditional multinomial logit (CML) yTi (θ +Bxa) dy(dx + 1)

if utility is independent of C, i.e., ui(C, a) = ui(a) and obey group-level IIA if

ui(C, a) is independent of both C and a.

While the IIA assumption is convenient, it is commonly violated through con-

text effects (Huber et al., 1982; Simonson and Tversky, 1992; Benson et al., 2016).

Due to the ubiquity of context effects, models incorporating information from

the choice set have become increasingly popular and have shown considerable

success (Seshadri et al., 2019; Rosenfeld et al., 2020; Bower and Balzano, 2020;

Tomlinson and Benson, 2021). Other models allow IIA violations without explic-

itly modeling effects of the choice set (Ragain and Ugander, 2016; McFadden and

Train, 2000; Benson et al., 2016).

We briefly introduce one of these context effect models, the context-dependent

random utility model (CDM) (Seshadri et al., 2019), and review the LCL from

Chapter 2. In the CDM, each item in the choice set exerts a pull on the util-

ity of every other item: ui(C, a) =
∑

j∈C\i pij. The CDM can be derived as a

second-order approximation to universal logit (where plain logit is the first-order

approximation) (Seshadri et al., 2019). The LCL instead operates in settings with

item features, adjusting the conditional logit parameter θ according to a linear

transformation of the choice set’s mean feature vector: ui(C, a) = yTi (θ + AyC),

where yC = 1/|C|
∑

j∈C yj . To incorporate chooser covariates, we define multino-
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Table 3.2: Context effect models. pij ∈ R,γi ∈ Rdx ,θ ∈ Rdy , A ∈ Rdy×dy , B ∈
Rdy×dx are learned parameters.

Model ui(C, a) # Parameters

CDM (Seshadri et al., 2019)
∑

j∈C\i pij n(n− 1)

mult. CDM (MCDM)
∑

j∈C\i pij + xTaγi n(n+ dx)

LCL (Tomlinson and Benson, 2021) yTi (θ + AyC) dy(dy + 1)
mult. LCL (MLCL) yTi (θ + AyC +Bxa) dy(dy + dx + 1)

mial versions of these models (Table 3.2). For this chapter, LCL and CDM should

be thought of as the simplest context effect models with and without item features.

In contrast, mixed logit (McFadden and Train, 2000) accounts for group-level

rather than individual-level IIA violations. Recall from Chapter 2 that a (discrete)

mixed logit is a mixture of K logits with mixing proportions π1, . . . , πK such that∑K
k=1 πk = 1. With ui(ak) denoting the utility of the kth component for item i, a

mixed logit has choice probabilities

Pr(i | C) =
K∑
k=1

πk
exp(ui(ak))∑
j∈C exp(uj(ak))

. (3.1)

This can result in a choice system violating IIA but not because any individual

chooser experiences context effects. Rather, the aggregation of several choosers

each obeying IIA can result in IIA violations.

3.2 Choice set confounding

The traditional approach to choice modeling is to learn a single model for Pr(i | C)

(such as a logit or an LCL) and assume it represents overall choice behavior,

namely, that the model accurately reflects average choice probabilities Ea[Pr(i |

a, C)]. However, Pr(i | C) need not represent average choice behavior at all, as

this is only guaranteed under restrictive independence assumptions.
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Observation 1. If, for all a ∈ A, C ∈ CD, i ∈ C, at least one of

1. Pr(C) = Pr(C | a) (chooser-independent choice sets) or

2. Pr(i | a, C) = Pr(i | C) (chooser-independent preferences)

holds, then Pr(i | C) = Ea[Pr(i | a, C). If both conditions are violated, then this

equality can fail.

Proof. Conditioning over choosers yields Pr(i | C) =
∑

a Pr(i | a, C) Pr(a | C).

Meanwhile, Ea[Pr(i | a, C)] =
∑

a Pr(i | a, C) Pr(a). These are equal if condition

(1) holds (since independence also implies Pr(a) = Pr(a | C)). If condition (2)

holds, then we directly have Ea[Pr(i | a, C)] = Pr(i | C). In Example 1 below, we

will see an instance where this equality fails when neither (1) nor (2) hold.

When we have both chooser-dependent sets and preferences, observed choice

probabilities Pr(i | C) can differ significantly from true aggregate choice probabili-

ties Ea[Pr(i | a, C)]. We call this phenomenon choice set confounding, and provide

the following toy example as an illustration.

Example 1. Let U = {cat, dog, fish}. Choosers are either cat people or dog people

choosing a pet, with choice probabilities

{cat, dog} {cat, dog, fish}

cat person 3/4, 1/4 3/4, 1/4, 0

dog person 1/4, 3/4 1/4, 3/4, 0

Note that the preferences of cat and dog people do not change when fish are

included in the choice set. Choice sets are assigned non-independently: cat people
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see {cat, dog} w.p. 3/4 and {cat, dog, fish} w.p. 1/4 (vice-versa for dog people). Let

the population consist of 1/4 cat people and 3/4 dog people. If we only observe

samples (C, i) without knowing who is a cat person and who is a dog person,

Pr(dog | {cat, dog}) = 1/2 · 1/4 + 1/2 · 3/4 = 1/2

Pr(dog | {cat, dog, fish}) = 1/10 · 1/4 + 9/10 · 3/4 = 7/10.

However,

Ea[Pr(dog | a, {cat, dog})] = 1/4 · 1/4 + 3/4 · 3/4 = 5/8

Ea[Pr(dog | a, {cat, dog, fish}) = 1/4 · 1/4 + 3/4 · 3/4 = 5/8.

This mismatch is especially problematic for models that use choice-set depen-

dent utilities ui(C), such as those designed to account for context effects. From the

above data, we might conclude that the presence of a fish causes a dog to become

a more appealing option. This spurious context effect would be seized upon by

context-based models and even result in improved predictive performance on test

data drawn from the same distribution. However, these models would make bi-

ased predictions on counterfactual examples where sets are chosen from a different

distribution.

In reality, no one’s choice would be affected by adding fish to their choice set—

it’s a red herring. This is a causal inference problem. We want to know the cause of

a choice, but we are being misled as to whether the change in preferences between

the {cat, dog} and {cat, dog, fish} choice sets is due to the presence of fish or to

a hidden confounder: the underlying preferences of cat and dog people, coupled

with chooser-dependent choice set assignment.

Extending this idea, the equality in Observation 1 can fail dramatically. If the

population consists of individuals each of whom obeys IIA (i.e., chooses according
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to a logit), then Ea[Pr(i | a, C)] is exactly the mixed logit choice probability. On

the other hand, Pr(i | C) can express an arbitrary choice system with choice set

confounding.

Theorem 2. Mixed logit with chooser-dependent choice sets is powerful enough to

express any system of choice probabilities.

Proof. First, notice that any universal logit choice probabilities aggregated over a

population can be expressed by set-dependent utilities u∗i (C) for each C ⊆ U , i ∈ C.

For every choice set C ⊆ U , construct a chooser aC with fixed utilities ui(aC) =

u∗i (C). Let Pr(C | aC) = 1 and Pr(C ′ | aC) = 0 for all other C ′ ̸= C. The choice

probabilities of this mixture with chooser-dependent sets is the same as in the

original system, and the mixture has finitely many (2|U| − 1) components, one for

each nonempty choice set C.

Arbitrary choice systems are much more powerful than mixed logit (even ones

with continuous mixtures). For example, it is impossible for mixed logit to violate

regularity, the condition that Pr(i | C) ≥ Pr(i | C∪{j}) for all C ⊆ U , i ∈ C, j ∈ U ,

as choice probabilities for i can only go down in each mixture component when we

include j. On the other hand, even Example 1 has a regularity violation (picking

a dog is more likely when a fish is available), despite there being only two types of

choosers, both adhering to IIA.

We have shown that choice set confounding is an issue in theory, and we now

demonstrate it to be a problem in practice. We present evidence of choice set

confounding in two transportation choice datasets, sf-work and sf-shop (Kop-

pelman and Bhat, 2006). These datasets consist of San Francisco (SF) resident

surveys for preferred transportation mode to work or shopping, where the choice
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set is the set of modes available to a respondent. The SF datasets are common

testbeds for choice models violating IIA (Koppelman and Bhat, 2006; Seshadri

et al., 2019; Ragain and Ugander, 2016; Benson et al., 2016) and in choice appli-

cations (Tomlinson and Benson, 2020; Agarwal et al., 2018).

Table 3.3: Regularity violations in sf-work and sf-shop, impossible under mixed
logit. Including additional item(s) appears to increase the probability that DA or
DA/SR is chosen. The differences are significant according to Fisher’s exact test
(sf-work: p = 6.5× 10−9, sf-shop: p = 0.005).

sf-work
Choice set (C) Pr(DA | C) N

{DA, SR 2, SR 3+, Transit} 0.72 1661
{DA, SR 2, SR 3+, Transit, Bike} 0.83 829

sf-shop
Choice set (C) Pr(DA/SR | C) N

{DA, DA/SR, SR 2, SR 3+,
SR 2/SR 3+, Transit} 0.17 534

{DA, DA/SR, SR 2, SR 3+,
SR 2/SR 3+, Transit, Bike, Walk} 0.23 1315

DA: drive alone. SR: shared ride, number indicates car occupancy.
Slashes indicate different mode used for outbound and inbound trips.

The SF data have regularity violations (see Table 3.3), ruling out the possibil-

ity that the IIA violations in these datasets are just due to mixtures of choosers

obeying IIA. Thus, these datasets either have (1) true context effects or (2) choice

set confounding. So far, the literature has focused on (1), but we argue that (2) is

more likely. We compare the likelihoods of logit, MNL, CDM, and MCDM (recall

Tables 3.1 and 3.2; MCDM is a CDM with the MNL chooser covariates term) on

these datasets through likelihood-ratio tests (Table 3.4). MNL and MCDM both

account for chooser-dependent preferences through covariates, while CDM and

MCDM both account for context effects. With true context effects, we would ex-

pect CDM to be significantly more likely than logit and MCDM to be significantly
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Table 3.4: Likelihood gains in sf-work, sf-shop, and expedia from covariates
and context with likelihood ratio test (LRT) p-values. ∆ℓ denotes improvement in
log-likelihood.

Comparison Testing Controlling ∆ℓ LRT p

sf-work
Logit to MNL covariates — 883 < 10−10

Logit to CDM context — 85 < 10−10

CDM to MCDM covariates context 819 < 10−10

MNL to MCDM context covariates 20 0.08

sf-shop
Logit to MNL covariates — 343 < 10−10

Logit to CDM context — 96 < 10−10

CDM to MCDM covariates context 276 < 10−10

MNL to MCDM context covariates 29 0.36

expedia
CL to CML covariates — 1218 < 10−10

CL to LCL context — 2345 < 10−10

LCL to MLCL covariates context 1167 < 10−10

CML to MLCL context covariates 2294 < 10−10

more likely than MNL. However, this is not the case. While CDM is significantly

more likely than logit, MCDM is not significantly more likely than MNL in both

SF datasets. Thus, context effects only appear significant before controlling for

preference heterogeneity through covariates. This is exactly what we would expect

if the IIA violations in these datasets are due to choice set confounding rather

than context effects. In contrast, we see significant context effects in the expedia

hotel-booking dataset (Kaggle, 2013a) even after controlling for covariates (this

dataset uses item features, hence the different models in Table 3.4), so context

effects are likely. This dataset consists of search results (choice sets) and hotel

bookings (choices), and we explore it further in Section 3.3.4.

The choice set confounding leads to a key question: how were choice sets con-

structed in sf-work and sf-shop? According to Koppelman and Bhat (2006),

58



choice sets were imputed based on chooser covariates from the survey. For instance,

walking was included as an option if a respondent’s distance to the destination was

< 4 miles and driving was included if they had a driver’s license and at least one

car in their household (Koppelman and Bhat, 2006). This choice set assignment

is highly chooser-dependent, resulting in strong choice set confounding.

Example 1 and the SF datasets highlight how confounding can lead to spurious

context effects and incorrect average choice probabilities. Next, in Section 3.3, we

adapt methods from causal inference so that chooser covariates can correct choice

probability estimates. And in Section 3.4, we address what can be done with-

out covariates if we want to (1) make predictions under chooser-dependent choice

set assignment mechanisms or (2) make counterfactual predictions for previously

observed choosers.

3.3 Causal inference methods

In traditional causal inference (Rubin, 1974; Imbens, 2004; Imbens and Rubin,

2015), we wish to estimate the causal effect of an intervention (e.g., a medical

treatment) from observational data. However, we cannot simply compare the

outcomes of the treated and untreated cohorts if treatment was not randomly

assigned—confounders might affect both whether someone was treated and their

outcome. There are many methods to debias treatment effect estimation, including

matching (Rubin, 1974; Rosenbaum and Rubin, 1983), inverse probability weight-

ing (IPW) (Hirano et al., 2003), and regression (Rubin, 1977). One can also

combine methods, such as IPW and regression, which is the basis for doubly robust

estimators (Bang and Robins, 2005).

59



Here, we adapt causal inference methods to estimate unbiased discrete choice

models from data with choice set confounding. First, we adapt IPW to learn

unbiased models that do not use chooser covariates in the utility function. After,

we show an equivalence between incorporating chooser covariates in the utility

function and regression for causal inference. Finally, we combine these methods

for doubly robust choice model estimation. For discrete choice, these methods

require new assumptions and have different guarantees. We first provide a brief

introduction to causal inference terminology in the binary treatment setting, such

as an observational medical study (in contrast, we will think of choice sets as

treatments).

In potential outcomes notation (Rubin, 2005), each person i has covariates Xi

and is either treated (Ti = 1) or untreated (Ti = 0). At some point after treatment,

we measure the outcome Yi(Ti). A typical goal of the causal inference methods

above is to estimate the average treatment effect Ei[Yi(1) − Yi(0)]. All of these

methods rely on untestable assumptions; in particular, they rely on strong ignora-

bility (Rosenbaum and Rubin, 1983; Imbens, 2004) (also called unconfoundedness

or no unmeasured confounders), which requires that the treatment is independent

from the outcome, conditioned on observed covariates: Pr(Ti | Xi, Yi) = Pr(Ti |

Xi),∀i.

3.3.1 Inverse probability weighting

IPW estimation commonly requires estimating propensity scores describing the

probability of each treatment assignment given individual covariates. The true

probabilities Pr(Ti | Xi) are unknown, so estimated “propensities” P̂r(Ti | Xi)

are learned from observed data, typically via logistic regression (Austin, 2011).

60



Propensities can then be used to estimate average treatment effects or, as in our

case, to re-weight a model’s training data (Freedman and Berk, 2008). By weight-

ing each sample by the inverse of its propensity, we effectively construct a pseudo-

population where treatment is assigned independently from covariates. In addition

to ignorability, IPW requires positivity, the assumption that all propensities satisfy

0 < Pr(Ti | Xi) < 1.

In the discrete choice setting, we think of choice sets as treatments. By Ob-

servation 1, we need chooser-independent choice sets in order to learn an unbiased

choice model. Our idea of IPW for discrete choice is to create a pseudo-dataset

in which this is true and to learn a choice model over that pseudo-dataset. To do

this, we model choice set assignment probabilities Pr(C | a). We can then replace

each sample (i, a, C) with 1/[|CD|Pr(C | a)] copies, creating a pseudo-dataset D̃

with uniformly random choice sets (note that we allow “fractional samples,” since

we don’t explicity construct D̃). However, we cannot hope to learn Pr(C | a) in

datasets with only a single observation per chooser (which is very often the case).

We instead need to rely on observed covariates xa. We thus learn Pr(C | xa) and

use these propensities to construct D̃. For the analysis, we assume we know the

true propensities, but a correctly specified choice set assignment model learned

from data is sufficient.

To learn a choice model from D̃, we can simply add weights to the model’s

log-likelihood function, resulting in

ℓ(θ; D̃) =
∑

(i,C,a)∈D

log Prθ(i | C)
|CD|Pr(C | xa)

. (3.2)

In order for Pr(C | xa) to be an effective stand-in for Pr(C | a), we need the

following assumption (see Figure 3.1).
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Definition 1. Choice set ignorability is satisfied if choice sets are independent of

choosers, conditioned on chooser covariates: Pr(C | a,xa) = Pr(C | xa).

Just as in standard IPW, we also need positivity (of choice set propensities).

Under these assumptions, IPW guarantees that empirical choice probabilities in

the pseudo-dataset D̃ reflect aggregate choice probabilities in the true population.

To formalize this, we introduce D∗, an idealized dataset with uniformly random

choice set assignment for every chooser (of the same size as D). D∗ consists of |D|

independent samples (a, C, i) each occuring with probability Pr(a) 1
|CD|

Pr(i | a, C).

We now show that the IPW-weighted log-likelihood (eq. (3.2)) is, in expectation,

the same as the log-likelihood function over D∗. Since D∗ has chooser-independent

choice sets, we can train a model for Pr(i | C) using eq. (3.2) and expect it to

capture unbiased aggregate choice probabilities (by Observation 1).

Theorem 3. If, for all a ∈ A, C ∈ CD,

1. 0 < Pr(C | xa) < 1 (positivity), and

2. Pr(C | a,xa) = Pr(C | xa) (choice set ignorability),

then ED[ℓ(θ; D̃)] = ED∗ [ℓ(θ;D∗)].

Proofs for this and subsequent results can be found in Appendix B. Choice set

ignorability is crucial to the success of IPW, so we should assess when this assump-

tion is reasonable. If choice sets are generated by an exogenous process (such as a

recommender system, as in the expedia dataset), then as long as we have access to

the same covariates as that process, choice set ignorability holds, although learning

the propensities may still be a challenge. However, in other datasets, choice sets

are formed through self-directed browsing (e.g., clicking around an online shop,
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Figure 3.1: Graphical representations of chooser covariate assumptions: (1) ignor-
ability; (2) choice set ignorability; (3) preference ignorability; (4) no ignorability.
Shaded nodes are observed, dashed nodes are deterministic.

as in the yoochoose dataset we examine later). In those cases, basic covariates

(age, gender, etc.) are unlikely to fully capture choice set generation, since sets

result from the complexities of human behavior rather than the simpler algorith-

mic behavior of a recommender system. As in traditional causal inference, the

validity of choice set ignorability must be determined by the practitioner applying

the method.

3.3.2 Regression

An alternative to using chooser covariates to learn choice set propensities is to

incorporate covariates directly into the utility formulation, as in the multinomial

or conditional multinomial logit models. If chooser covariates fully capture their

preferences and the choice model is correctly specified, then the model that we

learn is consistent. We formalize the first condition as follows (see Figure 3.1).

Definition 2. Preference ignorability is satisfied if choice probabilities are inde-
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pendent of choosers, conditioned on chooser covariates: Pr(i | a,xa, C) = Pr(i |

xa, C).

Given correct specification and preference ignorability, the choice model will

be consistent in terms of aggregate choice probabilities and result in accurate

individual choice probability estimates.

Theorem 4. If Pr(i | a,xa, C) = Pr(i | xa, C) for all a ∈ A, C ∈ CD, i ∈ C

(preference ignorability), then the MLE of a correctly specified (and well-behaved,

in the standard MLE sense (Wasserman, 2013, Theorem 9.13)) choice model that

incorporates chooser covariates xa is consistent: lim|D|→∞ P̂r(i | xa, C) = Pr(i |

a, C).

While the guarantee of regression is stronger than IPW, preference ignorability

is more challenging to satisfy in practice. Instead of needing all covariates used to

generate choice sets, we need covariates to fully describe choice behavior.

3.3.3 Doubly robust estimation

A constraint of both IPW and regression is correct model specification, either of the

choice set propensity model or of the choice model. In traditional causal inference,

one can combine both methods to provide guarantees if either model is correctly

specified, producing doubly robust estimators (Bang and Robins, 2005; Funk et al.,

2011). In the same way, we can combine IPW and regression for choice models

and achieve their respective guarantees if their respective conditions are satisfied.

In other words, the two methods do not interfere with each other. However, this

increases the variance of estimates, so it may be advisable to only use one method

if we are confident in one of the assumptions.
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3.3.4 Empirical analysis of IPW and regression

We begin by evaluating regression and IPW adjustments in synthetic data, and

then apply our methods to the expedia dataset (training details in Appendix B.3).

Counterfactual evaluation in synthetic data

We generate synthetic data with heterogeneous preferences, CDM-style context

effects, and choice set confounding. Specifically, we use 20 items with embeddings

yi ∈ R2 sampled uniformly from the unit circle. We also generate embeddings

xa in the same way for each chooser a. Each chooser a picks items according

to an MCDM, where the utility for i is a sum of xTayi plus a CDM term shared

by all choosers, with each “push/pull” term pij ∼ Uniform(−1, 1). To generate a

choice set for a, we sample a uniformly random set with probability 0.25 (to satisfy

positivity) and otherwise include each item with probability 1/(1+e−cxTayi ), where c

is the confounding strength (we condition on having at least two items in the choice

set). Higher confounding strength results in sets containing items more preferred

by a. Each trial consists of 10000 samples. Item embeddings are unobserved,

but chooser embeddings are used as covariates. We train models on a confounded

portion of the data and measure prediction quality on a held-out confounded subset

as well as a counterfactual portion with uniformly random choice sets. For IPW,

we estimate choice set propensities via per-item logistic regression, multiplying

item propensities to get set propensities.

To measure prediction quality, we use the mean relative position of the true

choice in the list of predictions sorted in descending probability order. A value

of 1 says that the true choices were all predicted as most likely. As confounding
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Figure 3.2: Mean prediction quality of models on synthetic data with both context
effects and choice set confounding, with IPW (bold) and without IPW (light).
Left: out-of-sample predictions on data with confounding. Right: counterfactual
predictions of models trained on confounded data. Shaded regions show standard
error over 16 trials.

strength increases, prediction quality increases in the confounded data for logit,

MNL, and CDM, while decreasing on counterfactual data (Figure 3.2). For logit

and MNL, IPW leads to models that generalize better to counterfactual data. For

CDM, IPW correctly prevents the illusion of increased performance with more

confounding (although variance caused by IPW appears to result in a small dip in

performance at low confounding). Since preference ignorability is satisfied, IPW is

unnecessary for MCDM: regression with the correctly specified model successfully

generalizes despite confounding.

Empirical data with chooser covariates

We now consider the expedia hotel choice dataset (Kaggle, 2013a) from Sec-

tion 3.2, using five hotel features: star rating, review score, location score, price,

and promotion status. This allows us to use feature-based choice models (CL,
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CML, LCL, and MLCL; Tables 3.1 and 3.2). The dataset includes information

about chooser searches, such as the number of adults and children in their party,

which likely have strong effects on choice sets (i.e., search results). This is an ex-

cellent testbed for IPW since these covariates are likely informative about choice

sets, making choice set ignorability more reasonable than preference ignorability.

We do not have counterfactual choices for the expedia data, but we still con-

sider several types of analysis. First, we recall the results from Table 3.4 to see if

apparent context effects are accounted for by chooser covariates. There, in con-

trast to the SF datasets, context effects still appear significant after controlling

for covariates. In fact, context effects provide a larger likelihood boost than the

chooser covariates. Thus, either (1) there are true context effects or (2) the chooser

covariates in expedia do not satisfy preference ignorability (or both). Based on

the nature of the covariates, (2) seems very likely: the number of children in the

chooser’s party and the length of their stay are unlikely to fully describe hotel

preferences.

Since regression is inconclusive, we also apply IPW. To learn choice set propen-

sities, we use a probabilistic model of the mean feature vectors of choice sets. We

assume these vectors follow a multivariate Gaussian conditioned on chooser covari-

ates, with mean Wxa + z for some W ∈ Rdy×dx , z ∈ Rdy . Given observed mean

choice set vectors yC and corresponding chooser covariates xa, we compute the

maximum-likelihood W , z, and covariance matrix (see Appendix B.2). This model

gives us propensities for any (a, C) pair.

Using IPW with these propensities dramatically decreases the negative impact

of high price in all four models (Figure 3.3). After adjusting for confounding, the

models indicate that users are more willing to book more expensive hotels. This
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Figure 3.3: Preference coefficients θ in expedia for CL and LCL (top row, no
regression); and CML and MLCL (bottom row, with regression), with and without
IPW. A higher coefficient means choosers prefer higher values of the feature.

makes sense if Expedia is recommending relevant hotels: among a set of hotels

matching a user’s desired characteristics (such as location and star rating), we

would expect them to select the cheapest option. On the other hand, if we pre-

sented users with a set of random hotels, location and star rating might play a

stronger role in determining their choice, since a random set might have many

cheap hotels that are undesirable for other reasons. In addition to the preference

coefficients, IPW affects the context effect matrix A in the LCL and MLCL (Fig-

ure 3.4). In both models, IPW decreases (but does not entirely eliminate) the

strong price context effects. This is evidence that some of the apparent context

effects in the dataset are due to choice set confounding.
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Figure 3.4: LCL and MLCL context effect matrix A in expedia with and without
IPW. A higher value means choosers prefer a row feature more in a set where the
mean column feature (abbreviated) is high; 0 indicates no context effect.

Table 3.5: Log-likelihoods and estimated random-set log-likelihoods with IPW on
expedia. After adjusting for confounding, the data is far easier to explain.

Model Confounded IPW-adjusted

CL −839499 −786653
CML −838281 −785753
LCL −837154 −784770
MLCL −835986 −783928

Finally, the estimated likelihoods of the models under IPW are significantly bet-

ter than without IPW (Table 3.5). We normalize the IPW-weighted log-likelihood

by the sum of the IPW weights, which provides an estimate of what the IPW-

trained model’s log-likelihood would be given random sets. The gap between

likelihood with no IPW and estimated likelihood with IPW dwarfs the gaps be-

tween different choice models, indicating that accounting for choice set confounding

makes the data much more consistent with the random utility maximization prin-

ciple underlying all four models. (By Theorem 2, choice set confounding can result

in choice systems far from rational behavior, even when choosers are rational.)
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3.4 Managing without covariates

So far, we have used chooser covariates to correct for choice set confounding. How-

ever, in some choice data, there are no covariates available, or we are not willing

to make ignorability assumptions. Here, we show what can be done in this setting.

3.4.1 Within-distribution prediction

Unfortunately, by Theorem 2, it is impossible to determine whether IIA viola-

tions are caused by choice set confounding or true context effects in the absence

of chooser information. Nonetheless, we can still exploit IIA violations—whatever

their origin—to improve prediction, as long as we are careful not to make counter-

factual predictions. This is essentially what researchers developing context effect

models (Ragain and Ugander, 2016; Seshadri et al., 2019; Bower and Balzano,

2020; Tomlinson and Benson, 2021; Rosenfeld et al., 2020) have been doing (with-

out a framework for understanding the possibility of choice set confounding and the

associated risks for counterfactual prediction). Beyond emphasizing a need for cau-

tion, we also establish a duality between models accounting for context effects and

models accounting for choice set confounding; specifically, we show that a model

equivalent to the CDM—which was designed with context effects in mind—can be

derived purely from the perspective of choice set confounding.

In a multinomial logit (MNL), we learn a latent parameter vector γi for each

item i ∈ U and model utilies as ui(a) = xTaγi (omitting the intercept term).

Suppose we don’t have any chooser covariates, but we know choice set assignment

depends on choosers. We could then use the choice set itself as a surrogate for

user covariates (e.g., one covariate could be “someone who is offered item i”). Let
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1Ca be a binary encoding of the choice set Ca of a chooser a (a length |U| vector

with a 1 in position i if i ∈ Ca). Consider treating 1Ca as a substitute for the user

covariates xa. Then the MNL model is

Pr(i | Ca) =
exp(1TCa

γi)∑
j∈Ca exp(1

T
Ca

γj)
.

The utility of i in set Ca is
∑

j∈Ca γij, which is exactly the CDM (with self-pulls,

since the sum is over Ca rather than Ca \ i), a model designed to capture choice-

set-dependent utilities. Thus, the CDM can either be thought of as accounting for

pairwise interactions between items or using the choice set as a stand-in for user

covariates.

One natural question this duality raises is how the set of choice systems ex-

pressible by CDM (or other context-effect models) compares to the choice systems

induced by mixed populations of IIA choosers with choice set confounding, which

take the form

Pr(i | C) =
∑
a∈A

Pr(a | C) exp(ui(a))∑
j∈C exp(uj(a))

. (3.3)

Mixtures of logits such as eq. (3.3) are notoriously hard to analyze (even in two-

component case (Chierichetti et al., 2018b)), so no simple equivalence between a

context-effect model and such a mixture is likely. In fact, eq. (3.3) is even trickier

than standard mixed logit (eq. (3.1)), since the mixture weights depend on the

choice set.

Nonetheless, some progress in this direction is possible. Here, we provide

an instance where the LCL approximates a choice system induced by choice

set confounding (of the form of eq. (3.3)). Recall that the LCL has utilities

ui(a, C) = (θ + AyC)
Tyi, where yC is the mean feature vector over the choice

set. If we make Gaussian assumptions on the distribution of features and on

choice set assignment, and if chooser utilities are inner products of chooser and
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item vectors, then the LCL is a mean-field approximation to the induced choice

system. In particular, we assume choice sets are generated to be similar to items

the chooser a would like (as in a recommender system) by sampling items from a

Gaussian with mean xa.

Theorem 5. Let items and choosers both be represented by vectors in Rd. Suppose

chooser covariates xa are distributed in the population according to a multivariate

Gaussian N (µ,Σ0), and a choice set for chooser a is constructed by sampling

k items from the multivariate Gaussian N (xa,Σ). Additionally, assume choosers

have the utility function ui(a, C) = xTayi. Then the expected chooser given a choice

set C, x∗
a = E[xa | C], has LCL choice probabilities, with

θ = 1
k
Σ(Σ0 +

1
k
Σ)−1µ, A = Σ0(Σ0 +

1
k
Σ)−1.

Thus, the LCL can either be thought of as a context effect model, or as an

approximation to the choice system induced by recommender-style preferred item

overrepresentation.

3.4.2 Counterfactuals for known choosers

To make counterfactual predictions without chooser covariates or insufficiently de-

scriptive covariates (preventing us from applying IPW or regression), we develop

a clustering method for the challenge of choice set confounding. Suppose a recom-

mender system suggests two sets of movies to two users: {Romance A,Romance B}

to a1 and {Drama A,Drama B} to a2. While we know nothing about a1

or a2, we might be inclined to think a1 is likely to pick Romance A from

{Romance A,Drama A}, while a2 is likely to pick Drama A from the same choice

set. Similar to the CDM derivation in the previous section, the choice set is a
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signal for chooser preferences. We can also apply collaborative filtering principles,

with the distinction that instead of thinking that similar users like similar items,

we assume similar choosers are shown similar choice sets. There is a limitation,

though, as this approach only lets us make predictions for choosers who appear in

the original dataset. While there are many ways of using information from choice

set assignment, we highlight an approach for the case where we have corresponding

types of choosers and items (e.g., “romance fans” for “romance movies”).

Suppose that choosers are more likely to have an item in their choice set if it

matches their type. Define the m×n matrix R, where Rij = 1 if the ith choice set

includes item j and Rij = 0 otherwise. We can think of R as the upper right block

of the adjacency matrix of a bipartite graph between choosers and items, in which

an edge (a, i) means that i is in a’s choice set. With fixed choice set inclusion

probabilities for each type, clustering choosers into types based on their choice

sets is then an instance of the bipartite stochastic block model (SBM) recovery

problem (Larremore et al., 2014; Abbe, 2018).

In Theorem 6, we apply a classic exact recovery result due to McSherry (2001)

to show how a choice system with discrete types can be deconfounded without

access to chooser covariates (i.e., knowledge of type membership), but any bipartite

SBM clustering algorithm could be used (see Abbe (2018) for a survey of SBM

results).

Theorem 6. Suppose items and choosers are jointly split into k types. Let s be the

smallest number of items or choosers of any type and let n = |A| + |U|. Suppose

that for each chooser a ∈ A, i ∈ U is included in a’s choice set with probability p

if a and i are of the same type and with probability q otherwise.
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There exists a constant C such that for large enough n, if

s(p− q)2 > Ck (n/s+ log n/δ) , (3.4)

then w.p. 1 − δ, we can efficiently learn the type of every item and every chooser

given a dataset D with one choice from each a ∈ A.

While McSherry’s algorithm has strong theoretical guarantees, a more practical

implementation is spectral co-clustering (Dhillon, 2001), which performs well for

our purposes. Once we recover type memberships, we train separate models for

each type of chooser and use the model for a chooser’s type for deconfounded

counterfactual predictions.

3.4.3 Empirical data without chooser covariates

We apply our spectral co-clustering method to the yoochooose online shopping

dataset (Ben-Shimon et al., 2015). The dataset consists of all items clicked on in

a session and an indicator of whether each item was purchased. We consider each

purchase to be a choice from the set of all items viewed in the session. We group

items by category (e.g., sports equipment) removing those with fewer than 100

purchases, leaving 29 categories.

We then perform spectral co-clustering (Dhillon, 2001) on the choice set matrix

R with 2 to 10 chooser clusters and train a separate logit on each cluster. We ignore

the item clusters. We compare against random clustering with the cluster sizes

found by spectral clustering and mixed logit with the same number of components.

Spectral clustered logit describes the data much better than random clustering

or even mixed logit (Figure 3.5). Note that the clusters are based only on choice
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Figure 3.5: yoochoose log-likelihood comparison. Spectral and random cluster
results are averaged over eight trials, with one standard deviation shaded.

set assignment, not choice behavior. In contrast, mixed logit bases its mixture

components solely based on choices. The strong performance of spectral clustering

indicates that choice sets are informative about preferences, and our use of this

information is much easier than learning a mixture model.

3.5 Discussion

Choice set confounding is widespread and can affect choice probability estimates,

alter or introduce context effects, and lead to poor generalization. Existing models

ignoring chooser covariates are particularly susceptible, but plugging in covariates

is not a universal solution. We saw that covariates may be more informative

about choice sets than preferences, making IPW more viable than regression. An

important contribution is formalizing and demonstrating choice set confounding,

as it has significant implications for discrete choice modeling. For instance, initial

research on the SF transportation data used extensive nested logit modeling to
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account for IIA violations (Koppelman and Bhat, 2006), which we can manage

with choice set confounding.

Our methods are a first step in addressing confounding. A challenge was learn-

ing choice set propensities for IPW. Simple logistic regression can work for binary

treatments, but estimating exponentially many choice set propensities is difficult.

In expedia, we learned a distribution over mean choice set feature vectors as

an approximation. Other methods for learning set assignment probabilities would

be valuable. Instrumental variables are another causal inference approach (Hernán

and Robins, 2006) that could be used in our setting, but identifying instruments for

choice data is difficult. Alternatively, a matching approach (Imbens, 2004) could

compare pairs of similar choosers with different choice sets. Other directions for

future investigation include rigorous methods of detecting choice set confounding,

or verifying that it has been successfully accounted for, and of testing assumptions.
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CHAPTER 4

GRAPH-BASED METHODS FOR DISCRETE CHOICE

One of the crucial aspects of human decision-making is that, as fundamentally

social creatures, our preferences are strongly influenced by our social context. Viral

trends, conformity, word-of-mouth, and signaling all play roles in behavior, includ-

ing choices (Feinberg et al., 2020; Axsen and Kurani, 2012). Additionally, people

with similar preferences, beliefs, and identities are more likely to be friends in the

first place, a phenomenon known as homophily (McPherson et al., 2001). Together,

these factors indicate that social network structure could be very informative in

predicting choices. In economics and sociology, there has been growing interest in

incorporating social factors into discrete choice models (McFadden, 2010; Maness

et al., 2015; Feinberg et al., 2020). However, the methods used so far in these

fields have largely been limited to simple feature-based summaries of social influ-

ence (e.g., what fraction of someone’s friends have selected an item (Goetzke and

Rave, 2011)).

On the other hand, the machine learning community has developed a rich as-

sortment of graph learning techniques that can incorporate entire social networks

into predictive models (Kipf and Welling, 2017; Jia and Benson, 2022; Wu et al.,

2020), such as graph neural networks and graph-based regularization. These ap-

proaches can handle longer-range interactions and are less reliant on hand-crafted

features. Because of the large gulf between the discrete choice and machine learning

communities, there has been almost no study of the application of graph learn-

ing methods to discrete choice, where they have the potential for major impact.

Perhaps one factor hindering the use of graph learning in discrete choice is that ma-

chine learning methods are typically designed for either regression or classification.
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Discrete choice has several features distinguishing it from multiclass classification

(its closest analogue)—for instance, each observation can have a different set of

available items. As a concrete example, any image could be labeled as a cat in a

classification setting, but people choosing between doctors may have their options

dictated by their insurance policy.

Motivated by this need, we adapt graph learning techniques to incorporate

social network structure into discrete choice modeling. By taking advantage of

phenomena like homophily and social contagion, these approaches improve the

performance of choice prediction in a social context. In particular, we demon-

strate how graph neural networks can be applied to discrete choice, derive Lapla-

cian regularization for the multinomial logit model, and adapt label propagation

for discrete choice. We show in synthetic data that Laplacian regularization can

improve sample complexity by orders of magnitude in an idealized scenario.

To evaluate our methods, we perform experiments on real-world election data

and Android app installations, with networks derived from Facebook friendships,

geographic adjacency, and Bluetooth pings between phones. We find that such

network structures can improve the predictions of discrete choice models in a semi-

supervised learning task. For instance, Laplacian regularization improves the mean

relative rank (MRR)1 of predictions by up to a 6.8% in the Android app installation

data and up to 2.6% in the 2016 US election data. In contrast with our results

on app installations, we find no evidence of social influence in app usage among

the same participants: social factors appear to influence the apps people get, but

less so the apps they actually use. Instead, we find that app usage is dominated

by personal habit. Another interesting insight provided by our discrete choice
1MRR measures the relative position of the true choice in the predicted ranking (Tomlinson

and Benson, 2021).

78



models in the app installation data is the discovery of two separate groups of

participants, one in which Facebook is popular, while the other prefers Myspace.2

We further showcase the power provided by a discrete choice approach by making

counterfactual predictions in the 2016 US election data with different third-party

candidates on the ballot. While a common narrative is that Clinton’s loss was

due to spoiler effects by third-party candidates (Chalabi, 2016; Rothenberg, 2019),

our results do not support this theory, although we emphasize the likelihood of

confounding factors. Our tools enable us to rigorously analyze these types of

questions.

4.1 Related work

There is a long line of work in sociology and network science on social behavior,

including effects like contagion and herding (Centola and Macy, 2007; Easley and

Kleinberg, 2010; Banerjee, 1992). More recently, there has been interest in the

use of discrete choice in conjunction with network-based analysis (Feinberg et al.,

2020) enabled by rich data with both social and choice components (Aharony

et al., 2011). The traditional econometric approach to discrete choice modeling

with social effects is to add terms to an individual’s utility that depend on the ac-

tions or preferences of others (Brock and Durlauf, 2001; McFadden, 2010; Maness

et al., 2015). For instance, this approach can account for an individual’s desire

for conformity (Bernheim, 1994). This is done by treating the choices made by a

chooser’s community as a feature of the chooser and applying a standard multi-

nomial logit (Páez et al., 2008; Kim et al., 2014; Goetzke and Rave, 2011; Walker

et al., 2011; Kim et al., 2018). In contrast, we focus on methods that employ

the entire graph rather than derived features. This enables methods to account
2The dataset is from 2010, when both were popular options.
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for longer-range interactions and phenomena such as network clustering without

hand-crafting features. We are aware of one econometric paper that uses prefer-

ence correlations over a full network in a choice model (Leung, 2019), but inference

under this method requires Monte Carlo simulation. Laplacian regularization, on

the other hand, allows us to find our model’s maximum likelihood estimator with

straightforward convex optimization. Mixture models are another way of incorpo-

rating structured preference heterogeneity into discrete choice, such as the mixed

logit (McFadden and Train, 2000) and hierarchical Bayes models with mixture pri-

ors (Allenby and Rossi, 2006; Burda et al., 2008). Again, these approaches present

significant challenges for inference, requiring Monte Carlo methods, variational

approximations, or expectation maximization. Additionally, in positing unknown

latent populations, mixture models ignore the key information provided by the

structure of the network. Another large area of research in discrete choice con-

cerns models that allow deviations from the axiom of independence of irrelevant

alternatives (IIA) (Luce, 1959). Many of these models, such as the multinomial

probit (Hausman and Wise, 1978), are very challenging to estimate. To keep our

focus on incorporating network effects, we use tractable logit models obeying IIA.

However, there are recent non-IIA models admitting efficient inference to which we

could apply our methods (Seshadri et al., 2019; Bower and Balzano, 2020; Tom-

linson and Benson, 2021); this is beyond the scope of the present work, but we

expand further on this idea in the discussion.

In another direction, there are many machine learning methods that use net-

work structure in predictive tasks; graph neural networks (GNNs) (Kipf and

Welling, 2017; Xu et al., 2019; Wu et al., 2020) are a popular example. Discrete

choice is related to classification tasks, but the set of available items (i.e., labels)

is specific to each observation—additionally, discrete choice models are heavily in-
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formed by economic notions of preference and rationality (McFadden, 1974; Train,

2009). A more traditional machine learning method of exploiting network struc-

ture for classification is label propagation (Zhu and Ghahramani, 2002), which we

extend to the discrete choice setting. Recent work has shown how to combine la-

bel propagation with GNNs for improved performance (Jia and Benson, 2020) and

presented a unified generative model framework for label propagation, GNNs, and

Laplacian regularization (Jia and Benson, 2022). The present work can be seen as

an adaptation and empirical study of the methods from (Jia and Benson, 2022)

for discrete choice rather than regression.

The idea of applying Laplacian regularization to discrete choice models ap-

peared several years ago in an unpublished draft (Zhang et al., 2017). However,

the draft did not provide experiments beyond binary choices (which reduces to

standard semi-supervised node classification (Kipf and Welling, 2017)). In con-

trast, we compare Laplacian regularization with other methods of incorporating

social network structure (GNNs and propagation) on real-world multi-alternative

choice datasets.

There is a large body of existing research on predicting app usage and installa-

tion, including using social network structure (Baeza-Yates et al., 2015; Pan et al.,

2011; Xu et al., 2013), but our use of network-based discrete choice models for

this problem is novel. Our approach has the advantage of being applicable to both

usage and installation with minimal differences, allowing us to compare the rela-

tive importance of social structure in these settings. Another line of related work

applies discrete choice models to networks in order to model edge formation (Over-

goor et al., 2019; Tomlinson and Benson, 2021; Gupta and Porter, 2022; Overgoor

et al., 2020).
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4.2 Preliminaries

We again review our the basic discrete choice notation, while introducing concepts

specific to this chapter. In a discrete choice setting, we have a universe of items U

and a set of choosers A. In each choice instance, a chooser a ∈ A observes a choice

set C ⊂ U and chooses one item i ∈ C. Each item i ∈ U may be described by a

vector of features yi ∈ Rdy . Similarly, a chooser a may have a vector of features

xa ∈ Rdx . In the most general form, a choice model assigns choice probabilities for

a to each item i ∈ C:

Pr(i | a, C) = exp(uθ(i, C, a))∑
j∈C exp(uθ(i, C, a))

, (4.1)

where uθ(i, C, a) is the utility of item i to chooser a when seen in choice set C,

a function with parameters θ. Note that since the utilities in Equation (4.1) can

depend on the choice set, this general form can express choice probabilities that

vary arbitrarily across choice sets (this is sometimes called the universal logit).

When constructing more useful parsimonious models, the utilities uθ(i, C, a) can

depend on xa, yi, both, or neither. In the simplest case—the traditional logit

model—uθ(i, C, a) = ui is constant over choosers and sets. This formulation is

attractive from an econometric perspective, since it corresponds to a rationality

assumption: if we suppose a chooser has underlying utilities u1, . . . , uk and observes

a perturbation of their utilities ui + εi (where εi follows a Gumbel distribution)

before selecting the maximum observed utility item, then their resulting choice

probabilities take the form of a logit (McFadden, 1974).

When we add a linear term in chooser features to the logit model, the result

is the multinomial logit (MNL) (Hoffman and Duncan, 1988; McFadden, 1974),
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with utilities uθ(i, C, a) = ui+γTi xa, where ui are item-specific utilities and γi is a

vector of item-specific coefficients capturing interactions with the chooser features

xa. Similarly, when we add a linear term in item features, the result is a conditional

logit (CL), with utilities ui +φTyi. The conditional multinomial logit (CML) has

both the chooser and item feature terms: ui + φTyi + γTi xa. In order to capture

heterogeneous preferences among a group of choosers, one natural approach is to

allow each chooser a to have different logit utilities. We call this a per-chooser logit,

which is specified by per-chooser utilities uθ(i, C, a) = uia. Similarly, a per-chooser

conditional logit has varying item feature coefficients φa for each chooser a, with

uθ(i, C, a) = uia+φT
ayi. More generally, we call any choice model parameter which

varies across choosers a per-chooser parameter.

In addition to this standard discrete choice setup, our settings also have a

network describing the relationships between choosers. Choosers are nodes in an

undirected graph G = (A, E) where the presence of an edge (a, b) ∈ E indicates a

connection between a and b (e.g., a friendship). We assume G is connected. The

Laplacian of G is L = D − A, where D is the diagonal degree matrix of G and

A is the adjacency matrix. The Laplacian has a number of useful applications,

including in graph clustering (Hagen and Kahng, 1992) and counting spanning

trees (Merris, 1994). For our purposes, the key property of the Laplacian is that

quadratic forms of L measure how much a node-wise vector differs across edges of

the graph (we elaborate on this property below). We use n = |A|, m = |E|, and

k = |U |. Finally, I denotes the identity matrix.
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4.3 Graph-based methods for discrete choice

We identify three phases in choice prediction where networks can be incorporated:

networks can be used (1) to inform model parameters, (2) to learn chooser rep-

resentations, or (3) to directly produce predictions. In this section, we develop

representative methods in each category. We briefly describe each method before

diving into more detail.

First, networks can inform inference for a model that already accounts for

chooser heterogeneity. This is done by incorporating the correlations in utilities

(or other choice model parameters) of individuals who are close to each other in the

network; we refer to these as preference correlations for simplicity. Our Laplacian

regularization approach (described in Section 4.3.1) does exactly this, and we show

that it corresponds to a Bayesian prior on network-based preference correlations.

Second, networks can be used to learn latent representations of choosers that are

then used as features in a choice model like the MNL. GNNs have been extensively

studied as representation-learning tools—in Section 4.3.2, we focus on how to incor-

porate them into choice models, using graph convolutional networks (GCNs) (Kipf

and Welling, 2017) as our canonical example. Third, direct network-based meth-

ods (such as label propagation (Zhu and Ghahramani, 2002), which repeatedly

averages a node’s neighboring labels) can also be used as a simple baseline for

choice predictions. While this approach is simple and efficient, it lacks the proper

handling of choice sets of the previous probabilistic approaches. Nonetheless, we

find it a useful and effective baseline, and we adapt label propagation for discrete

choice in Section 4.3.3.

84



4.3.1 Laplacian regularization

We begin by describing how to incorporate network information in a choice model

like MNL through Laplacian regularization (Ando and Zhang, 2006). Lapla-

cian regularization encourages parameters corresponding to connected nodes to

be similar through a loss term of the form λαTLα, where L is the graph Lapla-

cian (as defined in Section 4.2), α is the vector of parameter values for each

node, and λ is the scalar regularization strength. A famous identity is that

αTLα =
∑

(i,j)∈E(αi − αj)
2, which more clearly shows the regularization of con-

nected nodes’ parameters towards each other. This also shows that the Laplacian

is positive semi-definite, since αTLα ≥ 0, which will be useful to preserve the

convexity of the multinomial logit’s (negative) log-likelihood.

The idea of using Laplacian regularization for discrete choice was proposed

in (Zhang et al., 2017) (although they focused on regularizing intercept terms in bi-

nary logistic regression). We generalize the idea to be applicable to any logit-based

choice model and show that it corresponds to Bayesian inference with a network

correlation prior. We then specialize to the models we use in our experiments.

Laplacian regularization is simple to implement, can be added to any logit-based

choice model with per-chooser parameters, and only requires training one extra hy-

perparameter. Laplacian regularization also carries a number of advantages over

another approach to accounting for structured preference heterogeneity, mixture

modeling.
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Theory of Laplacian-regularized choice models

Consider a general choice model, as in Equation (4.1). We split the parameters

θ into two sets θA and θG, where parameters α ∈ θA,α ∈ Rn vary over choosers

and parameters β ∈ θG, β ∈ R are constant over choosers. The log-likelihood of a

general choice model is:

ℓ(θ;D) =
∑

(i,a,C)∈D

[
log(uθ(i, C, a))− log

∑
j∈C

exp(uθ(j, C, a))
]
. (4.2)

The Laplacian- and L2-regularized log-likelihood (with L2 regularization strength

γ) is then

ℓL(θ;D) = ℓ(θ;D)− λ

2

∑
α∈θA

αTLα− γ

2

∑
α∈θA

||α||22. (4.3)

We show that regularized maximum likelihood estimation of θ corresponds to

Bayesian inference with a prior on per-chooser parameters that encourages smooth-

ness over the network. In contrast, existing results on priors for semi-supervised

regression (Xu et al., 2010; Chin et al., 2019) typically split the nodes into observed

and unobserved, fixing the observed values and only considering randomness over

unobserved nodes. In choice modeling, observing choices at a node only updates

our beliefs about their preferences, leaving some uncertainty. Our result also al-

lows some parameters of the choice model to be chooser-dependent and others to

be constant across choosers, allowing it to be fully general over choice models. Fi-

nally, we note that L2 regularization can also be applied to the global parameters

β, which as usual corresponds to a Gaussian prior on these parameters—however,

we state the result with uniform priors to emphasize the Laplacian regularization

on the per-chooser parameters α.

Theorem 7. The maximizer θ∗MLE of the Laplacian- and L2-regularized log-

likelihood ℓL(θ;D) is the maximum a posteriori estimate θ∗MAP after observing D
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under the i.i.d. priors α ∼ N (0, [λL + γI]−1) for each α ∈ θA and i.i.d. uniform

priors for each β ∈ θG.

Proof. First, recall that L is positive semi-definite, so λL + γI (with γ, λ > 0) is

positive definite and invertible. Now, using Bayes’ Theorem,

θ∗MAP = argmax
θ

p(θ | D)

= argmax
θ

Pr(D | θ)p(θ)
Pr(D)

.

Since Pr(D) is independent of the parameters and log is monotonic and increasing,

θ∗MAP = argmax
θ

[log Pr(D | θ) + log p(θ)] .

Notice that the first term is exactly the log-likelihood ℓ(θ;D). Additionally, the

priors of each parameter are independent, so

log p(θ) =
∑
α∈θA

log p(α) +
∑
β∈θG

log p(β).

Since the priors p(β) are uniform, they do not affect the maximizer:

θ∗MAP = argmax
θ

[
ℓ(θ;D) +

∑
α∈θA

log p(α)

]
.

Now consider the Gaussian priors p(α):

p(α) = (2π)n/2 det[(λL+ γI)−1]−1/2 exp

(
−1

2
αT [(λL+ γI)−1]−1α

)
.

Simplifying the term in the exp reveals the two regularization terms:

−1

2
αT [(λL+ γI)−1]−1α = −1

2
αT (λL+ γI)α

= −λ
2
αTLα− γ

2
αTα

= −λ
2
αTLα− γ

2
||α||22.
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We thus have, for a constant c independent of α,

log p(α) = log

(
(2π)n/2 det[(λL+ γI)−1]−1/2 exp

(
−λ
2
αTLα− γ

2
||α||22

))
= −λ

2
αTLα− γ

2
||α||22 + c.

Plugging this is in and dropping the constants not affecting the maximizer yields

θ∗MAP = argmax
θ

[
ℓ(θ;D)− λ

2

∑
α∈θA

αTLα− γ

2

∑
α∈θA

||α||22

]

= argmax
θ

ℓL(θ;D)

= θ∗MLE.

Notice that the Gaussian in the theorem above has precision (i.e., inverse covari-

ance) matrix λL+γI. The partial correlation between the per-chooser parameters

αi and αj, i ̸= j, (controlling for all other nodes) is therefore

− λLij√
(λLii + γ)(λLjj + γ)

=
λAij√

(λdi + γ)(λdj + γ)
(4.4)

using the standard Gaussian identity relating precision and partial correla-

tion (Liang et al., 2015) (where di is the degree of i). If both di, dj > 0 and γ

is small, then we can approximate

λAij√
(λdi + γ)(λdj + γ)

≈ λAij√
(λdi)(λdj)

=
Aij√
didj

. (4.5)

This is easy to interpret: αi and αj have partial correlation 0 when i and j are

unconnected (Aij = 0) and positive partial correlation when they are connected

(larger when they have fewer other neighbors). That is, the Gaussian prior in the

theorem assumes neighboring nodes have correlated preferences.
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Laplacian-regularized logit models

To incorporate Laplacian regularization in our four logit models (logit, MNL, CL,

CML), we add per-chooser utilities via for each item i and chooser a to the utility

formulations. For instance, this results in the following utility function for a per-

chooser MNL: uθ(i, C, a) = ui + xTaγi + via. While we could get rid of the global

utilities ui, L2 regularization enables us to learn a parsimonious model where ui

is the global baseline utility and via represents per-chooser deviations. The per-

chooser parameters of a Laplacian-regularized logit are θA = {vi}i∈U , where the

vector vi stacks the values of via for each chooser a ∈ A. All other parameters

are global. The Laplacian- and L2-regularized log-likelihood can then be written

down by combining Equations (4.2) and (4.3). Crucially, since the Laplacian is

positive semi-definite, the terms −λ
2
vTi Lvi are concave—and since all four logit log-

likelihoods are concave (as is the L2 regularization term), their regularized negative

log likelihoods (NLLs) are convex. This enables us to easily learn maximum-

likelihood models with standard convex optimization methods.

4.3.2 Graph neural networks

Graph neural networks (GNNs) (Wu et al., 2020) use a graph to structure the

aggregations performed by a neural network, allowing parameters for neighboring

nodes to influence each other. We test the canonical GNN, a graph convolutional

network (GCN) (Kipf and Welling, 2017), where node embeddings are averaged

across neighbors before each neural network layer. There are many other types of

GNNs (see (Wu et al., 2020) for a survey)—we emphasize that we do not claim this

particular GCN approach to be optimal for discrete choice. Rather, we illustrate
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how GNNs can be applied to choice data and encourage further exploration.

In a depth-d GCN, each layer performs the following operation, producing a

sequence of embeddings H(0), . . . , H(d):

H(i+1) = σ(A′H(i)W (i)) (4.6)

where H(0) is initialized using node features (if they are available—if not, H(0)

is learned), σ is an activation function, W (i) are parameters, and A′ = (D +

2I)−1/2(A + I)(D + 2I)−1/2 is the degree-normalized adjacency matrix (with self-

loops). Self-loops are added to G to allow a node’s current embedding to influence

its embedding in the next layer. We can either use H(d) as the final embeddings or

concatenate each layer’s embedding into a final embedding H. In our experiments,

we use a two-layer GCN (both with output dimension 16) and concatenate the

layer embeddings. For simplicity, we fix the dropout rate at 0.5.

To apply GCNs to discrete choice, we can treat the final node embeddings as

chooser features and apply an MNL, modeling utilities as uθ(i, C, a) = ui +HT
a γi,

where ui and γi are per-item parameters (the intercept and embedding coefficients,

respectively). If item features are also available, we add the conditional logit term

θTyi. Thanks to automatic differentiation software such as PyTorch (Paszke et al.,

2019), we can train both the GCN and MNL/CML weights end-to-end. Again, any

node representation learning method could be used for the embeddings H—we use

a GCN for simplicity.

In general, graph neural networks have the advantage of being highly flexible,

able to capture complex interactions between the features of neighboring nodes.

However some recent research has indicated that non-linearity is less helpful for

classification in GNNs than in traditional neural networks tasks (Wu et al., 2019).

With the additional modeling power comes significant additional difficulty in train-
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ing and hyperparameter selection (for embedding dimensions, depth, dropout rate,

and activation function).

4.3.3 Choice fraction propagation

We also consider a baseline method that uses the graph to directly derive choice

predictions, without a probabilistic model of choice. We extend label propaga-

tion (Zhou et al., 2003; Jia and Benson, 2022) to multi-alternative discrete choice.

The three features distinguishing the choice setting from standard label propa-

gation is that we can observe multiple “labels” (i.e., choices) per chooser, each

observation may have had different available labels, and that not all labels are

available at inference time. Given training data of observed choices of the form

(i, C, a), where chooser a ∈ A chose item i ∈ C ⊆ U , we assign each chooser a a

vector za of size k = |U | with each item’s choice fraction. That is, the ith entry of

za stores the fraction of times a chose i in the observed data out of all opportuni-

ties they had to do so (i.e., the number of times i appeared in their choice set). We

use choice fraction rather than counts to normalize by the number of observations

for a chooser and not to count against an item instances when it was not available.

We then apply label propagation to the vectors za over G. Let Z(0) be

the matrix whose rows are za. As in standard label propagation, we iterate

Z(i+1) ← (1 − ρ)Z(0) + ρD−1/2AD−1/2Z(i) until convergence, where ρ ∈ [0, 1] is

a hyperparameter that controls the strength of the smoothing. Let Z(∞) denote

the stationary point of the iterated map. For inference, we can use the ath row of

Z(∞) (in practice, we will have a matrix arbitrarily close to Z(∞)), denoted z
(∞)
a , to

make predictions for chooser a. Given a choice set C, we predict a will choose the

argmax of z(∞)
a restricted to items appearing in C. Note that in a semi-supervised
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Table 4.1: Dataset summary. |A|: number of choosers (aggregated at the
county/precinct for elections), |U |: number of items, |C|: choice set sizes, N :
number of observed choices, dx: number of chooser features.

Dataset |A| |U | |C| N dx dy

app-install 139 127 51–127 4,039 — —
app-usage 104 121 2–55 20,564 — 1
us-election-2016 3,112 32 3–22 135,382,576 19 —
ca-election-2016 21,495 182 2 261,278,336∗ 17 —
ca-election-2020 17,282 170 2 225,606,176∗ 17 —
∗Voters had more than one election (i.e., choice) on their ballots.

setting, we do not observe any choices from the test choosers, so their entries of

Z(0) will be zero. The term (1 − ρ)Z(0) then acts as a uniform prior, regularizing

the test chooser entries of Z(∞) towards 0. Since choice fraction propagation does

not use chooser or item features, it is best suited to scenarios where neither are

available.

4.4 Networked discrete choice data

We now describe several datasets in which we can leverage social network structure

for improved choice prediction using the methods we develop. Table 4.1 shows a

summary of our datasets, which are available at https://osf.io/egj4q/.

4.4.1 Friends and Family app data

The Friends and Family dataset (Aharony et al., 2011) follows over 400 residents

of a young-family community in North America during 2010-2011. The dataset is

remarkably rich, capturing many aspects of the participants’ lives. For instance,

92

https://osf.io/egj4q/


they were given Android phones with purpose-made logging software that captured

app installation and usage as well as Bluetooth pings between participants’ phones.

We use the installation and usage data to construct two separate choice datasets

(app-install and app-usage) and use a network built from Bluetooth pings, as

in (Aharony et al., 2011). We ignore uncommon and built-in apps (for instance,

we ignore apps whose package names begin with com.android, com.motorola,

com.htc, com.sec, and com.google), leaving a universe U of 127 apps in app-

install and 121 in app-usage (e.g., Twitter, Facebook, and Myspace).

To construct app-install, we use scans that checked which apps were installed

on each participant’s phone every 10 minutes – 3 hours. Each time a new app i

appears in a scan for a participant a, we consider that a choice from the set of

apps C that were not installed at the time of the last scan. We use a plain logit

as the baseline model in app-install, since no item features are readily available.

To construct app-usage, we use 30-second resolution scans of running apps. To

separate usage into sessions, we select instances where a participant ran an app

for the first time in the last hour. We consider such app runs to be a choice i from

the set of all apps C installed on participant a’s phone at that time. Our discrete

choice approach enables us to account for these differences in app availability. In

app-usage, we use a conditional logit with a single instance-specific item feature:

recency, defined as log−1(seconds since last use) or 0 if the user has not used the

app. While it would be possible to construct more complex sets of features with

additional effort (for instance categorizing different types of apps or tracking down

their Android store ratings), a simple baseline suffices to demonstrate how social

network structure can benefit choice modeling even in the absence of item and user

features.
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Figure 4.1: Difference between actual and expected install rates (if friendships were
irrelevant). The left subplot is with the real network, while the right two are two
null models. Each dot is a (participant, app) pair. The black line marks the mean
over five bins, with the shaded region showing the standard error of the mean.

To form the social network G over participants for both datasets, we use Blue-

tooth proximity hits—like the original study (Aharony et al., 2011), we only con-

sider hits in the month of April between 7am and midnight (to avoid coincidental

hits from neighbors at night). For each participant a, we form the link (a, b) to

each of their 10 most common interaction partners b (we also tested thresholds

2–9, but our methods all performed very similarly). We perform this thresholding

because the Bluetooth ping network is extremely dense and contains many edges

that are likely not socially meaningful (for instance, nearby phones may ping each

other when two strangers shop in the same store). Prior research on this data

found that social contacts were useful in predicting app installations, but did not

employ a discrete choice approach (Aharony et al., 2011; Pan et al., 2011). Our

discrete choice approach allows us to account for multi-hop social connections and

the context of each installation (i.e., what apps were already installed).

As a warm-up data analysis, we show that people are more likely to install an

app the more of their friends have it (but not if we randomize friendships). Let n
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the total number of people, ni be the number of people who installed application

i, fa the number of friends of person a, and fai the number of friends of person a

who have app i. Suppose app installations are independent of friendships. If we

sample some person a uniformly at random and check which of their friends have

app i, then the probability that a also has app i is (ni − fai)/(n− fa) (simply the

remaining fraction of people who have the app, after observing the friends of a).

However, if app installations correlate across friendships, the observed probability

would be higher when fai/fa is larger. We measure the empirical probability that a

person has an app at different friend-installation fractions. Specifically, we measure

1

nk

∑
i∈U,a∈A

(
1ai −

ni − fai
n− fa

)
, (4.7)

where 1ai is an indicator for whether person a has app i. Notice that if friend-

ships are uncorrelated with app installations, the expectation of the summand is

0. Instead of taking the mean over all app pairs, we take the mean at each unique

friend-installation fraction to see if having more friends with an app results in

stronger deviations from uniform installations. This is exactly what we observe:

when people have more friends with an app, they are more likely to install it (Fig-

ure 4.1). In contrast with two null models (a configuration model with the same

degree distribution and an Erdős–Rényi graph with the same density), we see an

increase in peoples’ installation probabilities as a larger fraction of their friends

have an app. This is in line with findings that the probability an individuals joins

a social network community increases with the number of their friends in the com-

munity (Backstrom et al., 2006). However, it is worth emphasizing that this finding

is purely correlational—we have no way of knowing whether increased installation

rates are due to homophily in the social network, word-of-mouth contagion, or

other confounding factors.
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Figure 4.2: 2016 US presidential election vote shares for conservative independent
Evan McMullin. Notice his regional popularity and the spillover from Utah to
southeast Idaho. McMullin was not on the ballot in filled-in states. The lack of
spillover into Colorado may be due to its crowded field (22 candidates) or because
it is less conservative than Idaho.

4.4.2 County-level US presidential election data

US presidential election data is a common testbed for graph learning methods using

a county-level adjacency network, but the typical approaches are to treat elections

as binary classification or regression problems (predicting the vote shares of one

party) (Jia and Benson, 2020; Zhou et al., 2020; Huang et al., 2021). However,

this ignores the fact that voters have more than two options—moreover, different

candidates can be on the ballot in different states. The universe of items U in our

2016 election data contains no fewer than 31 different candidates (and a “none of

these candidates” option in Nevada, which received nearly 4% of the votes in one

county). While third-party candidates are unlikely to win in the US, they often

receive a non-trivial (and quite possibly consequential) fraction of votes. For in-

stance, in the 2016 election, independent candidate Evan McMullin received 21.5%
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of the vote in Utah, while Libertarian candidate Gary Johnson and Green Party

candidate Jill Stein received 3.3% and 1.1% nationally (the gap between Clinton

and Trump was only 2%). A discrete choice approach enables us to include third-

party candidates and account for different ballots in different states. As a visual

example, in Figure 4.2 we show the states in which McMullin appeared on the bal-

lot as well as his per-county vote share. By accounting for ballot variation, we can

make counterfactual predictions about what would happen if different candidates

had been on the ballot, which is difficult without a discrete choice framework. For

example, given McMullin’s regional support in Utah, it is possible that he would

have fared better in Nevada (Utah’s western neighbor) than in an East Coast state

like New York. Using the entire ballots also allows us to account for one possible

reason why McMullin’s vote share appears not to spilled over into Colorado, while

it did into Idaho: Colorado had fully 22 candidates on the ballot, while Idaho

only had 8. A discrete choice approach handles this issue cleanly, while regression

on vote shares does not. We note that, due to inherent limitations of observa-

tional data, we cannot be sure of the causes of the effects we observe (Tomlinson

et al., 2021)—nonetheless, a discrete choice approach enables more flexible model-

ing and can improve prediction performance regardless of the cause of preference

correlations.

We gathered county-level 2016 presidential voting data from (Kearney, 2018)

and county data from Jia and Benson (2020),3 which includes a county adja-

cency network, county-level demographic data (e.g., education, income, birth rates,

USDA economic typology,4 and unemployment rates), and the Social Connected-

ness Index (SCI) (Bailey et al., 2018) measuring the relative frequency of Facebook
3One county—Oglala Lakota County, South Dakota (FIPS 46102)—was named Shannon

County (FIPS 46113) until 2015, which resulted in some missing data. We manually renamed it
in the data and extrapolated missing data from previous years.

4https://www.ers.usda.gov/data-products/county-typology-codes/
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friendships between each pair of counties. We aggregate all votes at the county

level, treating each county as a chooser a and using county features as xa (mod-

eling voting choices in aggregate is standard practice (Alvarez and Nagler, 1998)).

For the graph G, we tested using both the geographic adjacency network and a

network formed by connecting each county to the 10 others with which it has the

highest SCI. We found almost identical results with both networks, so we only

only discuss the results using the SCI network. We refer to the resulting dataset

as us-election-2016.

4.4.3 California precinct-level election data

The presidential election data is particularly interesting because different ballots

have different candidates, all running in the same election. For instance, this is

analogous to having different regional availability of goods within a category in

an online shopping service. In our next two datasets, ca-election-2016 and

ca-election-2020, we highlight a different scenario: when ballots in different

locations may have different elections. Extending the online shopping analogy,

this emulates the case where different users view different recommended cate-

gories of items. Although it is beyond the scope of the present work, a discrete

choice approach would enable measuring cross-election effects, such as coattail

effects (Hogan, 2005; Ferejohn and Calvert, 1984) where higher-office elections in-

crease excitement for down-ballot races.

To construct these datasets, we used data from the 2016 and 2020 California

general elections from the Statewide Database.5 This includes per-precinct regis-

tration and voting data as well as shapefiles describing the geographic boundaries
5https://statewidedatabase.org; 2016 and 2020 data accessed 8/20/20 and 3/22/21, resp.
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of each precinct (California has over 20,000 voting precincts). The registration

data contains precinct-level demographics (counts for party affiliation, sex, ethnic-

ity, and age ranges), although such data was not available for all precincts. We

restrict the data to the precincts for which all three data types were available: vot-

ing, registration, and shapefile (99.8% of votes cast are included in our processed

2016 data, and 99.0% in our 2020 data). Again, we treat each precinct as a chooser

a with demographic features xa.

Our processed California data includes elections for the US Senate, US House of

Representatives, California State Senate, and California ballot propositions. We

set aside presidential votes due to overlap with the previous dataset and state

assembly votes to keep the data size manageable. Due to California’s nonparti-

san top-two primary system,6 there are two candidates running for each office —

however, each voter has a different set of elections on their ballot due to differences

in US congress and California state senate districts (the state has 53 congressional

districts and 40 state senate districts). A discrete choice approach enables us to

train a single model accounting for preferences over all types of candidates. We use

the precinct adjacency network G (since SCI is not available at the finer-grained

precinct level), which we constructed from the Statewide Database shapefiles using

QGIS (https://qgis.org).

4.5 Empirical results

We begin by demonstrating the sample complexity benefit of using network struc-

ture through Laplacian regularization on synthetic data. We then apply all
6https://www.sos.ca.gov/elections/primary-elections-california
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Figure 4.3: Estimation error of item utilities with (left) and without (right) Lapla-
cian regularization on synthetic data generated according to the priors in The-
orem 7, with varying homophily strength λ. Error bars (most are tiny) show
standard error over 8 trials. Using Laplacian regularization can improve sample
complexity by orders of magnitude.

three approaches to our datasets, compare their performance, and demonstrate

the insights provided by a networked discrete choice approach. See Table 4.1

in Section 4.4 for a dataset overview. Our code and instructions for reproduc-

ing results from this chapter are available at https://github.com/tomlinsonk/

graph-based-discrete-choice/.

4.5.1 Improved sample complexity with Laplacian regular-

ization

By leveraging correlations between node preferences through Laplacian regulariza-

tion, we need fewer samples per node in order to achieve the same inference quality.

When preferences are smooth over the network, an observation of a choice by one

node gives us information about the preferences of its neighbors (and its neigh-

bors’ neighbors, etc.), effectively increasing the usefulness of each observation. In

Figure 4.3, we show the sample complexity benefit of Laplacian regularization in
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synthetic data with 100-node Erdős–Rényi graphs (p = 0.1) and preferences over

20 items generated according to the prior from Theorem 7. In each of 8 trials,

we generate the graph, sample utilities, and then simulate a varying number of

choices by each chooser. We repeat this for different homophily strengths λ. For

each simulated choice, we first draw a choice set size uniformly between 2 and 20,

then pick a uniformly random choice set of that size. We then measure the mean-

squared error in inferred utilities of observed items (fixing the utility of the first

item to 0 for identification). When applying Laplacian regularization, we use the

corresponding value of λ used to generate the data (in real-world data, this needs

to be selected through cross-validation). We train the models for 100 epochs.

In this best-case scenario, we need orders of magnitude fewer samples per

chooser if we take advantage of preference correlations: with Laplacian regulariza-

tion, estimation error with only 1 sample per chooser is lower than the estimation

error with no regularization and 1000 samples per chooser. The stronger the ho-

mophily, the fewer observations are needed to achieve optimal performance, since

a node’s neighbor’s choices are more informative.

4.5.2 Prediction performance comparison

We now evaluate our approaches on real-world choice data. In the style of semi-

supervised learning, we use a subset of choosers for training and held-out choosers

for validation and testing. This emulates a scenario where it is too expensive to

gather data from everyone in the network or existing data is not available for all

nodes (e.g., perhaps not all individuals have consented to choice data collection).

We vary the fraction of training choosers from 0.1 to 0.8 in increments of 0.1, using

half of the remaining choosers for validation and half for testing. We perform 8
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independent sampling trials at each fraction in the election datasets and 64 in the

smaller Friends and Family datasets.

As a baseline, we use standard logit models with no network information. For

the election datasets, we use an MNL that uses county/precinct features to predict

votes. This approach to modeling elections is common in political science (Dow

and Endersby, 2004). For app-install, we use a simple logit. For app-usage,

we use a conditional logit (CL) with recency (as defined in Section 4.4.1). We then

compare the three graph-based methods we propose to the baseline choice model: a

GCN-augmented MNL (or CML), a Laplacian-regularized logit (or CL/MNL) with

per-chooser utilities, and choice fraction propagation. Aside from propagation, we

train the other methods with batch Rprop (Riedmiller and Braun, 1993), as imple-

mented in PyTorch (Paszke et al., 2019). For each dataset–model pair, we select

the hyperparameters that result in the lowest validation loss in a grid search; we

tested learning rates 10−3, 10−2, 10−1 and L2 regularization strengths 10−5, 10−4,

10−3, 10−2, 10−1 (we also tested no L2 regularization in the two app datasets).

We similarly select Laplacian λ using validation data from 10−5, 10−4, 10−3, 10−2

in the election datasets (in addition to these, we also test 100, 10−1, 10−6, 10−7 in

the app datasets) and propagation ρ from 0.1, 0.25, 0.5, 0.75, 1. The smaller hyper-

parameter ranges in the election datasets were used due to runtime constraints.

We train the likelihood-based models for 100 epochs, or until the squared gradient

magnitude falls below 10−8. For propagation, we perform 256 iterations, breaking

if the sum of squared differences between consecutive iterates falls below 10−8. We

note that we did not aggressively fine-tune the GCN beyond learning rate and L2

regularization strength, since it has many more hyperparameters than our other

approaches and is more expensive to train. Our GCN results should therefore

be interpreted as the performance a discrete choice practitioner should expect to
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Figure 4.4: Test negative log likelihoods (NLL; top row; lower is better) and mean
relative ranks (MRR; bottom row; lower is better) on the two Friends and Family
datasets and three election datasets (error bars show standard error over chooser
sampling). “Logit” signifies plain logit in app-install, CL in app-usage, and
MNL in the election datasets. Laplacian regularization improves performance in
app-install, while no method improves on CL in app-usage. In the election
data, Laplacian MNL, but not GCN, outperforms MNL across train fractions.
Propagation performs well on app-install, but very poorly on app-usage, as it
does not utilize recency. Despite not using county/precinct features, propagation
can be competitive in the election data.

Table 4.2: Runtime in seconds to train and test each model, with standard error
over 4 trials.

Dataset CL/MNL Laplacian GCN Propagation

app-install 2.5± 0.0 2.2± 0.0 9.0± 0.2 0.2± 0.0
app-usage 12± 0 13± 0 41± 0 0.9± 0.0
us-election-2016 18± 0 19± 0 20± 0.0 1.0± 0.0
ca-election-2016 605± 6 647± 3 758± 4 63± 0
ca-election-2020 450± 79 397± 2 485± 51 38± 0

achieve in a reasonable amount of time using the model, which we believe is an

important metric.

In Figure 4.4, we show results of all four approaches on all five datasets. We

evaluate the three likelihood-based methods using their test set negative log like-

lihood (NLL) and use mean relative rank (MRR) (Tomlinson and Benson, 2021)

to evaluate propagation. For one sample, MRR is defined as the relative posi-
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tion of the actual choice in the list of predictions in decreasing confidence order

(where 0 is the beginning of the list and and 1 is the end). We then report the

mean MRR over the test set. In app-install, both Laplacian regularization and

propagation improve prediction performance over the baseline logit model, and the

advantage increases with the fraction of participants used for training (up to 6.8%

better MRR). However, the GCN performs worse than logit in terms of likelihood

and the same or worse in terms of MRR. In contrast, graph-based methods do

not outperform a conditional logit in app-install. In the three election datasets,

Laplacian-regularized MNL consistently outperforms MNL (with up to 2.6% better

MRR in us-election-2016; the margin in the California data is small but outside

errorbars), while the GCN performs on par with MNL in us-election-2016 and

worse in the California datasets.

These results yield insight into the role networks play in different choice be-

haviors. In app-usage, we find no benefit from using social network structure

using any method. Instead, the recency feature appears to dominate, with prop-

agation (which has no access to item features) performing much worse than the

three models that do incorporate recency. This indicates that app usage is driven

by individual habit rather than by external social factors. On the other hand,

our results show that app installation has a strong social component: even simple

Bluetooth proximity between friends provides a signal that they will install (but

not necessarily use) similar apps. This finding highlights how combining a dis-

crete choice approach with network data can illuminate the role social networks

play in different choice behaviors. In the election data, especially ca-election-

2016, even simple choice propagation performs remarkably well, despite entirely

ignoring demographic features. This reveals that many of the important predictive

demographic features (such as party affiliation, age, and ethnicity) are so strongly
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correlated over the adjacency network that we don’t need to know information

about you to predict your vote: it suffices to know about your neighbors or your

neighbors’ neighbors.

We also compare the runtime of each method. To measure runtime, each model

was run on a 50-25-25 train-validation-test split of each dataset four times. Since

the hyperparameters are not crucial for runtime measurements (especially because

Rprop is not sensitive to initial learning rate as an adaptive method), we fixed the

learning rate at 0.01, L2 regularization strength at 0.001, Laplace regularization

strength at 0.0001, and propagation ρ at 0.5. For each trial, we trained and tested

each model once, shuffling the order of models to avoid systematic bias due to

caching. Laplacian regularization has very low overhead over CL/MNL, while

GCN is up to 4× slower in the smaller datasets (see Table 4.2). In the larger

datasets, PyTorch’s built-in parallelism reduces this relative gap. Propagation is

more than 10× faster than the choice models in every dataset.

4.5.3 Facebook and Myspace communities in app-install

Given that we observed significant improvement in prediction performance in app-

install, we take a closer look at the patterns learned by the Laplacian-regularized

logit compared to the plain logit. In particular, the Facebook and Myspace apps

were in the top 20 most-preferred apps under both models ((see Appendix C.1 for

the full lists)). Given that these were competitor apps at the time,7 we hypoth-

esized that they might be popular among different groups of participants. This

is exactly what we observe in the learned parameters of the Laplacian-regularized

logit. Facebook and Myspace are in the top 10 highest-utility apps for 70 and 27
7The dataset is from 2010; Facebook surpassed Myspace’s popularity in the US in 2009.
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Table 4.3: Edge densities within/between the groups preferring Facebook (|F | =
70) and Myspace (|M | = 27) in app-install. Left: including the 3 choosers in
F ∩M . Right: excluding F ∩M .

F M

F 11.2% 4.9%
M 4.9% 11.7%

F M

F 11.3% 5.8%
M 5.8% 12.0%

Table 4.4: Maximum likelihood 2016 election outcomes under our model under the
three scenarios in Section 4.5.4. We show mean vote shares (with 95% confidence
interval over trials) for the top three predicted candidates and differences in state
outcomes between the counterfactual prediction and reality. C: Clinton, T: Trump,
Outcome: Electoral College votes. T→ C denotes that a state won by Trump goes
for Clinton under the model. States abbreviated by postal code.

Scenario 1 Scenario 2 Scenario 3

C % 47.7± 0.1 50.7± 0.1 37.5± 2.2
T % 46.3± 0.1 49.3± 0.1 37.0± 1.9
T → C — — PA

C → T ME∗, MN,
NV, NH

ME∗, MN,
NV, NH MN, NV, NH

Other — — RI (“None”)
Outcome T 326, C 205 T 326, C 205 T 304, C 223
∗Maine allocates Electoral College votes proportionally—we assume a 3-1 split.

participants, respectively (out of 139 total; we refer to these sets as F and M).

Intriguingly, the overlap between F and M is only 3. Moreover, looking at the

Bluetooth interaction network, we find the edge densities are more than twice as

high within each of F and M than between them (Table 4.3), indicating they are

true communities in the social network. In short, the Laplacian-regularized logit

learns about two separate subcommunities, one in which Facebook is popular and

one in which Myspace is popular.
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4.5.4 Counterfactuals in the 2016 US election

One of the powerful uses of discrete choice models is applying them to counterfac-

tual scenarios to predict what might happen under different choice sets (e.g., in

assortment optimization (Rusmevichientong et al., 2010)). For instance, we can

use our models to make predictions about election outcomes if different candidates

had been on ballots in 2016. However, we begin this exploration with a warning:

making predictions from observational data is subject to confounders, unobserved

factors that affected both who was on which ballot and how the states voted. For

example, only Nevadans had the option to vote for “None of these options,” and

Nevada is an outlier in a number of ways that are likely to impact voting, includ-

ing its reliance on tourism, high level of diversity, and lack of income tax. This

makes it less likely that the preferences of Nevadans for “None of these options”

will neatly generalize to voters in other states. There are causal inference methods

of managing confounding in discrete choice models; for instance, our county co-

variates act as regression controls (Tomlinson et al., 2021). If those covariates fully

described variation in county voting preferences, then the resulting choice models

would be unbiased, even with confounding (Tomlinson et al., 2021). However, we

do not believe the covariates fully describe voting, since we can improve predic-

tion by using regional or social correlations not captured by the county features.

Nonetheless, examining our model’s counterfactual predictions is still instructive,

demonstrating an application of choice models, providing insight into the model’s

behavior, and motivating randomized experiments to test predictions about the

effect of ballot changes. We note that the MNL we use obeys IIA, preventing rel-

ative preferences for candidates changing within a particular county when choice

sets change. However, since states contain many counties, they are mixtures of

MNLs (which can violate IIA), so their outcomes can change under the model.
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A widespread narrative of the 2016 election is that third-party candidates cost

Clinton the election by disproportionately taking votes from her (Chalabi, 2016;

Rothenberg, 2019). To test this hypothesis, we examine three counterfactual sce-

narios: (Scenario 1) all ballots have five options: Clinton, Trump, Johnson, Stein,

and McMullin; (Scenario 2) ballots only list Clinton and Trump, and (Scenario

3) ballots are as they were in 2016, but “None of these candidates” is added to

every ballot. For each scenario, we take the best (validation-selected) Laplacian-

regularized MNL trained on 80% of counties from each of the 8 county sampling

trials and average their vote count predictions. Maximum-likelihood outcomes un-

der the model are shown in Table 4.4. We find no evidence to support the claim

that third-party candidates hurt Clinton more than Trump. None of the scenarios

changed the two major measures of outcome: Clinton maintained the popular vote

advantage, while Trump carried the Electoral College. A few swing states change

hands in the predictions. The model places more weight on “None of these candi-

dates” than seems realistic (for instance, predicting it to be the plurality winner

in Rhode Island), likely because training data is only available for this option in a

single state, leading to confounding. We also note that under the true choice sets,

the model’s maximum likelihood state outcomes are the same as in Scenarios 1

and 2. A more complete analysis would examine the full distribution of Electoral

College outcomes rather than just the maximum likelihood outcome, but we leave

such analysis for future work as it is not our main focus.

4.6 Discussion

As we have seen, social and geographic network structure can be very useful in

modeling the choices of a group of connected individuals, since people tend to have
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more similar preferences to their network neighborhood than to distant strangers.

Several possible explanations are possible for this phenomenon: people may be

more likely to become friends with similarly-minded individuals (homophily) or

trends may spread across existing friendships (contagion). Unfortunately, deter-

mining whether homophily or contagion is responsible for similar behavior among

friends is notoriously difficult (and often impossible (Shalizi and Thomas, 2011)). e

We saw poor performance from the GCN relative to the logit models—as we noted,

there are many hyperparameters that could be fine-tuned to possibly improve this

performance, although this might not be practical for non-experts. Additionally,

there are a host of other GNNs that could outperform GCNs in a choice task. Our

contributions in this area are to demonstrate how GNN models can be adapted for

networked choice problems and to encourage further exploration of such problems.

However, our findings are consistent with several lines of recent work that show

simple propagation-based methods outperforming graph neural networks (Huang

et al., 2021; Wu et al., 2019; He et al., 2020).

There are several interesting avenues for future work in graph-based methods

for discrete choice. As we noted, much of the recent machine learning interest in

discrete choice (Seshadri et al., 2019; Bower and Balzano, 2020; Rosenfeld et al.,

2020; Tomlinson and Benson, 2021) has revolved around incorporating context

effects (violations of IIA). Combining our methods with such approaches could

answer questions thats are to our knowledge entirely unaddressed in the literature

(and possibly even unasked): Do context effects have a social component? If so,

what kinds of context effects? Can we improve contextual choice prediction with

social structure (in terms of accuracy or sample complexity)? Another natural

extension of our work is to use a weighted Laplacian when we have a weighted

social network. In another direction, choice data could be studied as an extra
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signal for community detection in networks, building on our identification of the

Facebook and Myspace communities in the Friends and Family data.
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Part III

Collective Decision-Making
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CHAPTER 5

CHOICE SET OPTIMIZATION UNDER DISCRETE CHOICE

MODELS OF GROUP DECISIONS

We begin our exploration of collective decision-making with an application of dis-

crete choice models to groups of choosers. As we discussed in the first part of

this dissertation, much of the computational work on choice has been devoted to

designing and fitting models for predicting future choices. In addition to predic-

tion, another area of interest is determining effective interventions to influence

choice—advertising and political campaigning are prime examples. In heteroge-

neous groups, the goal might be to encourage consensus (Amir et al., 2015), or, for

an ill-intentioned adversary, to sow discord, e.g., amongst political parties (Rosen-

berg et al., 2020).

One particular method of influence is introducing new alternatives or options.

While early economic models assume that alternatives are irrelevant to the relative

ranking of options (Luce, 1959; McFadden, 1974), experimental work has consis-

tently found that new alternatives have strong effects on our choices (Huber et al.,

1982; Simonson and Tversky, 1992; Shafir et al., 1993; Trueblood et al., 2013). As

we have discussed at length, these effects are called context effects or choice set

effects. Direct measurements on choice data have also revealed choice set effects

in several domains (Benson et al., 2016; Seshadri et al., 2019).

Here, we pose adding new alternatives as a discrete optimization problem for

influencing a collection of decision makers, such as the inhabitants of a city or the

visitors to a website. To this end, we consider various models for how someone

makes a choice from a given set of alternatives, where the model parameters can

be readily estimated from data. In our setup, everyone has a base set of alterna-
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tives from which they make a choice, and the goal is to find a set of additional

alternatives to optimize some function of the group’s joint preferences on the base

set. We specifically analyze three objectives: (i) agreement in preferences amongst

the group; (ii) disagreement in preferences amongst the group; and (iii) promotion

of a particular item (decision).

We use the framework of discrete choice (Train, 2009) to probabilistically model

a person’s choice from a given set of items, called the choice set. These models

are parameterized for individual preferences, and when fitting parameters from

data, preferences are commonly aggregated at the level of a sub-population of

individuals. Discrete choice models such as the multinomial logit and elimination-

by-aspects have played a central role in behavioral economics for several decades

with diverse applications, including forest management (Hanley et al., 1998), social

networks formation (Overgoor et al., 2019), and marketing campaigns (Fader and

McAlister, 1990). More recently, new choice data and algorithms have spurred

machine learning research on models for choice set effects (Ragain and Ugander,

2016; Chierichetti et al., 2018b; Seshadri et al., 2019; Pfannschmidt et al., 2022;

Rosenfeld et al., 2020; Bower and Balzano, 2020).

We provide the relevant background on discrete choice models in Section 5.2.

From this, we formally define and analyze three choice set optimization problems—

Agreement, Disagreement, and Promotion—and analyze them under four

discrete choice models: multinomial logit (McFadden, 1974), the context depen-

dent random utility model (Seshadri et al., 2019), nested logit (McFadden, 1978),

and elimination-by-aspects (Tversky, 1972). We first prove that the choice set op-

timization problems are NP-hard in general for these models. After, we identify

natural restrictions of the problems under which they become tractable. These
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restrictions reveal a fundamental boundary: promoting a particular item within

a group is easier than minimizing or maximizing consensus. More specifically, we

show that restricting the choice models can make Promotion tractable while leav-

ing Agreement and Disagreement NP-hard, indicating that the interaction

between individuals introduces significant complexity to choice set optimization.

After this, we provide efficient approximation algorithms with guarantees for

all three problems under several choice models, and we validate our algorithms on

choice data. Model parameters are learned for different types of individuals based

on features (e.g., where someone lives). From these learned models, we apply

our algorithms to optimize group-level preferences. Our algorithms outperform a

natural baseline on real-world data coming from transportation choices, insurance

policy purchases, and online shopping.

5.1 Related work

Our work fits within recent interest from computer science and machine learning

on discrete choice models in general and choice set effects in particular. For exam-

ple, choice set effects abundant in online data has led to richer data models (Ieong

et al., 2012; Chen and Joachims, 2016b; Ragain and Ugander, 2016; Seshadri et al.,

2019; Makhijani and Ugander, 2019; Rosenfeld et al., 2020; Bower and Balzano,

2020), new methods for testing the presence of choice set effects (Benson et al.,

2016; Seshadri et al., 2019; Seshadri and Ugander, 2019), and new learning algo-

rithms (Kleinberg et al., 2017; Chierichetti et al., 2018b). More broadly, there are

efforts on learning algorithms for multinomial logit mixtures (Oh and Shah, 2014;

Ammar et al., 2014; Kallus and Udell, 2016; Zhao and Xia, 2019), Plackett-Luce
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models (Maystre and Grossglauser, 2015; Zhao et al.), and other random utility

models (Oh et al., 2015; Chierichetti et al., 2018a; Benson et al., 2018b).

One of our optimization problems is maximizing group agreement by introduc-

ing new alternatives. This is motivated in part by how additional context can

sway opinion on controversial topics (Munson et al., 2013; Liao and Fu, 2014;

Graells-Garrido et al., 2014). There are also related algorithms for decreasing po-

larization in social networks (Garimella et al., 2017; Matakos et al., 2017; Chen

et al., 2018; Musco et al., 2018), although we have no explicit network and adopt

a choice-theoretic framework.

Our choice set optimization framework is similar to assortment optimization in

operations research, where the goal is find the optimal set of products to offer in

order to maximize revenue (Talluri and Van Ryzin, 2004). Discrete choice models

are extensively used in this line of research, including the multinomial logit (Rus-

mevichientong et al., 2010, 2014) and nested logit (Gallego and Topaloglu, 2014;

Davis et al., 2014) models. We instead focus our attention primarily on opti-

mizing agreement among individuals, which has not been explored in traditional

revenue-focused assortment optimization.

Finally, our problems relate to group decision-making. In psychology, introduc-

ing new shared information is critical for group decisions (Stasser and Titus, 1985;

Lu et al., 2012). In computer science, the complexity of group Bayesian reasoning

is a concern (Hązła et al., 2021, 2019).

115



5.2 Background and preliminaries

We first remind the reader of the basics of discrete choice. For consistency with

the published version of this chapter, we use slightly different notation for choice

probabilities and utilities than we did in Part II. In the setting we explore, one or

more individuals make a (possibly random) choice of a single item (or alternative)

from a finite set of items called a choice set. We use U to denote the universe of

items and C ⊆ U the choice set. Thus, given C, an individual chooses some item

x ∈ C.

Given C, a discrete choice model provides a probability for choosing each item

x ∈ C. We analyze four broad discrete choice models that are all random utility

models (RUMs), which derive from economic rationality. In a RUM, an individual

observes a random utility for each item x ∈ C and then chooses the one with

the largest utility. We model each individual’s choices through the same RUM

but with possibly different parameters to capture preference heterogeneity. In this

sense, we have a mixture model.

Choice data typically contains many observations from various choice sets. We

occasionally have data specific enough to model the choices of a particular individ-

ual, but often only one choice is recorded per person, making accurate preference

learning impossible at that scale. Thus, we instead model the heterogeneous pref-

erences of sub-populations or categories of individuals. For convenience, we still

use “individual” or “person” when referring to components of a mixed population,

since we can treat each component as a decision-making agent with its own pref-

erences. In contrast, we use the term “group” to refer to the entire population.

We use A to denote the set of individuals (in the broad sense above), and a ∈ A

indexes model parameters.
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The parameters of the RUMs we analyze can be inferred from data, and our

theoretical results and algorithms assume that we have learned these parameters.

Our analysis focuses on how the probability of selecting an item x from a choice

set C changes as we add new alternative items from C = U \ C to the choice set.

We let n = |A|, k = |C|, and m = |C| for notation. We mostly use n = 2,

which is sufficient for hardness proofs.

Multinomial logit (MNL)

The multinomial logit1 (MNL) model (McFadden, 1974) is the workhorse of discrete

choice theory. In MNL, an individual a’s preferences are encoded by a true utility

ua(x) for every item x ∈ U . The observations are noisy random utilities ũa(x) =

ua(x)+ε, where ε follows a Gumbel distribution. Under this model, the probability

that individual a picks item x from choice set C (i.e., x = argmaxy∈C ũa(y)) is the

softmax over item utilities:

Pr(a← x | C) = eua(x)∑
y∈C e

ua(y)
. (5.1)

We use the term exp-utility for terms like eua(x). The utility of an item is often

parameterized as a function of features of the item in order to generalize to unseen

data. For example, a linear function is an additive utility model (Tversky and

Simonson, 1993) and looks like logistic regression. In our analysis, we work directly

with the utilities.

The MNL satisfies independence of irrelevant alternatives (IIA) (Luce, 1959),

the property that for any two choice sets C,D and two items x, y ∈ C ∩ D:
1For consistency with the published version (Tomlinson and Benson, 2020), this chapter uses

“multinomial logit” to refer to what we have simply called the “logit” in previous chapters.
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Pr(a←x|C)
Pr(a←y|C)

= Pr(a←x|D)
Pr(a←y|D)

. In other words, the choice set has no effect on a’s relative

probability of choosing x or y.2 Although IIA is intuitively pleasing, behavioral

experiments show that it is often violated in practice (Huber et al., 1982; Simonson

and Tversky, 1992). Thus, there are many models that account for IIA violations,

including the other ones we analyze.

Context-dependent random utility model (CDM)

The CDM (Seshadri et al., 2019) is an extension of MNL that can model IIA

violations. The core idea is to approximate choice set effects by the effect of

each item’s presence on the utilities of the other items. For instance, a diner’s

preference for a ribeye steak may decrease relative to a fish option if filet mignon

is also available. Formally, each item z exerts a pull on a’s utility from x, which

we denote pa(z, x). The CDM then resembles the MNL with utilities ua(x | C) =

ua(x) +
∑

z∈C pa(z, x). This leads to choice probabilities that are a softmax over

the context-dependent utilities:

Pr(a← x | C) = eua(x|C)∑
y∈C e

ua(y|C) . (5.2)

Nested logit (NL)

The nested logit (NL) model (McFadden, 1978) instead accounts for choice set

effects by grouping similar items into nests that people choose between successively.

For example, a diner may first choose between a vegetarian, fish, or steak meal

and then select a particular dish. NL can be derived by introducing correlation
2Over a ∈ A, we have a mixed logit which does not have to satisfy IIA (McFadden and Train,

2000). Here, we are interested in the IIA property at the individual level.
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between the random utility noise ε in MNL; here, we instead consider a generalized

tree-based version of the model.3

The (generalized) NL model for an individual a consists of a tree Ta with a leaf

for each item in U , where the internal nodes represent categories of items. Rather

than having a utility only on items, each person a also has utilities ua(v) on all

nodes v ∈ Ta (except the root). Given a choice set C, let Ta(C) be the subtree of

Ta induced by C and all ancestors of C. To choose an item from C, a starts at

the root and repeatedly picks between the children of the current node according

to the MNL model until reaching a leaf.

Elimination-by-aspects (EBA)

While the previous models are based on MNL, the elimination-by-aspects (EBA)

model (Tversky, 1972) has a different structure. In EBA, each item x has a set of

aspects x′ representing properties of the item, and person a has a utility ua(χ) >

0 on each aspect χ. An item is chosen by repeatedly picking an aspect with

probability proportional to its utility and eliminating all items that do not have

that aspect until only one item remains (or, if all remaining items have the same

aspects, the choice is made uniformly at random). For example, a diner may

first eliminate items that are too expensive, then disregard meat options, and

finally look for dishes with pasta before choosing mushroom ravioli. Formally, let

C ′ =
⋃
x∈C x

′ be the set of aspects of items in C and let C0 =
⋂
x∈C x

′ be the

aspects shared by all items in C. Additionally, let Cχ = {x ∈ C | χ ∈ x′}. The

probability that individual a picks item x from choice set C is recursively defined
3Certain parameter regimes in this generalized model do not correspond to RUMs (Train,

2009), but this model is easier to analyze and captures the salient structure.
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as

Pr(a← x | C) =
∑
χ∈x′\C0 ua(χ) Pr(a←x|Cχ)∑

ψ∈C′\C0 ua(ψ)
. (5.3)

If all remaining items have the same aspects (C ′ = C0), the denominator is zero,

and Pr(a← x | C) = 1
|C| in that case.

Encoding MNLs in other models

Although the three models with context effects appear quite different, they all

subsume the MNL model. Thus, if we prove a problem hard under MNL, then it

is hard under all four models.

Lemma 1. The MNL model is a special case of the CDM, NL, and EBA models.

Proof. LetM be an MNL model. For the CDM, use the utilities fromM and set

all pulls to 0. For NL, make all items children of Ta’s root and use the utilities

from M. Lastly, for EBA, assign a unique aspect χx to each item x ∈ U with

utility ua(χx) = eua(x). Following (5.3), Pr(a ← x | C) = ua(χx) Pr(a←x|Cχx )∑
ψ∈C′\C0 ua(ψ)

. Since

Cχx = {x}, Pr(a ← x | Cχx) = 1 and thus Pr(a ← x | C) ∝ ua(χx) = eua(x),

matching the MNLM.

5.3 Choice set optimization problems

By introducing new alternatives to the choice set C, we can modify the rela-

tionships amongst individual preferences, resulting in different dynamics at the

collective level. Similar ideas are well-studied in voting models, e.g., introducing

alternatives to change winners selected by Borda count (Easley and Kleinberg,
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2010). Here, we study how to optimize choice sets for various group-level objec-

tives, measured in terms of individual choice probabilities coming from discrete

choice models.

Agreement and Disagreement

Since we are modeling the preferences of a collection of decision-makers, one im-

portant metric is the amount of disagreement (conversely, agreement) about which

item to select. Given a set of alternatives Z ⊆ C we might introduce, we quantify

the disagreement this would induce as the sum of all pairwise differences between

individual choice probabilities over C:

D(Z) =
∑

{a,b}⊆A,x∈C

|Pr(a← x | C ∪ Z)− Pr(b← x | C ∪ Z)|. (5.4)

Here, we care about the disagreement on the original choice set C that results from

preferences over the new choice set C ∪ Z. In this setup, C could represent core

options (e.g., two major health care policies under deliberation) and Z additional

alternatives designed to sway opinions.

Concretely, we study the following problem: given A,C,C, and a choice model,

minimize (or maximize) D(Z) over Z ⊆ C. We call the minimization problem

Agreement and the maximization problem Disagreement. Agreement has

applications in encouraging consensus, while Disagreement yields insight into

how susceptible a group may be to an adversary who wishes to increase conflict.

Another potential application for Disagreement is to enrich the diversity of

preferences present in a group.
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Promotion

Promoting an item is another natural objective, which is of considerable interest

in online advertising and content recommendation. Given A,C,C, a choice model,

and a target item x∗ ∈ C, the Promotion problem is to find the set of alternatives

Z ⊆ C whose introduction maximizes the number of individuals whose “favorite”

item in C is x∗. Formally, this means maximizing the number of individuals a ∈ A

for whom Pr(a ← x∗ | C ∪ Z) > Pr(a ← x | C ∪ Z), x ∈ C, x ̸= x∗. This also

has applications in voting, where questions about the influence of new candidates

constantly arise.

One of our contributions in this chapter is showing that promotion can be easier

(in a computational complexity sense) than agreement or disagreement optimiza-

tion.

5.4 Hardness results

We now characterize the computational complexity of Agreement, Disagree-

ment, and Promotion under the four discrete choice models. We first show

that Agreement and Disagreement are NP-hard under all four models and

that Promotion is NP-hard under the three models with context effects. Af-

ter, we prove that imposing additional restrictions on these discrete choice models

can make Promotion tractable while leaving Agreement and Disagreement

NP-hard. The parameters of some choice models have extra degrees of freedom,

e.g., MNL has additive-shift-invariant utilities. For inference, we use a standard

form (e.g., sum of utilities equals zero). For ease of analysis, we do not use such

122



standard forms, but the choice probabilities remain unambiguous.

5.4.1 Agreement

Although the MNL model does not have any context effects, introducing alter-

natives to the choice set can still affect the relative preferences of two different

individuals. In particular, introducing alternatives can impact disagreement in a

sufficiently complex way to make identifying the optimal set of alternatives compu-

tationally hard. Our proof of Theorem 8 uses a very simple MNL in the reduction,

with only two individuals and two items in C, where the two individuals have

exactly the same utilities on alternatives. In other words, even when individuals

agree about new alternatives, encouraging them to agree over the choice set is

hard.

Theorem 8. In the MNL model, Agreement is NP-hard, even with just two

items in C and two individuals that have identical utilities on items in C.

Proof. By reduction from Partition, an NP-complete problem (Karp, 1972). Let

S be the set of integers we wish to partition into two subsets with equal sum.

We construct an instance of Disagreement with A = {a, b}, C = {x, y}, C =

S (abusing notation to identify alternatives with the Partition integers). Let

t = 1
2

∑
z∈S z. Define the utilities as: ua(x) = log t, ub(x) = log 3t, ua(y) = log t,

ub(y) = log 2t, and ua(z) = ub(z) = log z for all z ∈ C. The disagreement

induced by a set of alternatives Z ⊆ C is characterized by its sum of exp-utility

sZ =
∑

z∈Z z:

D(Z) =
∣∣ t
2t+sZ

− 3t
5t+sZ

∣∣+ ∣∣ t
2t+sZ

− 2t
5t+sZ

∣∣.
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The total exp-utility of all items in C is 2t. On the interval [0, 2t], D(Z) is mini-

mized at sZ = t (Appendix D.1.1; Figure D.1, left). Thus, if we could efficiently

find the set Z minimizing D(Z), then we could efficiently solve Partition.

From Lemma 1, the other models we consider can all encode any MNL instance,

which leads to the following corollary.

Corollary 1. Agreement is NP-hard in the CDM, NL, and EBA models.

5.4.2 Disagreement

Using a similar strategy, we can construct an MNL instance whose disagreement is

maximized rather than minimized at a particular target value (Theorem 9). The

reduction requires an even simpler MNL setup.

Theorem 9. In the MNL model, Disagreement is NP-hard, even with just one

item in C and two individuals that have identical utilities on items in C.

Proof. By reduction from Subset Sum (Karp, 1972). Let S be a set of positive

integers with target t. Let A = {a, b}, C = {x}, C = S, with utilities: ua(x) =

log 2t, ub(x) = log t/2, and ua(z) = ub(z) = log z for all z ∈ C. Letting sZ =∑
z∈Z z, including Z ⊆ C makes the disagreement

D(Z) =
∣∣ 2t
2t+sZ

− t/2
t/2+sZ

∣∣.
For sZ ≥ 0, D(Z) is maximized at sZ = t (Appendix D.1.1; Figure D.1, right).

Thus, if we could efficiently maximizeD(Z), then we could efficiently solve Subset

Sum.
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By Lemma 1, we again have the following corollary.

Corollary 2. Disagreement is NP-hard in the CDM, NL, and EBA models.

5.4.3 Promotion

In choice models with no context effects, Promotion has a constant-time solution:

under IIA, the presence of alternatives has no effect on an individual’s relative

preference for items in C. However, Promotion is more interesting with context

effects, and we show that it is NP-hard for CDM, NL, and EBA. In Section 5.4.4,

we will show that restrictions of these models make Promotion tractable but

keep Agreement and Disagreement hard.

Theorem 10. In the CDM model, Promotion is NP-hard, even with just one

individual and three items in C.

Proof. By reduction from Subset Sum. Let set S with target t be an instance

of Subset Sum. Let A = {a}, C = {x∗, w, y}, C = S. Using tuples interpreted

entry-wise for brevity, suppose that we have the following utilities: ua(⟨x∗, w, y⟩ |

C) = ⟨1, t,−t⟩, ua(z) = −∞ for all z ∈ C, and pa(z, ⟨x∗, w, y⟩) = ⟨z, 0, 2z⟩ for

all z ∈ C. We wish to promote x∗. Let sZ =
∑

z∈Z z. When we include the

alternatives in Z, x∗ is the item in C most likely to be chosen if and only if

1+ sZ > t and 1+ sZ > −t+2sZ . Since sZ and t are integers, this is only possible

if sZ = t. Thus, if we could efficiently promote x∗, then we could efficiently solve

Subset Sum.

We use the same Goldilocks strategy in our proofs for the NL and EBA models

(details in Appendix D.1): by carefully defining utilities, we create choice instances
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where the optimal promotion solution is to pick just the right quantity of alterna-

tives to increase preference for one item without overshooting. However, the NL

model has a novel challenge compared to the CDM. With CDM, alternatives can

increase the choice probability of an item in C, but in the NL, new alternatives

only lower choice probabilities.

Theorem 11. In the NL model, Promotion is NP-hard, even with just two

individuals and two items in C.

This construction relies on the two individuals having different tree structures.

We will see in Section 5.4.4 that this is a necessary condition for the hardness of

Promotion. Finally, we have the following hardness result for EBA.

Theorem 12. In the EBA model, Promotion is NP-hard, even with just two

individuals and two items in C.

5.4.4 Restricted models that make promotion easier

We now show that, in some sense, Promotion is a fundamentally easier problem

than Agreement or Disagreement. Specifically, there are simple restrictions

on CDM, NL, and EBA that make Promotion tractable but leave Agreement

and Disagreement NP-hard. Importantly, these restrictions still allow for choice

set effects. In Appendix D.2, we also prove a strong restriction on the MNL model

where Agreement and Disagreement are tractable, but we could not find

meaningful restrictions for similar results on the other models.
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2-item CDM with equal context effects

The proof of Theorem 10 shows that Promotion is hard with only a single in-

dividual and three items in C. However, if C only has two items and context

effects are the same (i.e., pa(z, ·) is the same for all z ∈ C), then Promotion is

tractable. The optimal solution is to include all alternatives that increase utility

for x∗ more than the other item, as doing so makes strict progress on promot-

ing x∗. If individuals have different context effects or if there are more than two

items, then there can be conflicts between which items should be included (see

Appendix D.1.2 for a proof that 2-item CDM with unequal context effects makes

Promotion NP-hard). Although this restriction makes Promotion tractable,

it leaves Agreement and Disagreement NP-hard: the proofs of Theorems 8

and 9 can be interpreted as 2-item and 1-item CDMs with equal (zero) context

effects.

Same-tree NL

If we require that all individuals share the same NL tree structure, but still allow

different utilities, then promotion becomes tractable. For each z ∈ C, we can

determine whether it reduces the relative choice probability of x∗ based on its

position in the tree: adding z decreases the relative choice probability of x∗ if and

only if z is a sibling of any ancestor of x∗ (including x∗) or if it causes such a

sibling to be added to Ta(C). Thus, the solution to Promotion is to include all

z not in those positions, which is a polynomial-time check. This restriction leaves

Agreement and Disagreement NP-hard via Theorems 8 and 9 as we can still

encode any MNL model in a same-tree NL using the tree in which all items are

children of the root.
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Algorithm 1 ε-additive approximation for Agreement in the MNL model.

1 Input: n individuals A, k items C, m alternatives C, utilities ua(·) > 0 for
each a ∈ A. For brevity:

2 eax ← eua(x), sa ←
∑

z∈C eaz, δ ← ε/(2km
(
n
2

)
)

3 L0 ← empty n-dimensional array whose ath dimension has size 1+ ⌊log1+δ sa⌋
(each cell can store a set Z ⊆ C and its n exp-utility sums for each individual)

4 Initialize L0[0, . . . , 0]← (∅, 0, . . . , 0) (n zeros)
5 for i = 1 to m do
6 z ← C[i− 1], Li ← Li−1
7 for each cell of Li−1 containing (Z, t1, . . . , tn) do
8 h← n-tuple w/ entries ⌊log1+δ(tj + eajz)⌋, ∀j
9 if Li[h] is empty then

10 Li[h]← (Z ∪ {z}, t1 + ea1z, . . . , tn + eanz)
11 Zm ← collection of all sets Z in cells of Lm
12 return argminZ∈Zm D(Z) (see Equation (5.4))

Disjoint-aspect EBA

The following condition on aspects makes promoting x∗ tractable: for all z ∈ C,

either z′ ∩ x∗′ = ∅ or z′ ∩ y′ = ∅ for all y ∈ C, y ̸= x∗. That is, alternatives either

share no aspects with x∗ or share no aspects with other items in C. This prevents

alternatives from cannibalizing from both x∗ and its competitors. To promote x∗,

we include all alternatives that share aspects with competitors of x∗ but not x∗

itself, which strictly promotes x∗. This condition is slightly weaker than requiring

all items to have disjoint aspects, which reduces to MNL. However, this condition

is again not sufficient to make Agreement and Disagreement tractable, since

any MNL model can be encoded in a disjoint-aspect EBA instance.

5.5 Approximation algorithms

Thus far, we have seen that several interesting group decision-making problems
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are NP-hard across standard discrete choice models. Here, we provide a positive

result: we can compute arbitrarily good approximate solutions to many instances of

these problems in polynomial time. We focus our analysis on Algorithm 1, which is

an ε-additive approximation algorithm to Agreement under MNL, with runtime

polynomial in k, m, and 1
ε
, but exponential in n (recall that k = |C|, m = |C|, and

n = |A|). In contrast, brute force (testing every set of alternatives) is exponential

in m and polynomial in k and n. Agreement is NP-hard even with n = 2

(Theorem 8), so our algorithm provides a substantial efficiency improvement. We

discuss how to extend this algorithm to other objectives and other choice models

later in the section. Finally, we present a faster but less flexible mixed-integer

programming approach for MNL Agreement and Disagreement that performs

very well in practice.

Algorithm 1 is based on an FPTAS for Subset Sum (Cormen et al., 2001,

Sec. 35.5), and the first parts of our analysis follow some of the same steps. The core

idea of our algorithm is that a set of items can be characterized by its exp-utility

sums for each individual and that there are only polynomially many combinations

of exp-utility sums that differ by more than a multiplicative factor 1 + δ. We can

therefore compute all sets of alternatives with meaningfully different impacts and

pick the best one. For the purpose of the algorithm, we assume all utilities are

positive (otherwise we may access a negative index); utilities can always be shifted

by a constant to satisfy this requirement.

We now provide an intuitive description of Algorithm 1. The array Li has

one dimension for each individual in A (we use a hash table in practice since Li

is typically sparse). The cells along a particular dimension discretize the exp-

utility sums that the individual corresponding to that dimension could have for a
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∅ {⋆}
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}{■}

Alice

Bob

Carla

Figure 5.1: Example of the structure Li used in Algorithm 1 for n = 3 individuals
and C = {⋆,■}. Here, Alice has high utility for ⋆ and low utility for ■, Bob has
medium utility for ⋆ and low utility for ■, and Carla has low utility for ⋆ and
high utility for ■. The exp-utility sums stored in cells are omitted.

particular set of alternatives (Figure 5.1). In particular, if individual j has total

exp-utility tj =
∑

y∈Z e
uj(y) for a set Z, then we store Z at index ⌊log1+δ tj⌋ along

dimension j.

As the algorithm progresses, we place possible sets of alternatives Z in the cells

of Li according to their exp-utility sums t1, . . . , tn for each individual (we store

t1, . . . , tn in the cell along with Z). We add one element at a time from C to

the sets already in Li (L0 starts with only the empty set). If two sets have very

similar exp-utility sums, they may map to the same cell, in which case only one

of them is stored. If the discretization of the array is coarse enough (that is, with

large enough δ), many sets of alternatives will map to the same cells, reducing the

number of sets we consider and saving computational work. On the other hand,

if the discretization is fine enough (δ is sufficiently small), then the best set we

are left with at the end of the algorithm cannot induce a disagreement value too

different from the optimal set. The proof of Theorem 13 formalizes this reasoning.

Theorem 13. Algorithm 1 is an ε-additive approximation for Agreement in the

MNL model.

Proof. We will use the following lemma, which says that sets mapping to the same

cell have similar exp-utility sums.
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Lemma 2. Let Ci be the first i elements processed by the outer for loop. At the

end of the algorithm, for all Z ⊆ Ci with exp-utility sums ta, there exists some

Z ′ ∈ Li with exp-utility sums t′a such that ta
(1+δ)i

< t′a < ta(1 + δ)i, for all a ∈ A

(with δ as defined in Algorithm 1, Line 2).

The proof is in Appendix D.3. Now let β = ε/(k
(
n
2

)
). Following our choice of

δ and using Lemma 2, at the end of the algorithm, the optimal set Z∗ ⊆ C (with

exp-utility sums t∗a) has some representative Z ′ in Lm such that

t∗a
(1+β/(2m))m

< t′a < t∗a (1 + β/(2m))m , ∀a ∈ A.

Since ex ≥ (1+x/m)m, we have t∗a/e
β
2 < t′a < t∗ae

β
2 , and since ex ≤ 1+x+x2 when

x < 1,
t∗a

1+β/2+β2/4
< t′a < t∗a(1 + β/2 + β2/4).

Finally, t∗a
1+β

< t′a < t∗a(1 + β) because 0 < β < 1.

Now we show that D(Z∗) and D(Z ′) differ by at most ε. To do so, we first

bound the difference between Pr(a ← x | C ∪ Z∗) and Pr(a ← x | C ∪ Z ′) by β.

Let ca =
∑

x∈C eax be the total exp-utility of a on C. By the above reasoning,

eax
ca + t∗a(1 + β)

<
eax

ca + t′a
<

eax

ca +
t∗a

1+β

,

where the middle term is equal to Pr(a← x | C ∪Z ′). From the lower bound, the

difference between Pr(a← x | C ∪Z∗) and Pr(a← x | C ∪Z ′) could be as large as

eax
ca + t∗a

− eax
ca + t∗a(1 + β)

=
eaxt

∗
aβ

(ca + t∗a)(ca + t∗a(1 + β))
<
eaxt

∗
aβ

2cat∗a
≤ β

2
.

From the upper bound, the difference between Pr(a← x | C ∪Z∗) and Pr(a← x |
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C ∪ Z ′) could be as large as

eax

ca +
t∗a

1+β

− eax
ca + t∗a

=
eaxta(1− 1

1+β
)

(ca +
t∗a

1+β
)(ca + t∗a)

=
eaxt

∗
aβ

(ca(1 + β) + t∗a)(ca + t∗a)
<
eaxt

∗
aβ

2cat∗a
≤ β

2
.

Thus, Pr(a← x | C ∪ Z∗) and Pr(a← x | C ∪ Z ′) differ by at most β
2
. Using the

same argument for an individual b, the disagreement between a and b about x can

only increase by β with the set Z compared to the optimal set Z∗. Since there

are
(
n
2

)
pairs of individuals and k items in C, the total error of the algorithm is

bounded by k
(
n
2

)
β = ε.

We now show that the runtime of Algorithm 1 is O((m+kn2)(1+⌊log1+δ s⌋)n),

where s = maxa sa is the maximum exp-utility sum for any individual. Thus,

for any fixed n, this runtime is bounded by a polynomial in k,m, and 1
ε
. To see

this, first note that the size of Li is bounded above by (1 + ⌊log1+δ s⌋)n. For

each z ∈ C, we perform constant-time operations on each entry of Li, for a total of

O(m(1+⌊log1+δ s⌋)n) time. Then we computeD(Z) for each cell of Lm, which takes

O(kn2) time per cell. The total runtime is therefore O((m+kn2)(1+⌊log1+δ s⌋)n),

as claimed. Finally, (1 + ⌊log1+δ s⌋)n is bounded by a polynomial in m, k, and 1
ε

for any fixed n (Appendix D.3.2).

Agreement is NP-hard even when individuals have equal utilities on alterna-

tives. In this case, we only need to compute exp-utility sums for a single individual,

which brings the runtime down to O((m+ kn2) log1+δ s).
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Extensions to other objectives and models

Algorithm 1 can be easily extended to any objective function that is efficiently

computable from utilities. For instance, Algorithm 1 can be adapted for Dis-

agreement by replacing the argmin with an argmax on Line 12.

Algorithm 1 can also be adapted for CDM and NL. The analysis is similar

and details are in Appendix D.3, although the running times and guarantees are

different. With CDM, the exponent in the runtime increases to nk for Agreement

and Disagreement, and the ε-additive approximation is guaranteed only if items

in C exert zero pulls on each other. However, even for the general CDM, our

experiments will show that the adapted algorithm remains a useful heuristic. When

we adapt Algorithm 1 for NL, we retain the full approximation guarantee but the

exponent in the runtime increases and has a dependence on the tree size.

Promotion is not interesting under MNL and also has a discrete rather than

continuous objective, i.e., the number of people with favorite item x∗ in C. For

models with context effects, we can define a meaningful notion of approxima-

tion. We say that an item y ∈ C ∪ Z is an ε-favorite item of individual a if

Pr(a ← y | C ∪ Z) + ε ≥ Pr(a ← x | C ∪ Z) for all x ∈ C. A solution then

ε-approximates Promotion if the number of people for whom x∗ is an ε-favorite

item is at least the value of the optimal Promotion solution. Using this, we

can adapt Algorithm 1 for Promotion under CDM and NL. Again, for CDM,

the approximation has guarantees in certain parameter regimes and the NL has

full approximation guarantees. Since we do not have compute D(Z), the runtimes

loses the kn2 term compared to the Agreement and Disagreement versions

(Appendix D.3.5).
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Table 5.1: Dataset statistics: item, observation, and unique choice set counts; and
percent of observations in sub-population splits.

Dataset # items # obs. # sets split %

SFWork 6 5029 12 16/84
Allstate 24 97009 2697 45/55
Yoochoose 41 90493 1567 47/53

Finally, EBA has considerably different structure than the other models. We

leave algorithms for EBA to future work.

Fast exact methods for MNL

We provide another approach for solving Agreement and Disagreement in

the MNL model, based on transforming the objective functions into mixed-integer

bilinear programs (MIBLPs; details in Appendix D.4). MIBLPs can be solved for

moderate problem sizes with high-performance branch-and-bound solvers (we use

Gurobi’s implementation). In practice, this approach is faster than Algorithm 1

and can optimize over larger sets C. However, this approach does not easily ex-

tend to CDM, NL, or Promotion and does not have a polynomial-time runtime

guarantee.

5.6 Numerical experiments

We apply our methods to three datasets (Table 5.1). The SFWork dataset (Kop-

pelman and Bhat, 2006) comes from a survey of San Francisco residents on avail-

able (choice set) and selected (choice) transportation options to get to work. We

split the respondents into two segments (|A| = 2) according to whether or not
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Table 5.2: Sum of error over all 2-item choice sets C compared to optimal (brute
force) on SFWork. Algorithm 1 is optimal.

Model Problem Greedy Algorithm 1

MNL Agreement 0.03 0.00
Disagreement 0.00 0.00

rank-2 CDM Agreement 0.14 0.00
Disagreement 0.13 0.00

NL Agreement 0.00 0.00
Disagreement 0.00 0.00

they live in the “core residential district of San Fransisco or Berkeley.” The All-

state dataset (Kaggle, 2013b) consists of insurance policies (items) characterized

by anonymous categorical features A–G with 2 to 4 values each. Each customer

views a set of policies (the choice set) before purchasing one. We reduce the

number of items to 24 by considering only features A, B, and C. To model differ-

ent types of individuals, we split the data into homeowners and non-homeowners

(again, |A| = 2). The Yoochoose dataset (Ben-Shimon et al., 2015) contains

online shopping data of clicks and purchases of categorized items in user browsing

sessions. Choice sets are unique categories browsed in a session and the choice is

the category of the purchased product (categories appearing fewer than 20 times

were omitted). We split the choice data into two sub-populations by thresholding

on the purchase timestamps.

For inferring maximum-likelihood models from data, we use PyTorch’s Adam

optimizer (Kingma and Ba, 2015; Paszke et al., 2019) with learning rate 0.05,

weight decay 0.00025, batch size 128, and the amsgrad flag (Reddi et al., 2018).

We use the low-rank (rank-2) CDM (Seshadri et al., 2019) that expresses pulls as

the inner product of item embeddings. Code and data used in this chapter are

available at https://github.com/tomlinsonk/choice-set-opt.
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Figure 5.2: Algorithm 1 vs. Greedy performance box plots when applied to all
2-item choice sets in Allstate and Yoochoose under MNL and CDM (subplots
also show ε and the percent of subsets of C computed by Algorithm 1, written
X% sets). Each point is the difference in D(Z) when Algorithm 1 and Greedy
are run on a particular choice set. Horizontal spread shows approximate density
and the Xs mark means. A negative (resp. positive) y-value for Agreement
(resp. Disagreement) indicates that Algorithm 1 outperformed Greedy. Algo-
rithm 1 performs better in all cases except for Disagreement under CDM on
Yoochoose. Even in this exception, though, our approach finds a few very good
solutions and Algorithm 1 has better mean performance.

For SFWork under the MNL, CDM, and NL models, we considered all 2-item

choice sets C (using all other items for C) for Agreement and Disagreement

(for the NL model, we used the best-performing tree from Koppelman and Bhat

(2006)). We compare Algorithm 1 (ε = 0.01) to a greedy approach (henceforth,

“Greedy”) that builds Z by repeatedly selecting the item from C that, when added

to Z, most improves the objective, if such an item exists. This dataset was small
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Figure 5.3: Promotion results on Allstate 2-item choice sets. (Left) Success
rate comparison; Algorithm 1 has near-optimal performance (about 9% of instances
have no Promotion solution). (Right) Number of subsets of C computed by
Algorithm 1 (dashed gray line at 222 = 2m for brute force computation).

enough to compare against the optimal, brute-force solution (Table 5.2). In all

cases, Algorithm 1 finds the optimal solution, while Greedy is often suboptimal.

However, for this value of ε, we find that Algorithm 1 searches the entire space and

actually computes the brute force solution (we get the number of sets analyzed by

Algorithm 1 from |Lm| for a given ε and compare it to 2|C|). Even though we have

an asymptotic polynomial runtime guarantee, for small enough datasets, we might

not see computational savings. Running with larger ε yielded similar results, even

for ε > 2, when our bounds are vacuous.

The results still highlight two important points. First, even on small datasets,

Greedy can be sub-optimal. For example, for Agreement under CDM with

C = {drive alone, transit}, Algorithm 1 found the optimal Z = {bike, walk},

inferring that both sub-populations agree on both driving less and taking transit

less. However, Greedy just introduced a carpool option, which has a lower effect on

discouraging driving alone or taking transit, resulting in lower agreement between

city and suburban residents.

Second, our theoretical bounds can be more pessimistic than what happens
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in practice. Thus, we can consider larger values of ε to reduce the search space;

Algorithm 1 remains a principled heuristic, and we can measure how much of the

search space Algorithm 1 considers. This is the approach we take for the All-

state and Yoochoose data, where we find that Algorithm 1 far outperforms its

theoretical worst-case bound. We again considered all 2-item choice sets C and

tested our method under MNL and CDM,4 setting ε so that the experiment took

about 30 minutes to run for Allstate and 2 hours for Yoochoose (of that time,

Greedy takes 5 seconds to run; the rest is taken up by Algorithm 1). Algorithm 1

consistently outperforms Greedy (Figure 5.2), even with ε > 2 for CDM. More-

over, Algorithm 1 only computes a small fraction of possible sets of alternatives,

especially for Yoochoose. Algorithm 1 does not perform as well with the rank-2

CDM as it does with MNL, which is to be expected as we only have approximation

guarantees for CDM under particular parameter regimes (in which these data do

not lie). The worse performance on CDM is due to the context effects that items

from C exert on each other. Greedy does fairly well for Disagreement under

CDM with Yoochoose, but even in this case, Algorithm 1 performs significantly

better in enough instances for the mean (but not median) performance to be bet-

ter than Greedy. We repeated the experiment with 500 choice sets of size up to 5

sampled from data with similar results (Appendix D.5.3). We also ran the MIBLP

approach for MNL, which performed as well as Algorithm 1 and was about 12x

faster on Yoochoose and 240x faster on Allstate (Appendix D.5.2).
4In this case, we did not have available tree structures for NL, which are difficult to derive

from data (Benson et al., 2016).
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Promotion

We applied the CDM Promotion version of Algorithm 1 to Allstate, since

this dataset is small enough to compute brute-force solutions. For each 2-item

choice set C, we attempted to promote the less-popular item of the pair using

brute-force, Greedy, and Algorithm 1. Algorithm 1 performed optimally up to

ε = 32, above which it failed in only 2–26 of 252 feasible instances (Figure 5.3,

left). (Here, successful promotion means that the item becomes the true favorite

among C.) On the other hand, Greedy failed in 37% of the feasible instances. As

in the previous experiment, our algorithm’s performance in practice far exceeds the

worst-case bounds. The number of sets tested by Algorithm 1 falls dramatically as

ε increases (Figure 5.3, right). With more items (or a smaller range of utilities), the

value of ε required to achieve the same speedup over brute force would be smaller

(as with Yoochoose). In tandem, these results show that we get near-optimal

Promotion performance with far fewer computations than brute force.

5.7 Discussion

Our decisions are influenced by the alternatives that are available, the choice set.

In collective decision-making, altering the choice set can encourage agreement or

create new conflict. We formulated this as an algorithmic question: how can we

optimize the choice set for some objective?

We showed that choice set optimization is NP-hard for natural objectives un-

der standard choice models; however, we also found that model restrictions makes

promoting a choice easier than encouraging a group to agree or disagree. We de-
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veloped approximation algorithms for these hard problems that are effective in

practice, although there remains a gap between theoretical approximation bounds

and performance on real-world data. Future work could address choice set opti-

mization in interactive group decisions, where group members can communicate

their preferences to each other or must collaborate to reach a unified decision.
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CHAPTER 6

BALLOT LENGTH IN INSTANT RUNOFF VOTING

We now turn our focus from models of choice to mechanisms for aggregative

preferences—i.e., voting systems. Instant runoff voting (IRV) has grown in popu-

larity over the last two decades as an alternative to plurality voting for governmen-

tal and organizational elections. Also referred to as ranked choice voting (RCV),

single transferrable vote (STV), alternative vote, preferential voting, or the Hare

method, IRV allows voters to submit rankings over the candidates rather than vot-

ing for a single option. IRV determines a winner from these rankings by repeatedly

eliminating the candidate who has the fewest ballots ranking them first; the ballots

that listed this eliminated candidate first have their votes reallocated to the next

candidate on their list. This process continues, repeatedly eliminating candidates,

until only one is left—the winner.

Proponents of IRV argue that it allows voters to report their full preferences,

mitigates vote-splitting when similar candidates run, encourages civility in cam-

paigning, and saves money compared to holding separate runoff elections (FairVote,

2022; Lewyn, 2012). Many local elections in the United States use IRV, including

in Minneapolis, San Fransisco, Oakland, Santa Fe, and New York City, as well

as statewide elections in Maine and Alaska. IRV is also used in other countries,

including Australia and Ireland.

However, IRV has vocal opponents who believe it to be too confusing for vot-

ers (Langan, 2004; Saltsman and Paxton, 2021), leading to outright bans on the

use of IRV in Florida (Florida Legislature, 2022) and Tennessee (Tennessee Leg-

islature, 2022). One particular issue critics point to is the complexity of a ballot

that asks voters to rank every candidate, especially when the number of candidates
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is large. One official tasked with running Utah’s first IRV election raised this as

her primary concern after the election:

My concerns with the current RCV law are that we would recommend

the number of rankings be limited to three or five instead of an unlim-

ited number based on the number of candidates. So although you can

list as many candidates as file on the ballot, I think it is a bit confusing

to voters [...] For instance, in Minneapolis they rank three. In St. Paul,

they rank five. They don’t usually have them rank as many candidates

as there are. (Swensen, 2021, Salt Lake County Clerk)

Indeed, many municipalities have different numbers of ranking slots on their IRV

ballots, what we call ballot length: Oakland uses three, Alaska four, and New York

City five. The count goes on: ballot length six would have been mandated by

the failed 2019 Ranked Choice Voting Act proposing IRV for US Congressional

elections (US Congress, 2019). In Maine, voters can rank all of the candidates—

even if there are 15 of them. In fact, plurality voting can be viewed as IRV

with ballot length one: losing candidates are repeatedly “eliminated” (without

redistribution) until the candidate with a plurality is declared the winner.

While making ballots shorter does make them simpler, it also strays from a goal

of IRV: allowing voters to express their complete preferences over the candidates.

Critics of IRV also raise concerns about ballot exhaustion during the IRV algorithm,

where all candidates ranked by a voter have been eliminated and that vote no

longer contributes to subsequent tallies (Burnett and Kogan, 2015).1 Ballot length

is therefore subject to competing desires: shorter ballots are easier to fill out and

simpler to print, but less informative about voter preferences.
1In plurality, any vote not cast for the winner is “exhausted.”
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Despite the apparent trade-offs involved in ballot length, there has been very

little investigation of how these trade-offs might work. As noted above, plurality

voting can be seen as IRV with ballot length one, and so the fact that plurality and

IRV can produce different outcomes already indicates that ballot length can have

important consequences. But aside from early work looking at simulations and a

few real-world elections (Kilgour et al., 2020; Ayadi et al., 2019) we do not have

much insight into the consequences of ballot length more generally. Perhaps, for

example, there are underlying structural properties to be discovered that constrain

how many winners are possible as we vary the ballot length. Or perhaps “anything

goes,” and if we specify which candidate we’d like to see win at each possible ballot

length, we can construct a fixed set of rankings that produce each desired winner

at the corresponding length.

Overview of Results. In this chapter, we show that the effect of ballot length

essentially behaves like the latter extreme, where almost every sequence of out-

comes is possible. In particular, we prove that modulo a simple feasibility con-

straint, it is possible to pick any sequence of candidates (with repetitions allowed),

and to have this be the sequence of winners at ballot lengths 1, 2, 3, .... For ex-

ample, there are voter preferences such that one candidate wins if the election is

run with odd ballot length and another wins with even ballot length. We make

a central assumption that voters have fixed ideal rankings and report as long a

prefix of their ideal ranking as the ballot allows. Given k candidates, we show that

up to k− 1 of them can win as the ballot length varies from 1, . . . , k− 1 and voter

preferences remain fixed. Moreover, we establish exact matching lower bounds on

the number of voters required to produce k − 1 distinct winners.

We also consider how these results are affected if we make standard modeling
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assumptions about voters. If we model voters abstractly as exhibiting single-

peaked or single-crossing preferences, we prove that k − 1 distinct winners across

ballot lengths cannot be achieved. We also consider voters who rank candidates

according to a shared one-dimensional ideological spectrum; since such voters are

both single-peaked and single-crossing, there cannot be k − 1 distinct winners in

these cases. We find through simulation that in this one-dimensional case, ballot

lengths above k/2 almost always produce the same winner as full IRV ballots.

Finally, we use data from 168 real-world elections from PrefLib (Mattei and

Walsh, 2013) (most of them originally conducted using IRV), and we find that

different winners across ballot lengths is a phenomenon that occurs commonly:

in 25% of the PrefLib elections at least two different candidates win as the ballot

length is varied by truncation. However, truly pathological cases with k−1 winners

appear to be extremely rare: we observe at most three distinct winners across

ballot lengths, and that occurs only once in the 168 PrefLib elections. But even

with these real-world voter preferences, more than three winners can occur; by

resampling ballots in the PrefLib elections, we observe cases with four, five, and

even six different winners across ballot lengths. We note that one third of the

elections initially used ballot length of at most four, where it is impossible to have

more than three different winners across ballot lengths. Code and data for this

chapter are available at https://github.com/tomlinsonk/irv-ballot-length.

6.1 Related work

There has been considerable work on what happens when individual voters choose

not to rank all the candidates—a practice sometimes called voluntary truncation—

144

https://github.com/tomlinsonk/irv-ballot-length


in contrast with forced truncation (i.e., ballot length restrictions) (Kilgour et al.,

2020). In many voting systems including IRV, election outcomes can change dra-

matically as voters independently choose to rank more or fewer candidates (Saari

and Van Newenhizen, 1988). This matter has been studied from a computational

angle as the possible winners problem, which asks, given a collection of partial bal-

lots, which candidates could become winners as those ballots are filled out (Kon-

czak and Lang, 2005; Chevaleyre et al., 2010; Baumeister et al., 2012; Xia and

Conitzer, 2011; Ayadi et al., 2019). There is also a wide array of research on how

partial ballots can be used for strategic voting and campaigning (Baumeister et al.,

2012; Narodytska and Walsh, 2014; Menon and Larson, 2017; Kamwa, 2022; Fish-

burn and Brams, 1984). On the empirical side, voluntary truncation is a concern

since it can lead to ballot exhaustion (Burnett and Kogan, 2015). In political

science, voluntary truncation is also referred to as under-voting (Neely and Cook,

2008). Several studies have asked whether different demographic groups are more

likely to under-vote and how this could have a disenfranchising effect (Neely and

Cook, 2008; Coll, 2021; Hoffman et al., 2021). There has also been research on

“over-voting” in IRV, which refers to ranking a single candidate in more than one

position (e.g., first and second), especially its correlation with underrepresented

voting populations (Neely and Cook, 2008; Neely and McDaniel, 2015).

In contrast, we investigate what happens when all voter preferences are trun-

cated as a result of ballot length. That is, we focus on a question of election design

rather than on voter choice. In this direction, Ayadi et al. (2019) investigated how

often IRV with short ballots produces the full-ballot winner in the Mallows model

and in five PrefLib elections. However, all five PrefLib elections they studied pro-

duced the full-ballot winner at all ballot lengths—in analyzing a larger collection

of 168 PrefLib elections, we find multiple winners across ballot lengths in 25% of
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Figure 6.1: On the left, an example profile with k = 4 candidates A, B, C, D and
n = 24 voters of 6 types with partial ballots. Ballots are listed top-down, with
the number of voters of each type above each ballot. On the right, the profile is
truncated to ballot length h = 2.

them. Ayadi et al. also examined several other interesting facets of IRV ballot

length, including a low-communication IRV protocol (a form of online, per-voter

ballot length customization) and the complexity of the possible winners problem

under truncated ballots. The issue of ballot length in IRV was also touched on

by Kilgour et al. (2020), who examined its effect in simulation for k = 4, 5, and 6

candidates, where they found up to k−2 distinct winners across ballot lengths. We

prove that in fact k − 1 winners are possible for all k ≥ 3. Ballot length has been

considered in contexts other than IRV—for instance, research on the Boston school

choice mechanism found that limiting the number of schools parents could rank to

five resulted in undesirable strategic behavior (Abdulkadiroglu et al., 2006). There

has also been research on ballot length in approval voting from a learning theory

angle, seeking to recover a population’s preferences efficiently (Garg et al., 2019).

6.2 Preliminaries

An IRV election consists of k candidates labeled 1, . . . , k and n voters. Each voter

j has a preference ordering over a subset of the candidates denoted by the ordered

subset πj, which we refer to as a ballot. At any point down the ballot, πj can

terminate, at which point the voter is indifferent over the remaining options. If
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πj includes all candidates, we call it full, otherwise we call it partial. We call a

collection of ballots a profile. Unless otherwise specified, a profile may contain

partial ballots.2 If multiple voters have identical ballots, we say they are of the

same type. Given a profile, IRV proceeds by eliminating the candidate with the

fewest ballots ranking them first and removing them from all ballots. Ballots that

have all their candidates eliminated are exhausted. Eliminations continue until only

one candidate remains, who is declared the winner (equivalently, one can terminate

when one candidate has the majority of votes from non-exhausted ballots). Ties

can be broken as desired (for instance, by coin-flip), although they are unlikely in

large elections.

In many real-world elections, the number of candidates a voter can rank is

limited to h < k, which we call the ballot length. We assume that if the ballot

length is h, voters submit the length h prefix πj(1, . . . , h) of their ideal ballot

πj. Voters who would have submitted a ranking listing h or fewer candidates are

unaffected. Thus, we say that ballots are truncated to the ballot length h. See

Figure 6.1 for an example of a profile with partial ballots truncated to h = 2. Note

that there is no difference between running IRV with ballot length k and k − 1,

since only one candidate remains after the (k − 1)th elimination.

The main question we focus on is how ballot length affects an election. For

instance, how many different candidates can win as the ballot length varies for

a fixed profile? In order to address this question, we make some assumptions

about the lack of consequential ties, since in trivial cases such as zero voters, any

candidate can win depending on tie-breaks. We say that a profile is consequential-

tie-free if tie-breaks do not affect the winner under any ballot length h. We say it

is elimination-tie-free if a tie for last place never occurs when running IRV for any
2All 168 elections in the PrefLib data have partial ballots.
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ballot length h. Finally, we say it is tie-free if no two candidates ever have tied

vote counts when running IRV at any ballot length h. We note that the problem

of determining if a given candidate could win under some tie-breaking sequence is

known to be NP-complete (Conitzer et al., 2009).

6.3 Worst-case analysis of ballot truncation

We say a profile has c truncation winners if c different candidates can win depend-

ing on the ballot length. Previous simulation work found up to k − 2 truncation

winners for k = 4, 5, and 6 (Kilgour et al., 2020). One of our main results is that

up to k−1 truncation winners are possible for any k. We note that it is impossible

to have all k candidates win under different ballot lengths, since lengths k and

k − 1 behave the same way. All proofs omitted for readability can be found in

Appendix E.3.

First, we establish an exact lower bound on the number of voters required in or-

der to achieve k−1 truncation winners in consequential-tie-free profiles. Our voter

lower bound is based on the observation that the winner at h = 1 (the plurality

winner) must be eliminated second under ballot lengths ≥ 2 for k − 1 truncation

winners to occur. In order for the plurality winner to be eliminated second, the first

elimination must redistribute enough votes for every other candidate to overtake

the plurality winner.

Theorem 14. For any k > 3, a consequential-tie-free profile requires at least

2k2− 2k voters in order to produce k− 1 truncation winners. For k = 3, the lower

bound is k2 = 9.
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Our main theoretical result is a construction matching this lower bound, show-

ing that k − 1 truncation winners can occur for any k ≥ 3. Our construction can

not only produce k−1 truncation winners, but any sequence of winners over ballot

lengths 1, . . . , k − 1, provided that a candidate has not yet been eliminated.

Theorem 15. Let there be k > 3 candidates, labelled 1, . . . , k in their full-ballot

IRV elimination order. Fix any sequence of candidates w1, . . . , wk−1 such that

wh ∈ {h + 1, . . . , k} for all h ∈ [k − 1]. There exists a consequential-tie-free

profile with 2k2− 2k partial ballots whose sequence of truncated IRV winners from

h = 1, . . . , k − 1 is w1, . . . , wk−1. For k = 3, such a profile exists with 9 ballots.

Any sequence where wh ≤ h for some h ∈ [k − 1] is impossible to realize as the

sequence of truncated IRV winners for any consequential-tie-free profile.

The idea behind the construction is to maintain a tie for second place among

all candidates but two: the candidate about to be eliminated, in last, and the

candidate next in the winner sequence, in first. Each elimination redistributes

ballots to move the next candidates into first and last place. By carefully designing

ballots, they become exhausted at just the right moment to freeze the order once

we reach step h of IRV, causing the candidate currently in first to win. The

example in Figure 6.1 uses this construction for k = 4 to achieve different winners

at ballot lengths 1, 2, 3 (namely, A, B, C). Note that the full-ballot elimination

order labeling of candidates A, B, C, D is 2, 3, 4, 1, which makes the truncation

winner sequence 2, 3, 4 feasible. In contrast, the sequence 2, 2, 4 would not be

feasible since the candidate eliminated second under full ballots cannot win at

ballot length 2. Intuitively, a winner sequence with elimination order labeling is

feasible if it is element-wise at least 2, 3, . . . , k.
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6.3.1 Restrictions on profiles

Since IRV can behave very erratically across ballot lengths for general profiles, we

might hope that imposing restrictions on the space of profiles makes IRV more

well-behaved. We consider three classic profile restrictions from voting theory,

single-peaked (Black, 1948; Arrow, 1951), single-crossing (Gans and Smart, 1996),

and 1-Euclidean preferences (see Elkind et al. (2022) for a survey of preference

restrictions). A profile is single-peaked if there exists an order< over the candidates

such that, for every ballot b ranking i first, if j < k < i or i < k < j, then j is not

ranked above k in b. A profile is single-crossing if there exists an ordering L of

the ballots such that for every ordered pair of candidates (i, j), the set of ballots

ranking i above j forms an interval of L. Finally, a profile is 1-Euclidean if there

exist embeddings of the voters and candidates in [0, 1] such that if voter b is closer

to candidate i than to candidate j, then voter b ranks i above j.

Intuitively, single-peaked profiles arise when there is a political axis arranging

candidates from left to right and voters prefer candidates closer to their ideal point

on the axis (each voter can have their own ideal point). Single-crossing preferences

arise when voters are arranged on an ideological axis and each candidate is most

appealing to voters at a certain point on this axis. While the definitions appear

similar, neither condition implies the other. 1-Euclidean profiles are both single-

peaked and single-crossing—but there are profiles that are both single-peaked and

single-crossing, but not 1-Euclidean (Elkind et al., 2020).

In contrast to general profiles, where k − 1 truncation winners can occur, we

show that such cases are impossible under either single-peaked or single-crossing

preferences (and therefore 1-Euclidean profiles).

Theorem 16. With k ≥ 5 candidates, no consequential-tie-free single-peaked pro-
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file has k − 1 truncation winners.

Proof. Suppose for a contradiction that a single-peaked profile has k−1 truncation

winners (k ≥ 5). We know the candidate eliminated first cannot win under any

ballot length. In order for the candidate eliminated second (h ≥ 2) to win at some

ballot length, it must be at h = 1—i.e., the plurality winner must be eliminated

second under h ≥ 2. Thus, they must be overtaken by at least three candidates

(for k ≥ 5) when the first eliminated candidate X’s ballots are redistributed. But

the second place on ballots listing X first can only be the candidate to the left or

right of X in the single-peaked ordering, making this impossible.

Theorem 17. With k ≥ 5 candidates, no consequential-tie-free single-crossing

profile has k − 1 truncation winners.

Proof. As in the proof of Theorem 16, we’ll show that the first candidate elim-

inated, X, can only redistribute ballots to two candidates. Suppose for a con-

tradiction that they redistribute ballots to at least three candidates. Call these

candidates A, B, and C in the order in which they first appear as second choices

in the ballots ranking X first in the single-crossing order L. By the single-crossing

property, all ballots to the left of ballots starting X,A must rank A above B, since

a ballot to its right ranks B above A, namely those starting X,B. Moreover, all

ballots to the right of ballots starting X,C must rank C above B by symmetric

reasoning. But this means B cannot have any ballots ranking them first, contra-

dicting that X (who does have ballots ranking them first) is the first eliminated.

See below for a visual depiction of this argument:
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Although the upper bound on truncation winners is strictly lower for single-

peaked profiles than for general profiles, the number of achievable truncation win-

ners still grows with k. In particular, we can show that Ω(
√
k) truncation winners

are possible in a consequential-tie-free single-peaked profile with Θ(k) voters.

Theorem 18. With k = κ(κ + 1)/2 candidates (κ ≥ 3), there is a single-peaked

consequential-tie-free profile with 3κ(κ+1)/2 partial ballots that results in κ distinct

truncation winners.

The exact upper bound on the number of truncation winners for single-peaked

(and single-crossing) preferences remains an open question—it could be as large

as k − 2. Additionally, we do not know a non-trivial lower bound on the number

of achievable truncation winners for single-crossing or 1-Euclidean profiles.

6.3.2 Restrictions on ties

Since our main theorem allows ties (albeit only ties that do not affect the winners),

one might be concerned that the large number of truncation winners is a byproduct
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of these ties. In the following results, we show that even if no vote counts are ever

tied, there can still be arbitrary truncation winner sequences. We can therefore get

any feasible winner sequence regardless of the tiebreaking rule. As before, we start

by establishing lower bounds on the number of voters required for k−1 truncation

winners and then provide a matching construction for tie-free profiles achieving

any truncation winner sequence.

Theorem 19. For any k ≥ 3, an elimination-tie-free profile must contain at least

(k3 − 3k)/2 voters in order to produce k − 1 truncation winners.

Theorem 20. For any k ≥ 3, a tie-free profile must contain at least (2k3 − 5k2 +

3k)/2 voters in order to produce k − 1 truncation winners.

Note that for consequential-tie-free profiles, the lower bound on voters for k−1

truncation winners is Ω(k2), but Ω(k3) for elimination-tie-free and tie-free profiles.

Theorem 21. Given the same setup as in Theorem 15, there exists a tie-free

profile with (2k3 − 5k2 + 3k)/2 ballots whose sequence of truncated IRV winners

from h = 1, . . . , k − 1 is w1, . . . , wk−1.

The constructions for consequential-tie-free and tie-free profiles both use Θ(k2)

distinct ballots. However, only Θ(k) distinct ballots are required to produce k− 1

truncation winners. This is asymptotically tight, since each candidate who wins

at some ballot length needs at least one ballot type listing them first.

Theorem 22. Given k > 3 candidates, there is a tie-free profile producing k − 1

truncation winners with Θ(k3) voters of Θ(k) types.
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6.3.3 Full ballots

So far, all of our constructions have relied on partial ballots. For profiles with full

ballots, a simple extension of our constructions using filler candidates allows us to

achieve up to k/2 truncation winners, and in fact any feasible sequence of winners

in the first half of ballot lengths.

Corollary 3. Let k = 2κ for some κ > 3. Label the candidates 1, . . . , 2κ in

order of their elimination under full ballots. Fix any sequence w1, . . . wκ−1 such

that wh ∈ {κ + h + 1, . . . , 2κ} for all h ∈ [κ − 1]. There exists a full-ballot

consequential-tie-free profile with 2κ2 − 2κ voters and a full-ballot tie-free profile

with (2κ3− 5κ2+3κ)/2+κ(κ− 1)/2 voters whose sequences of truncation winners

from h = 1, . . . , κ− 1 are w1, . . . , wκ−1.

While we have not found a general construction with full ballots and k−1 trun-

cation winners, we have found full-ballot elimination-tie-free profiles with k − 1

truncation winners up to k = 10 using a linear-programming-based search (de-

scribed at the end of this section). Full ballots make intuitive constructions more

challenging, but do not appear to prevent a large number of truncation winners.

However, how a full ballot requirement does or doesn’t change our main result

remains an open question.

If instead of requiring ballots to be full, we require them to all have length at

least k/2− c, we can improve the above extension of our constructions and get an

additional c ballot lengths at which we can specify the winner.

Corollary 4. Let k = 2κ for some κ > 3. Suppose we require ballots to have

length at least κ − c for c < κ. Label the candidates 1, . . . , 2κ in order of the

elimination under full ballots. Fix any sequence w1, . . . wκ+c−1 such that wh ∈
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k
# trunc.
winners

ballot
types voters voters lower bound

(Theorem 19)

4 3 7 29 26
5 4 12 55 55
6 5 23 99 99
7 6 36 161 161
8 7 57 974 244
9 8 85 1759 351
10 9 122 4855 485

Table 6.1: LP full-ballot constructions. We used different search strategies for
k ≤ 7 and k ≥ 8, leading to profiles farther from the voter lower bound for k ≥ 8.

{κ−c+h+1, . . . , 2κ} for all h ∈ [κ−1]. There exists a consequential-tie-free profile

with 2κ2−2κ ballots and a tie-free profile with (2κ3−5κ2+3κ)/2+(κ−c)(κ−c−1)/2

ballots whose sequence of truncated IRV winners from h = 1, . . . , κ + c − 1 is

w1, . . . , wκ+c−1.

Given that explicit full-ballot constructions appear quite challenging, we turn

to a computational approach to investigate whether full-ballot profiles can produce

k − 1 truncation winners. Using a linear programming (LP) search, we identified

elimination-tie-free profiles with full ballots and k − 1 truncation winners for k =

4, 5, 6, 7, 8, 9, 10 (the sizes of these profiles are shown in Table 6.1). Moreover, this

approach was able to find instances with voter counts matching the exact lower

bound in Theorem 19 for k = 5, 6, 7. Our approach was not able to match the voter

lower bound for k = 4. For k ≥ 8, we faced runtime constraints since the number

of variables is exponential in the number of candidates, leading us to restrict the

search space (described in further detail below). We consider elimination-tie-free

profiles since they are easiest to encode as an LP, where we use constraints to

enforce unambiguous eliminations.

The idea behind the search is to construct possible elimination orders across
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all h that could result in k − 1 winners, express these as conditions on the sums

of counts of every full ballot type in Sk (the set of permutations on k elements),

and then use an LP to find a feasible real-valued solution of ballot type counts

that result in that elimination order. We round these fractional ballot counts to

be integers and check if the resulting profile has the desired elimination order.

If not, we can try another possible elimination order or increase the gaps in the

constraints so that rounding is less likely to make a solution infeasible. For k ≤ 7,

we tested all possible elimination orders, but only tested a single elimination order

for k ≥ 8 due to runtime constraints. The exact LP formulation is provided in

Appendix E.2.

It remains an open question whether there exist full ballot profiles for every k

that result in k−1 truncation winners (or any truncation winner sequence). Given

the computational evidence from these LPs up to k = 10 candidates, we conjecture

that there are such profiles.

6.3.4 Ballot length in simulation

Our theoretical results show that the winner of an IRV election can change dra-

matically as the ballot length varies. Here, we ask how likely these changes are

through simulated profiles. Such simulation analysis was previously conducted for

k = 4, 5, 6 (Kilgour et al., 2020). We extend these simulations up to k = 40 (our

real-world IRV data has examples of elections with up to ≈ 30 candidates).

We simulate two different types of profiles: general profiles with rankings sam-

pled uniformly at random and 1-Euclidean profiles with voters and candidates

embedded in one dimension. For the general profiles, we fix 1000 voters. For 1-
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Figure 6.2: Probability that truncated ballots produce the full IRV winner for can-
didate counts k = 2, . . . , 40 and ballot lengths h = 1, . . . , k− 1. (Left) For general
preferences, the probability of producing the IRV winner increases smoothly with
the ballot length h. (Right) For 1-Euclidean preferences, there is a sharper transi-
tion around h = k/2.

Euclidean profiles, we simulate an infinite voter population uniformly distributed

over [0, 1], where the number of first-place votes a candidate i has is the size of the

interval of [0, 1] containing points closer to i than any other candidate.

For both general and 1-Euclidean profiles, we simulate both full and partial

ballots to gauge the effect of forced truncation with and without voluntary trun-

cation. For general profiles with partial ballots, we independently and uniformly

perform voluntary truncation on each voter’s preferences before applying forced

truncation in the form of ballot length. For 1-Euclidean partial ballots, we do the

same with each ballot type.

In Figure 6.2, we show the probability that the full-ballot IRV winner is selected

with each ballot length 1, . . . , k− 1 for k = 3, . . . , 40 with initially full ballots (the

heatmaps were qualitatively identical for partial ballots; see Appendix E.4). For
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Figure 6.3: Mean (top) and maximum (bottom) number of truncation winners
in 10000 synthetic ballot simulations and 10000 PrefLib resampling trials. We
simulated uniform general and 1-Euclidean preferences for k = 3, . . . , 40. The
shaded regions show standard deviation across trials. To simulate partial ballots,
each ballot is voluntarily truncated at a random length between 1 and k. While up
to k − 1 truncation winners are possible, the mean number of truncation winners
only reaches 4 around k = 40. 1-Euclidean profiles and profiles with partial ballots
tend to produce slightly fewer truncation winners. For the PrefLib data, each
point represents a single election, with horizontal jitter added for legibility. Real
elections tend to produce even fewer truncation winners, although it is not rare to
have more than 1.

general preferences, the probability of selecting the full-ballot IRV winner increases

smoothly as ballot length increases. Additionally, for any fixed ballot length, the

probability of selecting the IRV winner decreases as the number of candidates

increases. For instance, for h = 3, the probability of selecting the IRV winner first

dips below 50% at k = 12. For 1-Euclidean preferences, small ballot lengths are
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even less likely to produce the full IRV winner: for h = 3, the probability first

drops below 50% for k = 9. On the other hand, the probability rapidly increases

around h = k/2. For ballots longer than k/2, uniform 1-Euclidean preferences

almost always produce the full IRV winner.

In Figure 6.3, we visualize the same data in a different way. We plot the mean

and maximum observed numbers of truncation winners across ballot lengths (the

figure also includes PrefLib winner counts described in the next section). While

the difference between general and 1-Euclidean profiles was pronounced in the

previous heatmaps, they result in almost the same number of truncation winners

on average. Additionally, these simulated profiles tend to have a small number of

truncation winners relative to the theoretical maximum. On average for k ≤ 10,

there are around two truncation winners, while the theoretical maximum is nine.

Additionally, the maximum observed number of winners in 10000 simulated trials

was well below the theoretical maximum, especially for larger k: we only began

generating any profiles with 10 truncation winners around k = 40.

Intuitively, these simulation results therefore indicate that profiles with large

numbers of truncation winners are very rare in the space of profiles, at least un-

der these (uniform) measures. However, they do not appear to be significantly

rarer among 1-Euclidean profiles than among general profiles, as one might have

expected given the increased structure of 1-Euclidean profiles. On the other hand,

profiles in which there are more than one winner across ballot lengths are very

common. Thus, while truly extreme cases with k− 1 truncation winners might be

rare, cases where ballot length has an effect occur readily in simulation.
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6.4 Truncating real-world election data

Given that many truncation winners are theoretically possible, we now ask how

often multiple truncation winners occur in real-world election data. To this end,

we analyze voter rankings from 168 elections in PrefLib (Mattei and Walsh, 2013).

This collection includes 12 American Psychological Association (APA) presiden-

tial elections (Regenwetter et al., 2007) (h = 5), 14 San Francisco local elections

(h = 3), and 21 Glasgow local elections (h = k), among others. The number of

candidates in these elections ranges from 3–29 and the number of voters from tens

to hundreds of thousands. See Appendix E.5 for additional summary statistics of

these elections. Some of these PrefLib datasets included a small number of ballots

with multiple candidates listed at the same rank (0.5% of all ballots), which we

omit.

In order to evaluate the impact of ballot length, we truncate the rankings at

each possible shorter ballot length than the election actually used. We then run

IRV on the truncated ballots. We assume that if ballots had been shorter, voters

would have reported the same ranking, but truncated to the ballot length. It

is possible that voters would express their preferences differently depending on

the ballot length, so our approach should be seen as an approximation to this

counterfactual scenario.

In 41/168 elections, there were two different winners across ballot lengths, and

in one election, there were three different winners. Overall, 25% of the elections

were sensitive to ballot length. Among the elections with ballot length h ≤ 5,

12/85 = 14% of them had two different truncation winners; for elections with

h > 5, 29/83 = 35% of elections had two or more different winners. In order

to better understand the landscape of possible outcomes in each election, we also
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performed resampling of ballots. Given a collection of n ballots, we resample

a collection of n ballots with replacement to simulate another possible election

outcome with the same pool of voters. We then truncate those collections of votes

to assess the impact of ballot length. In 10000 resampling trials, we observed up

to six different truncation winners across the elections, but the expected number

of truncation winners under resampling was between one and two for all elections

(see Figure 6.3). In Figure 6.4, we also use ballot resampling to visualize the

sequence of truncation winners in two PrefLib elections. The 2009 Burlington

Mayoral election famously had a different plurality winner (Kurt Wright) than

the elected IRV winner (Bob Kiss), but our visualization reveals that at ballot

length h = 2, the election was a complete toss-up and could have gone either way

with only a small change in ballot counts. In the right subplot, we visualize the

sequence of truncation winners in the one PrefLib election that had three distinct

truncation winners. Not only does this election have three truncation winners, but

the sequence of winners flips back and forth, as we proved theoretically possible.

The smaller number of truncation winners in real data is likely due to the

small number of front-runners in real-world elections, in contrast with the uniform

preferences in our synthetic data. Our observations here are in line with the finding

that ballot truncation is less likely to change the winner in the Mallows model when

preferences are more tightly clustered around the central ranking (Ayadi et al.,

2019).
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Figure 6.4: Two elections in the PrefLib data, the infamous 2009 Burlington may-
oral election (left, k = 6, n = 8974) and an anonymous intra-organization election
from the Electoral Reform Society (right, k = 26, n = 104). The stacked bars
show the probability candidates have of winning at each ballot length under ballot
resampling. Stars indicate the winners at each ballot length with actual ballot
counts.

6.5 Discussion

Our theoretical results are fairly pessimistic: IRV election outcomes can change

dramatically with ballot length. Our analysis of real and simulated data, on the

other hand, presents a more mixed picture: ballot length regularly has an effect on

the identity of the winner even in real elections, but the extreme changes between

winners that are theoretically possible rarely occur, which may be cause for some

degree of optimism. Nonetheless, changes in ballot length by truncation can often

result in two or three different winners, even when the ballot length is short.

There are a number of open theoretical questions around ballot length. First,

is it possible to achieve every feasible truncation winner sequence with complete

ballots? We suspect the answer is yes, but an explicit construction has proved

elusive. Second, are more than O(
√
k) truncation winners possible for single-
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peaked ballots? How many truncation winners are possible with single-crossing

ballots? Similar questions could be asked for other profile restrictions, such as

1-Euclidean preferences.

Our interest in IRV is due to its increasing popularity of IRV in United States

local elections, but one could also investigate the effects of ballot length in other

ranking-based voting systems such as Borda count or Copeland’s method. Addi-

tionally, we do not address what ballot length should be used in practice, which

requires making a tradeoff between competing desires. Finally, it would be inter-

esting to understand when elections are close enough for ballot length to affect the

winner. There has been research on calculating the margin of victory for IRV (Sar-

wate et al., 2013; Blom et al., 2016; Magrino et al., 2011), defined as the number

of votes which would need to be altered to change the winner, which is NP-hard to

compute (Xia, 2012). A notion of margin of victory that relates to winners across

different ballot lengths would be valuable.
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CHAPTER 7

THE MODERATING EFFECT OF INSTANT RUNOFF VOTING

As discussed in the previous chapter, IRV is among the most popular alter-

natives to plurality for single-winner elections—but there is heated debate about

whether it should be adopted more widely in the United States. Proponents of IRV

claim that it encourages moderation, compromise, and civility, since candidates are

incentivized to be ranked highly by as many voters as possible, including by those

who do not rank them first (Dean, 2016; Diamond, 2016). Analyses of campaign

communication materials and voter surveys have supported the theory that IRV

increases campaign civility (Donovan et al., 2016; John and Douglas, 2017; Kropf,

2021), with extensive debate about whether this greater civility translates into

winners who are also more moderate in their positions (Fraenkel and Grofman,

2006a,b; Horowitz, 2006, 2007). Analyses of potential moderating effects of IRV

have primarily been based on case studies (Fraenkel and Grofman, 2004; Mitchell,

2014; Reilly, 2018) and simulation (Chamberlin and Cohen, 1978; Merrill, 1984;

McGann et al., 2002), as well as empirical evidence for a moderating effect in a

related voting system, two-round runoff (Bordignon et al., 2016).

In contrast, there has been almost no theoretical work on the subject; most

social choice theory has focused on problems other than moderation, such as min-

imizing metric distortion and ensuring fairness or representation (Halpern et al.,

2023; Aziz et al., 2017; Boutilier et al., 2012; Brill et al., 2022; Ebadian et al., 2022;

Gkatzelis et al., 2020; Kahng et al., 2023). Two interesting specific exceptions can

be found in the works of Grofman and Feld (2004) and Dellis et al. (2017). Grof-

man and Feld (2004) show that for single-peaked preferences and four or fewer

candidates, IRV is at least as likely as plurality to elect the median candidate.
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Dellis et al. (2017) show that in a citizen-candidate model, if the voter distribution

is asymmetric then two-party equilibria under plurality can be more extreme than

under IRV.

There is clear value in mathematical analyses that identify more general mod-

erating tendencies. At present—beyond the noted exceptions—the arguments for

IRV’s moderating effects summarized above have tended to point to institutional or

behavioral properties of the way candidates run their campaigns in IRV elections.

A natural question, therefore, is whether this picture is complete, or whether there

might be something in the definition of IRV itself that leads to outcomes with more

moderate winners. Such questions are fundamental to the mathematical theory of

voting more generally, where we frequently seek explanations that are rooted in

the formal properties of the voting systems themselves, rather than simply the em-

pirical regularities of how candidates and voters tend to behave in these systems.

In the case of IRV, what would it mean to formalize a tendency toward moderation

in the underlying structure of the voting system? To begin, we must first identify

a natural set of definitions under which we can isolate such a property.

Formalizing the moderating effect of IRV. In this chapter, we propose such

definitions and use them to articulate a precise sense in which IRV produces mod-

erate winners in a way that plurality does not. We work within a standard one-

dimensional model of voters and candidates: the positions of voters and candidates

correspond to points drawn from distributions on the unit interval [0, 1] of the real

line (representing left–right ideology), and voters form preferences over candidates

by ranking them in order of proximity. That is, voters favor candidates who are

closer to them on the line; this is often called the 1-Euclidean model, a com-

mon model in social choice theory (Coombs, 1964; Bogomolnaia and Laslier, 2007;
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Elkind et al., 2022). We typically assume the voters and candidates are drawn from

the same distribution F , but some of our results hold for fixed candidate positions.

In addition to its role as one of the classical mathematical models of voter prefer-

ences, where it is sometimes called the Hotelling model (Hotelling, 1929; Downs,

1957), 1-Euclidean preferences arise naturally from higher-dimensional opinions

under simple models of opinion updating (DeMarzo et al., 2003). There is wide-

ranging empirical evidence suggesting that political opinions in the United States

are remarkably one-dimensional (Poole and Rosenthal, 1984, 1991; Layman et al.,

2006; DellaPosta et al., 2015): from a voter’s views on any one of a set of issues

including tax policy, immigration, climate change, gun control, and abortion, it is

possible to predict the others with striking levels of confidence.

Let’s consider a voting system applied to a set of k candidates and a contin-

uum of voters in this setting: we draw k candidates independently from a given

distribution F on the unit interval [0, 1], and each candidate gets a vote share

corresponding to the fraction of voters who are closest to them (see Figure 7.1 for

examples). The use of a one-dimensional model gives a natural interpretation to

the distinction between moderate and extreme candidates: a candidate is more

extreme if they are closer to the endpoints of the unit interval [0, 1]. We take two

approaches to defining a moderating effect in this model, one probabilistic (in the

limit of large k) and one combinatorial (for all k). We say that a voting system has

a probabilistic moderating effect if for some interval I = [a, b] with 0 < a ≤ b < 1,

the probability that the winning candidate comes from I converges to 1 as the

number of candidates k goes to infinity (since we focus on symmetric voter distri-

butions, we will typically have I symmetric about 1/2; i.e. b = 1−a). We say that

a voting system has a combinatorial moderating effect if for all k, the presence of a

candidate in I prevents any candidate outside of I from winning; i.e., a moderate
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candidate (inside I) is guaranteed to win as long as at least one moderate runs.

(Note that a combinatorial moderating effect implies a probabilistic one, as long

as the candidate distribution F places positive probability mass on I.) We call

such an interval I an exclusion zone of the voting system, since the presence of a

candidate inside this zone precludes outside candidates from winning. In this way,

a voting system with a moderating effect will tend to suppress extreme candidates

who lie outside a middle portion of the unit interval, while a voting system that

does not have at moderating effect will allow arbitrarily extreme candidates to win

with positive probability even as the number of candidates becomes large.

Using this terminology, we can state our first main result succinctly: under a

uniform voter distribution, IRV has a moderating effect and plurality does not—in

both the combinatorial and probabilistic senses. In particular, we prove a novel and

striking fact about IRV: when voters and candidates both come from the uniform

distribution on [0, 1], the probability that the winning candidate produced by IRV

lies outside the interval [1/6, 5/6] goes to 0 as the number of candidates k goes to

infinity. In sharp contrast, the distribution of the plurality winner’s position con-

verges to uniform as the number of candidates goes to infinity, allowing arbitrarily

extreme candidates to win. As part of our analysis, we provide a method for deriv-

ing the distribution of plurality and IRV winner positions for finite k and perform

this derivation for k = 3 candidates. Surprisingly, our analysis of plurality—the

simpler voting system—requires much more sophisticated machinery: we establish

a connection between plurality voting and a classic model in discrete probability

known as the stick-breaking process and develop new asymptotic stick-breaking

results for use in our analysis.

Our probabilistic result for IRV follows from a companion fact that is combi-
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0 0.2 0.4 0.6 0.8 1

A B C D
0.16 0.13 0.40 0.32

0 0.2 0.4 0.6 0.8 1

A B C D
0.25 0.10 0.28 0.38

0 0.2 0.4 0.6 0.8 1

A B C D
0.33 0.07 0.18 0.42

Figure 7.1: Three example voter distributions in one dimension (all Betas). Can-
didates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows
the density function of the voter distribution. Regions are colored according to the
most preferred candidate of voters in that region and annotated with the approx-
imate vote share of that candidate. As an example, the preference ordering of a
voter at 0.5 is C, B, A, D (regardless of the voter distribution). Similarly, a voter
at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left),
C is both the plurality and IRV winner. In the uniform voters example (center), D
is the plurality winner and C is the IRV winner. In the polarized voters example
(right), D is the plurality winner and A is the IRV winner.

natorial in nature and comparably succinct: given any finite set of candidates in

[0, 1], and voters from the uniform distribution, if any of the candidates belong

to the interval [1/6, 5/6], then the IRV winner must come from [1/6, 5/6]; that is,

[1/6, 5/6] is an exclusion zone for IRV in the uniform case. Moreover, [1/6, 5/6]

is the smallest interval for which this statement is true. Again, the analogue for

plurality voting with any proper sub-interval of the unit interval is false: we show

that plurality has no exclusion zones.

This first main result therefore gives a precise sense in which the structure of

the IRV voting system favors moderate candidates: whenever moderate candidates

(in the middle two-thirds of the unit interval) are present as options, IRV will

push out more extreme candidates. We then address the more challenging case

of non-uniform voter distributions, where we prove that IRV continues to have a

moderating effect (in the sense of our formal definitions) even for voter distributions

that push probability mass out toward the extremes of the unit interval, up to a
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specific threshold beyond which the effects cease to hold. Thus, IRV is even able

to offset a level of polarization built into the underlying distribution of voters

and candidates, although it can only do so up until a certain level of polarization

is reached. In contrast, we establish that plurality never has a combinatorial

moderating effect for any non-pathological voter distribution.

As a final point, it is worth emphasizing what is and is not a focus of our work

here. We examine IRV and plurality because of their widespread use in real-world

elections and the fierce debate surrounding the adoption of IRV over plurality. We

are not trying to characterize all possible voting systems that give rise to mod-

eration (although we can show that many voting systems not in widespread use

have a moderating effect, including the Coombs rule and any Condorcet method;

for these systems, any symmetric interval around 0.5 is an exclusion zone). Our

interest, instead, is in the following contribution to the plurality–IRV debate: there

is a precise mathematical sense in which IRV has a moderating effect and plural-

ity does not. Second, we do not analyze strategic choices by candidates about

where to position themselves on the unit interval (Hotelling, 1929; Downs, 1957;

Osborne, 1995), but instead derive properties of voting systems that hold for fixed

candidate positions, or candidate positions drawn from a distribution. This ap-

proach produces results that are robust against the question of whether candidates

are actually able to make optimal strategic positioning decisions in practice (Ben-

dor et al., 2011); it also allows us to better understand how the voting systems

themselves behave—providing a foundation for future strategic work.
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7.1 Uniform voters

The previous section describes our complete model, but it is useful to review it here

in the context of some more specific notation. We assume voters and candidates

are both drawn from a distribution F on the unit interval [0, 1], representing their

ideological position on a left–right spectrum.1 Voters prefer candidates closer to

them (i.e., they have 1-Euclidean preferences). There are k candidates drawn

independently from F ; suppose that these draws produce candidate positions x1 <

x2 < · · · < xk in order. Some of our results apply regardless of the candidate

distribution, relying only on the voter distribution; we will make a note of such

cases.

Since we want to model the case of a large population of voters, we do not

explicitly sample the voters from F , but instead think of a continuum of voters

who correspond to the distribution F itself: that is, under the plurality voting

rule, the fraction of voters who vote for candidate xi is the probability mass of all

voters who are closer to xi than to any other candidate (or, equivalently, it is the

probability that a voter randomly chosen according to F would be closer to xi than

any other candidate). In this section, we focus on the case where F is uniform.2 We

use v(xi) to denote the vote share for candidate xi. Under IRV, the candidate i with

the smallest v(xi) is eliminated and vote shares are recomputed without candidate

i. This repeats until only one candidate remains, who is declared the winner

(equivalently, elimination can terminate when a candidate achieves majority). In
1We will generally focus on distributions F that are symmetric around 1/2 and represented

by a density function f .
2To provide another perspective on the uniform voter assumption, consider the following

preference assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily
distributed, but rank candidates according to how many voters are between them and each
candidate. That is, voters have 1-Euclidean preferences in the voter quantile space and are
always uniformly distributed over this space by definition. All of our uniform voter results hold
in that setting as well, although stated in terms of voter quantiles rather than absolute positions.

170



practice, voters submit a ranking over the candidates and their votes are “instantly”

redistributed after each elimination.

IRV’s moderating effect: A first result. With uniform 1-Euclidean voters,

we now show that IRV cannot elect extreme candidates over moderates—regardless

of the distribution of candidates. That is, IRV exhibits an exclusion zone in the

middle of the unit interval, where the presence of moderate candidates inside the

zone precludes outside extreme candidates from winning. The idea behind the

proof is that as moderates get eliminated, the middle part of the interval becomes

sparser, granting a higher vote share to any remaining moderates. Consider the

moment when only one candidate x remains in the interval [1/6, 5/6] (see Fig-

ure 7.2); extreme candidates near 0 and 1 are then too far away to “squeeze out”

x. With uniform voters, the tipping point for squeezing out moderates occurs

when extreme candidates are at 1/6 and 5/6. In the next section, we present

generalizations of this result for non-uniform voter distributions.

Theorem 23. (Combinatorial moderation for uniform IRV.) Under IRV with uni-

form voters over [0, 1] and k ≥ 3 candidates, if there is a candidate in [1/6, 5/6],

then the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 − c], c > 1/6, has

this property. If there are no candidates in [1/6, 5/6], then the IRV winner is the

one closest to 1/2.

Proof. Suppose first there is only one candidate x ∈ [1/6, 5/6] and all other can-

didates are < 1/6 or > 5/6. Suppose without loss of generality that x ≤ 1/2. The

smallest vote share x could have occurs when there are candidates at 1/6− ϵ and

5/6+ ϵ. In this case, x gets vote share (x− 1/6+ ϵ)/2+ (5/6+ ϵ− x)/2 = 1/3+ ϵ.

Meanwhile, the highest vote share any candidate < 1/6 could have (when x is at
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1/2) is 1/6− ϵ+ (1/2− 1/6 + ϵ)/2 = 1/3− ϵ/2. Thus, every candidate < 1/6 will

be eliminated before x. At this point, x will win, since it is closer to 1/2 than any

of remaining candidates > 5/6 and therefore has a majority.

If there is more than one candidate in [1/6, 5/6] to begin with, then as candi-

dates are eliminated, at some point there will only be one candidate x remaining

in [1/6, 5/6]. Either x will be the ultimate winner, or there will still be candidates

< 1/6 or > 5/6, in which case x will win as argued above.

Notice that the above argument still holds if we replace 1/6 and 5/6 with c and

1− c for any 0 < c ≤ 1/6: it only reduces the vote share going towards candidates

in [0, c). Thus, if there is some candidate in [c, 1 − c], then the IRV winner is in

[c, 1 − c]. So, if there is no candidate in [1/6/, 5/6], then let c be the distance

between the most moderate candidate and its closest edge. This candidate must

be the IRV winner, since it is the only candidate in [c, 1− c] (and c < 1/6). In this

case, the IRV winner is the most moderate candidate as claimed.

Finally, we show that no smaller interval satisfies the theorem. To do so, we

describe a construction that is parametrized to handle any number of candidates

k ≥ 3. In the construction, there is one candidate at 1/2, two candidates at c and

1 − c for c > 1/6, and any remaining candidates in (1 − ϵ, 1] for ϵ < (1/2 − c)/2.

First, all candidates right of 1− ϵ will be eliminated—all of these candidates have

a smaller vote share than the candidate at c. At this point, the candidate at 1/2

has vote share less than 2(1/2 − c)/2 = 1/2 − c. Since c > 1/6, this is less than

1/2 − 1/6 = 1/3. Meanwhile, the candidates at c and 1 − c have vote shares

higher than c + (1/2 − c)/2 = 1/4 + c/2. Since c > 1/6, this is greater than

1/4 + 1/12 = 1/3. Thus the middle candidate is eliminated. The winner is is thus

outside of [c+ δ, 1− c− δ] for all δ ∈ (0, 1/2− c), despite there being a candidate

172



0 1/6 5/6 1

x
→

0 1/6 5/6 1
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v(x) > 1/3

→
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Figure 7.2: Visual depiction of the proof of Theorem 23. IRV eliminates candidates
until a final candidate x remains in the exclusion zone [1/6, 5/6]. At this point, x
gets more than 1/3 of the vote share and cannot be eliminated next (regardless of
where they are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated
until x wins.

in this interval. Since this construction applies for any c > 1/6, no interval smaller

than [1/6, 5/6] satisfies the theorem.

In the language of our analysis, [1/6, 5/6] is then the smallest possible exclusion

zone of IRV under a uniform voter distribution. See Figure 7.2 for a visual depiction

of the argument. A corollary of Theorem 23 is that if candidates are distributed

uniformly at random (for instance, if voters independently and identically decide

whether to run for office), then IRV elects extreme candidates with probability

going to 0 as the number of candidates grows, since the probability of having no

moderate candidates in [1/6, 5/6] is (1/3)k. In the language defined earlier, IRV

thus has a probabilistic moderating effect with uniform voters and candidates.

Corollary 5. (Probabilistic moderation for uniform IRV.) Let Rk be the position

of the IRV winner with k candidates distributed uniformly at random and uniform

voters.

lim
k→∞

Pr(Rk /∈ [1/6, 5/6]) = 0. (7.1)

In contrast to IRV, where the presence of candidates with moderate positions

(namely, inside [1/6, 5/6]) precludes extreme candidates from winning, we now

show that no such fact is true for plurality (excluding the extreme points 0 and

1): for any interval I ⊆ (0, 1), there is some configuration of candidates such

that the winner is outside of I despite having candidates in I. In other words,
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plurality voting does not have a combinatorial moderating effect with uniform

voters.3 Later, we generalize this result to non-uniform voter distributions. The

idea behind the proof is relatively straightforward: given a set of candidates, keep

adding candidates to reduce the vote share of everyone except the desired winner.

Theorem 24. (No combinatorial moderation for uniform plurality.) Suppose vot-

ers are uniformly distributed over [0, 1]. Given any set of κ ≥ 1 distinct candidate

positions x1, . . . , xκ with x1 /∈ {0, 1}, there exists a configuration of k ≥ κ candi-

dates (including x1, . . . , xκ) such that the candidate at x1 wins under plurality.

Proof. We show how to add candidates to the initial set x1, . . . , xκ so that x1

becomes the plurality winner (as long as x1 /∈ {0, 1}). First, add candidates at

x0 = 0 and xκ+1 = 1 to guarantee that x1 is between two candidates. Let xℓ be

the candidate to the left of x1 and let xr be the candidate to the right of x1. Let

vℓ = (x1 − xℓ)/2 be the vote share x1 gets on its left and let vr = (xr − x1)/2 be

the vote share x1 gets on its right. Add new candidates spaced by 1
2
min{vℓ, vr} in

the intervals [0, xℓ] and [xr, 1]. This causes every candidate in the intervals [0, xℓ)

and (xr, 1] to have vote share strictly less than 1
2
min{vℓ, vr} (whether they are

part of the original κ or new). Additionally, xℓ and xr have vote share at most

1
2
min{vℓ, vr} + max{vℓ, vr}. Meanwhile, x1 has vote share vℓ + vr, so x1 is the

plurality winner in the new configuration.

In addition, we prove that the asymptotic distribution of the plurality winner’s

position is uniform over the unit interval when voters and candidates are positioned

uniformly at random. In other words, plurality does not have a probabilistic mod-
3An anonymous reviewer suggested an elegant construction proving this fact for symmetric

intervals I = [c, 1 − c], which provides counterexamples for every k ≥ 3: place candidates at
c − ϵ, 1 − c − ϵ, and any others at 1 − c + ϵ (for ϵ < c/2). The candidate at c − ϵ wins, despite
having a candidate in I.
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erating effect: it does not preclude extreme candidates from winning when there

are many moderate candidates to choose from. The proof is more involved, so we

relegate it to Appendix F.2. Note that this result implies plurality also has no

combinatorial moderation, but Theorem 24 is much easier to prove.

Theorem 25. (No probabilistic moderation for uniform plurality.) Let Pk be the

position of the plurality winner with k candidates distributed uniformly at random

and uniform voters. As k → ∞, Pk converges in distribution to Uniform(0, 1);

that is, limk→∞ Pr(Pk ≤ x) = x for all x ∈ [0, 1].

The proof uses a coupling argument between plurality on the unit interval and

plurality on a circle. By rotational symmetry, the plurality winner on a circle is

uniformly distributed. We show that as k grows, cutting the circle to transform it

into the interval does not change the winner with probability approaching 1, since

cutting the circle only affects vote shares of the boundary candidates.

Thus, a key step is deriving the asymptotic distribution of the winning plurality

vote share. This vote share distribution may be useful for other asymptotic anal-

yses of plurality voting, so we describe it here. The winning plurality vote share

is closely related to a category of probabilistic problems known as stick-breaking

problems, which focus on the properties of a stick of length 1 broken into n pieces

uniformly at random (Holst, 1980). Setting n = k + 1, these stick pieces can be

viewed as the gaps between candidates (equivalently, candidates are the break-

points of the stick). A classic result in stick-breaking is that the biggest piece will

have size Bn almost exactly log n/n as n grows large (Darling, 1953; Holst, 1980)

and that nBn − log n converges to a Gumbel(1, 0) distribution as n → ∞. The

plurality vote setting is different, since candidates get vote shares from half of the

gap to their left plus half of the gap to their right (except the left- and rightmost
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candidates). We show that as the number of candidates grows large, the winning

vote share Vk with k = n − 1 candidates is almost exactly (log n + log log n)/2n

and that nVk − (log n + log log n)/2 also converges to Gumbel(1, 0) as k → ∞.

Intuitively, the largest pair of adjacent gaps have size log n/n and log log n/n, and

the candidate between these gaps gets vote shares from half of each gap (more

correctly, the total size of the gaps is (log n + log log n)/n). This is formalized in

the following lemma used to prove Theorem 25.

Lemma 3. Let Vk be the winning plurality vote share with k candidates distributed

uniformly at random over [0, 1] and uniform voters. Setting n = k + 1,

lim
k→∞

Pr

(
Vk ≤

log n+ log log n+ x

2n

)
= e−e

−x
. (7.2)

7.1.1 Plurality and IRV winner distributions

Given these results about the asymptotic distributions of the plurality and IRV

winner positions Pk and Rk, asymptotic in the number of candidates k, a natural

follow-on question is whether we can say anything about these distributions for

fixed values of k.

For a fixed value of k, the distributions of the plurality and IRV winner positions

Pk and Rk with uniform voters and candidates have density functions fPk and fRk

that are piecewise polynomial of order k − 1. To see this, consider a point in

the k-dimensional unit hypercube, where dimension i of this point represents the

position of candidate i. For every left-right order of candidates π ∈ Sk (where π(i)

is the index of candidate i in left-right order and Sk is the symmetric group on k

elements), we can express the region in Rk where candidate i wins given order π

using the following collection of linear inequalities:
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Figure 7.3: The distributions of the winning position with k = 3, 4, 5, and 100
candidates and continuous 1-Euclidean voters (both uniformly distributed) under
plurality and IRV. The histograms are from 1 million simulation trials for k = 3, 4, 5
and 100000 trials for k = 100, while the curves plotted for k = 3 (shown up to 1/2)
are the exact density functions given in Propositions 3 and 4, with pieces separated
by color. Note that the IRV winner is only at a position < 1/6 or > 5/6 when no
candidates fall in [1/6, 5/6] by Theorem 23; the dashed vertical lines outline this
exclusion zone. The probabilistic moderating effect for IRV is already strong at
with only k = 5 candidates.

0 ≤ xπ−1(1) < xπ−1(2) < · · · < xπ−1(k) ≤ 1,

v(xi) =
xr(i) − xℓ(i)

2
>
xr(j) − xℓ(j)

2
= v(xj), (for all j ̸= i)

where ℓ(i) = π−1(π(i) − 1) is the candidate to i’s left and r(i) = π−1(π(i) + 1) is

the candidate to i’s right. The inequalities in the first line ensure the left–right

candidate order matches π, while the inequalities on the second line ensure xi has

a larger vote share than any other candidate (i.e., xi is the plurality winner). The

region defined by these linear inequalities is therefore a convex polytope, as it is

the intersection of a finite number of half spaces.

To find the probability that a candidate i at a particular point x wins under

plurality, we can find the sum of the cross-sectional areas of these polytopes at

xi = x (with one polytope for each of the k! candidate orderings), integrating over
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the positions of the other k − 1 candidates. This procedure produces a piecewise

polynomial in x of order k−1, where pieces are split at the vertices of the polytopes.

To convert the win probability of candidate i at position x into the winner position

density at x, we scale by k to account for the symmetry in choosing i.

We can use this approach to derive fP3 , the winner distribution for plurality

with 3 candidates (see Figure 7.3 for a visualization). As the derivation is tedious,

we present it in Appendix F.3. Additionally, Appendix F.4 includes a visualization

of the winning position polyhedra for k = 3 whose cross-sectional areas produce

fP3 .

Propostion 3.

fP3(x) =


x2/2 + 4x, x ∈ [0, 1/3]

−13x2 + 13x− 3/2, x ∈ [1/3, 1/2]

fP3(1− x), x ∈ (1/2, 1].

(7.3)

For analyzing the plurality winner distribution in this way with larger k (even

after accounting for relabeling symmetry), we would need to integrate over k k-

polytopes, each of which has a number of faces growing linearly with k (one face

per inequality requiring that xi beats each other xj). Unfortunately, the number of

vertices per polytope in this procedure could grow exponentially with k, potentially

requiring exponentially many integrals.

The same strategy can also be used for IRV, except we no longer have only

one polytope per permutation of candidates—instead, we have one polytope per

combination of left-right candidate order and candidate elimination order. If we

fix both, the region where candidate i wins under IRV can once again be defined by

a collection of linear inequalities. We used this approach to derive the IRV winner
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distribution with 3 candidates, fR3 . Again, see Figure 7.3 for a visualization of

fR3 , Appendix F.3 for the derivation, and Appendix F.4 for a visualization of the

IRV polyhedra.

Propostion 4.

fR3(x) =



12x2, x ∈ [0, 1/6]

48x2 − 12x+ 1, x ∈ [1/6, 1/4]

−48x2 + 36x− 5, x ∈ [1/4, 1/3]

−12x2 + 12x− 1, x ∈ [1/3, 1/2]

fR3(1− x), x ∈ (1/2, 1].

(7.4)

For IRV with general k, this analysis requires integrating over k! k-polytopes,

each of which has O(k2) faces: given an elimination order, we need an inequality

specifying that the candidate eliminated ith has a smaller vote share than each of

the candidates eliminated later. Each such inequality defining a half-space can add

a face to the polytope.

Note that in Proposition 4, the integral of the density fR3(x) on [0, 1/6] is

exactly equal to half the probability that the k−1 losing candidates did not appear

inside [x, 1−x] (scaled by k to account for relabeling symmetry), since we know by

Theorem 23 that a candidate can only win outside [1/6, 5/6] if they are the most

moderate candidate. For general k > 3 we can easily derive the density on [0, 1/6]

and [5/6, 1] using the generalization of this argument: fRk(x) = k(2x)k−1 on [0, 1/6]

(with the right tail being mirrored). Note that the integral of fRk(x) = k(2x)k−1

over [0, 1/6] goes to 0 as k → ∞, a limit that furnishes an independent way of

establishing a probabilistic moderating effect for IRV.

Having the exact winner position distributions fP3 and fR3 allows us to answer
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additional questions—for instance, how much more moderate do IRV winners tend

to be for k = 3 with uniform voters and candidates? Using the density functions

above, we can analytically compute the variances of the plurality and IRV winner

distributions, Var(P3) = 23/540 and Var(R3) = 25/864. For k = 3, the variance of

the plurality winner’s position with uniform voters is thus exactly 184/125 = 1.472

times higher than the variance of the IRV winner’s position.

Connecting our results to related work, while the distribution of the winner’s

position is challenging to derive, the expected plurality vote share at each point

is more tractable. This distribution was discovered in another context: a guessing

game where the goal is to be closest to an unknown target distributed uniformly

at random, against k players who guess uniformly at random (Drinen et al., 2009).

The target can be thought of as a random voter and the guesses as candidate po-

sitions. The guessing game and plurality winner position distributions are similar

in shape, with two prominent bumps that move outward as k grows; and both

converge to uniform distributions. However, the point with the max expected plu-

rality vote share (and max guessing game win probability) is not quite the same as

the point with the maximum plurality win probability, since a candidate’s position

influences other candidates’ vote shares.

7.2 Non-uniform voters

Given our understanding of the uniform voter case, we now broaden our scope and

show that IRV exhibits exclusion zones more generally. We find that the same

“squeezing” argument can be applied to any symmetric voter distribution. The

generalized result hinges on a specific condition on the cumulative distribution
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function, Equation (7.5), which intuitively captures when, no matter where the

last moderate candidate is, they cannot be squeezed out by the most moderate

extremists. This condition is not always possible to satisfy non-trivially. After

first giving the general statement, we present special cases where the condition

is simple to state and satisfy—specifically, when the voter density is monotonic

over [0, 1/2]. If the voter distribution is sufficiently highly polarized, the condition

becomes impossible to satisfy. In this hyper-polarized regime, the exclusion zone

of IRV actually flips, and IRV cannot elect moderate candidates over extreme

ones. First, we present the general moderating effect of IRV for symmetric voter

distributions.

Theorem 26. (General combinatorial moderation for IRV.) Let f be symmetric

over [0, 1] with cdf F and let c ∈ (0, 1/2). If for all x ∈ [c, 1/2],

F

(
x+ 1− c

2

)
− F

(
c+ x

2

)
> 1/3, (7.5)

then if there is at least one candidate in [c, 1 − c], the IRV winner must be in

[c, 1− c].

Proof. Suppose there is at least one candidate in [0, c), at least one candidate in

(1 − c, 1], and exactly one candidate x in [c, 1 − c] (if there no candidates in the

left or right extremes, then x immediately wins by majority). Assume without loss

of generality that x ≤ 1/2. Candidate x’s vote share is minimized when there are

candidates at c− ϵ and 1− c+ ϵ. The vote share of x is then

v(x) = F

(
x+ 1− c+ ϵ

2

)
− F

(
c− ϵ+ x

2

)
.

If Condition (7.5) is satisfied, then then we can increase the left hand side of

(7.5) to find

v(x) = F

(
x+ 1− c+ ϵ

2

)
− F

(
c− ϵ+ x

2

)
> 1/3.
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Thus x cannot be eliminated next, since there is a candidate with a smaller vote

share than x. The IRV winner must therefore be in [c, 1−c] by the same argument

as in Theorem 23.

We now consider two cases where Condition (7.5) can be greatly simplified:

when the voter distribution is moderate (f increases over [0, 1/2]; Theorem 27)

and when voters are polarized (f decreases over [0, 1/2] but F (1/4) < 1/3; Theo-

rem 28). The proofs in these cases follow the same structure, but differ in where

moderate candidates are easiest to squeeze out (nearer or farther from 1/2). Proofs

can be found in Appendix F.2. As another note, just as with Corollary 5, we im-

mediately see from Theorem 26 (and the special cases below) that IRV has a

probabilistic moderating effect with symmetric voter and candidate distributions

(as long as they place positive mass on [c, 1−c]): as the number of candidates goes

to infinity, the probability that the winner comes from [c, 1− c] goes to 1.

Theorem 27. (Moderate voter distribution.) Let f be symmetric over [0, 1] and

non-decreasing over [0, 1/2]. For any c ≤ F−1(1/6), if there is a candidate in

[c, 1− c], then the IRV winner is in [c, 1− c].

Theorem 28. (Polarized voter distribution.) Let f be symmetric over [0, 1], non-

increasing over [0, 1/2], and let F (1/4) < 1/3. For any c ≤ 2(F−1(1/3)− 1/4), if

there is a candidate in [c, 1− c], then the IRV winner is in [c, 1− c].

The uniform distribution is the unique distribution whose density function

is both non-increasing and non-decreasing over [0, 1/2]. Indeed, for uniform

F (x) = x, 1/6 = 2(F−1(1/3) − 1/4) = F−1(1/6). Note that for polarized voter

distributions, Theorem 28 requires F (1/4) < 1/3 (i.e., less than 1/3 of voters are

left of 1/4). If the population is hyper-polarized and instead F (1/4) > 1/3, we

can prove that IRV cannot elect moderates if both extremes are represented.
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Figure 7.4: IRV (top) and plurality (bottom) winner positions with Beta(α, α)-
distributed voters and candidates. The violin plots show empirical distributions
from 100,000 simulation trials with k = 30 candidates at each α value, with
whiskers marking extrema. The dashed lines show the bounds from Theorems 27
to 29 in the annotated ranges. As long as voters are not too polarized, IRV prevents
extreme candidates from winning. Plurality, on the other hand, allows arbitrarily
extreme candidates to win for α = 1, when the voter distribution is uniform.

Theorem 29. (Hyper-polarized voter distribution.) Let f be symmetric over [0, 1]

and let F (1/4) > 1/3. For any c ≥ 2F−1(1/3), if there is at least one candidate in

[0, c] and at least one candidate in [1− c, 1], then the IRV winner must be in [0, c]

or [1− c, 1].

We saw in Theorem 24 that plurality has no exclusion zones for uniform voters.

We now show that plurality has no exclusion zones regardless of the voter distri-

bution (given mild continuity and positivity conditions), except the points 0 and

1. The proof can be found in Appendix F.2.
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Theorem 30. (No combinatorial moderation for plurality.) Let f be continuous

and strictly positive over (0, 1). Given any set of κ ≥ 1 distinct candidate positions

x1, . . . , xκ with x1 /∈ {0, 1}, there exists a configuration of k ≥ κ candidates (includ-

ing x1, . . . , xκ) such that the candidate at x1 wins under plurality. If x1 ∈ {0, 1},

then there exist voter distributions where x1 cannot win under plurality.

Figure 7.4 provides illustrations to accompany Theorems 27 to 30, showing em-

pirical IRV and plurality winner positions when voters (and k = 20 candidates) are

distributed according to symmetric Beta(α, α) distributions. This family of Beta

distributions is polarized for α < 1, uniform for α = 1, and moderate for α > 1.

Theorem 27 thus applies for α ≥ 1. The crossover point between Theorem 28

and Theorem 29 occurs at α = 1/2 (i.e., for Beta(1/2, 1/2), F−1(1/3) = 1/4).

Figure 7.4 also visualizes the positions of plurality winners for these voter distri-

butions, consistent with our analysis of plurality in Theorem 30.

Finally, we revisit the existing moderating effect result of Grofman and Feld

with single-peaked voters and strengthen it in the symmetric 1-Euclidean case.

Recall that 1-Euclidean preferences are always single-peaked, but most sets of

single-peaked preferences are not 1-Euclidean. That is, we make a stronger as-

sumption on voter preferences and thus derive a stronger result. Grofman and

Feld (2004) proved that when voters have single-peaked preferences over k ≤ 4

candidates, if plurality elects the median candidate, so does IRV. The median can-

didate here is defined as the candidate most preferred by the median voter (with

single-peaked preferences, this is the Condorcet winner (Black, 1948)). With sym-

metric 1-Euclidean voters, the median candidate is the candidate closest to 1/2

(i.e., the most moderate candidate). Thus, applying the result of Grofman and

Feld directly to the symmetric 1-Euclidean voter setting, we know for k ≤ 4 that
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whenever plurality elects the most moderate candidate, IRV does too. In the

symmetric 1-Euclidean setting, we can strengthen this theorem to consider what

happens when plurality does not elect the most moderate candidate. Note that

this result holds for any symmetric voter distribution.

Theorem 31. For k ≤ 4 with symmetric 1-Euclidean voters, the IRV winner

cannot be more extreme than the plurality winner (if no ties occur). For k ≥ 5,

the IRV winner can be more extreme than the plurality winner.

Proof. The k = 1 and k = 2 cases are trivial, since IRV and plurality are identical

when k < 3.

For k = 3, suppose for a contradiction that the plurality winner P is more

moderate than the IRV winner I (call the third candidate E). Under IRV, the

first candidate eliminated can’t be I (since they win under IRV) and can’t be P

(since they have the highest first-place vote share), so it must be E. In the second

round of IRV, we are then left with a two-candidate plurality election between I

and P . Since voters are symmetrically distributed, the more moderate of I and P

thus wins under IRV, which is P . Contradiction!

For k = 4, suppose again for a contradiction that the IRV winner I is more

extreme than the plurality winner P . As before, neither can be the first eliminated.

Call the first candidate eliminated E and the fourth candidate F . Since P is more

moderate than I, the final IRV round cannot be between P and I, or else P would

win, contradicting that I is the IRV winner. Thus, the final round must be between

I and F . P must then be the second eliminated after E. However, P has a higher

vote share than both I and F in the first round. To be eliminated second, the

elimination of E must cause I and F to overtake P . To redistribute votes to both

I and F , E must be directly between them, with P off to one side of the I, E, F
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group. Consider two cases: (1) P is adjacent to I. Since P is more moderate than

I, it must get all of the vote share on the side of opposite the I, E, F group (either

[1, 0.5] or [0.5, 1]), which means it has a majority—contradicting that I is the IRV

winner. (2) P is adjacent to F . But then F is more moderate than I, so I cannot

win in the final round—contradicting that it is the IRV winner.

For k ≥ 5, place candidates at ϵ, 1/5, 1/2, 4/5, and 1 for small ϵ (for instance

ϵ ≤ 0.01 works; additional candidates can be packed into [0, ϵ]). Note that the

candidate at 1/2 is the plurality winner, with vote share 3/10. The candidates in

[0, ϵ] are eliminated first under IRV, followed by the candidates at 1 and ϵ. At this

point, the candidates at 1/5 and 4/5 have a higher vote share than the candidate

at 1/2, who is eliminated. The IRV winner is then either at 1/5 or 4/5.

See Figure F.1 in Appendix F.4 for simulation results demonstrating The-

orem 31. All simulation code and results from this chapter are available at

https://github.com/tomlinsonk/irv-moderation.

7.3 Discussion

We began by considering a contrast between IRV and plurality voting when the

positions of voters and candidates are drawn from the uniform distribution on the

unit interval: in this case, IRV (unlike plurality) has a moderating effect, with

the probability that the winner comes from the interval [1/6, 5/6] converging to 1

as the number of candidates goes to infinity. This moderating effect continues to

hold (with proper sub-intervals different from [1/6, 5/6]) even as the distribution

of voters and candidates becomes more polarized, with an increasing amount of

probability mass near the endpoints of the interval, until a specific threshold of
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hyper-polarization is reached. Our analysis also provides methods for determining

the exact distribution of winner positions in certain cases, making more fine-grained

comparisons between IRV and plurality possible.

It would be interesting to consider extensions of our work in a number of di-

rections, and here we highlight three of these. First, we did not consider strategic

analyses (e.g., of Nash equilibria, as in Dellis et al. (2017)), and were instead moti-

vated by bounded rationality (Bendor et al., 2011) and a need to better understand

the underlying voting system, focusing on the non-strategic setting where candi-

date positions are fixed. For instance, how might candidates behave strategically

given an understanding of IRV exclusion zones or the winner position distribution

of IRV? Behavioral evidence for bounded rationality indicates that people tend to

operate at a low strategic depth (Stahl and Wilson, 1995; Colman, 2003; Ohtsubo

and Rapoport, 2006). In this framework, level-0 players act randomly, level-1 play-

ers calculate best responses to level-0 players, and so on. Our analysis therefore

corresponds to level-0 strategic reasoning, and can be used as a starting point for

analysis of higher-order strategy.

Second, we modeled voting populations as symmetric continuous distributions

in one dimension, with preferences arising strictly from distances in this dimen-

sion. Considering higher-dimensional preference spaces would also be a natural

extension of our analysis. Does IRV exhibit exclusion zones in two, three, or more

dimensions? Asymmetric voter distributions would also be valuable to consider,

although the notion of a moderate may need to be revisited in this case (perhaps

based on the median voter). Using the same squeezing argument, IRV should

also exhibit exclusion zones with asymmetric voter distributions, although their

forms may not be as tidy as the ones we derive. Other possible extensions include
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non-linear voter preferences (for instance, where a voter ranks all candidates on

their right before all candidates on their left, regardless of distance), probabilistic

voting, and voter abstention. Practical considerations of IRV could also be taken

into account; for instance, real-world elections often ask for top-truncated prefer-

ences rather than full rankings, which can the affect the outcome (Tomlinson et al.,

2023). Does IRV with truncated ballots still exhibit a moderating effect?

Finally, as we noted earlier, there are voting systems that always select the most

moderate candidate with symmetric 1-Euclidean voters. This is true for any system

that satisfies the Condorcet criterion, selecting the Condorcet winner whenever

one exists (a property that holds for the minimax, Condorcet-Hare, Copeland,

and Dodgson methods, among many others (Black, 1958; Richelson, 1975; Green-

Armytage et al., 2016)); it is also true for some other voting systems that do

not in general satisfy the Condorcet criterion, like the Coombs rule (Coombs,

1964; Grofman and Feld, 2004). There are a variety of practical and historical

reasons why these methods are not widely used for political elections. For instance,

Dodgson’s method is NP-hard to compute (Bartholdi et al., 1989) and the Coombs

rule is very sensitive to incomplete ballots, which are common in practice. As

we are motivated by ongoing debates about IRV and plurality, our attention has

been restricted to these voting methods. However, a broader understanding of

moderating effects of voting systems would be valuable. There has been some

theoretical work on moderating effects of score-based voting systems (like Borda

count and approval voting) with strategic voters and candidates (Dellis, 2009).

However, it is an open question (with some computational evidence to support it

(Chamberlin and Cohen, 1978)) whether other voting systems like Borda count

exert a moderating effect in the setting we study, with fixed voter and candidate

distributions.
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CHAPTER 8

REPLICATING ELECTORAL SUCCESS

In the previous chapter, we assumed that candidate positions are drawn from a

distribution or are arbitrary fixed points; this was a simplifying choice, as our

focus was on the mechanism of the voting system itself. However, the real world

is clearly more complex: candidates are motivated to gain office and therefore are

likely to strategize about their policy position in order to maximize their chance

of election. In this chapter, we explore which policies are electorally successful

over time when candidates are (heuristically) strategic, a core topic in the study

of elections.

The literature in this area traces its roots to Hotelling (1929) and Downs

(1957). In the Hotelling–Downs model, candidates compete for election in a one-

dimensional policy space. Under the assumption that voters prefer candidates

closer to them in policy space, two rational office-seeking candidates will adopt the

policy of the median voter, since any other position receives strictly fewer votes.

Thus, the central prediction of the Hotelling–Downs model is that we should expect

candidates to espouse near-identical moderate policies; in economic contexts, this

is often called the principle of minimum differentiation (Eaton and Lipsey, 1975;

De Palma et al., 1985). However, this is not what we observe in modern democra-

cies: countries using plurality often have two dominant parties with markedly dif-

ferent policies (Poole and Rosenthal, 1984; Grofman, 2004; Riker, 1982). Decades

of research have attempted to reconcile this observed policy divergence with the

intuitive arguments of Hotelling and Downs (Grofman, 2004; Osborne, 1995), pos-

tulating additional factors like the threat of third-party entry (Palfrey, 1984) or

policy- rather than office-motivated candidates (Wittman, 1983). Subsequent re-
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search has also expanded beyond two-candidate analysis to consider k-candidate

elections (Cox, 1987).

The majority of this work has continued under the traditional assumption that

candidates are rational and able to make strategically optimal decisions. However,

the growing literature on bounded rationality (Simon, 1955, 1979) and decision-

making heuristics (Tversky and Kahneman, 1974), as well as the complexity of

elections, casts doubt on whether this is likely in practice. In a notable exception

to the literature on rational candidate positioning, Bendor et al. (2011) argue that

heuristics play a crucial role in electoral strategy:

Campaigns are of chess like complexity—worse, probably; instead of a

fixed board, campaigns are fought out on stages that can change over

time, and new players can enter the game. Hence, cognitive constraints

(e.g., the inability to look far down the decision tree, to anticipate your

opponent’s response to your response to their response to your new ad)

inevitably matter. [...] Thus, political campaigns, like military ones,

are filled with trial and error. A theme is tried, goes badly (or seems

to), and is dropped. The staff hurries to find a new one, which seems to

work initially and then weakens. A third is tried, and then a fourth. [...]

In short, there are good reasons for believing that the basic properties of

experiential learning—becoming more likely to use something that has

worked in the past and less likely to repeat something that has failed—

hold in presidential campaigns. (Bendor et al., 2011, emphasis ours)

Our model. In this chapter, we introduce a model of candidate positioning based

on the above heuristic: candidates imitate success. We focus on plurality elections,
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Figure 8.1: Replicator dynamics for candidate positioning with k = 3 candidates
per election. The top row shows the winner distributions Fk,t for each generation
t, starting from a uniform distribution at t = 0, while the bottom row shows
four example elections per generation. In each generation, candidates sample their
positions from the winner distribution from the previous generation. Plurality
winners (with voters uniform over [0, 1]) are indicated in green.

where each voter casts one vote and the candidate with the most votes wins. We

assume voters have 1-Euclidean preferences (Coombs, 1950; Elkind et al., 2016),

where voters and candidates occupy points in the unit interval [0, 1] and voters

prefer closer candidates. To represent a large voting population, our model uses a

continuum of voters and continuous vote shares rather than discrete counts. Di-

verging from prior work, we model a large number of k-candidate elections that

proceed in generations rather than an individual election or election sequence. In

each generation, we assume that candidates copy the policy position of a winner

from the previous generation, a simple heuristic in line with Bendor et al.’s sugges-

tion that candidates use strategies that worked in the past. This heuristic is also

supported by a wealth of political science research arguing that the imitation of

policies, especially electorally successful ones, is a major feature of politics (Shipan

and Volden, 2008; Böhmelt et al., 2016; Ezrow et al., 2021). As with voters, our

model uses a continuous distribution of candidate positions in each generation,

which can be viewed as either capturing the expected behavior of a finite number

of elections or as the infinite-election limit.
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This simple assumption about candidate behavior (sample a position from

the distribution of winners in the last election cycle) yields a mathematical

model equivalent to the well-studied replicator dynamics from evolutionary bi-

ology (Taylor and Jonker, 1978; Schuster and Sigmund, 1983), which have also

found widespread use in economics (Safarzyńska and van den Bergh, 2010; Nelson

et al., 2018). In the classic replicator dynamics, n strategies (or alleles) compete

in a population, increasing in prevalence at a rate proportional to their average

fitness in pairwise contests drawn from the current population. Our model arises

from taking such dynamics and moving to a continuous strategy space with k-way

interactions in discrete time (i.e., k-candidate elections), treating the plurality win

probability as fitness; we therefore refer to it as replicator dynamics for candidate

positioning.

In summary, then, our model operates in a sequence of generations; each gen-

eration involves a large number of identically distributed elections, and the can-

didates in a given generation are drawn from the distribution of winners of the

previous generation’s elections. Figure 8.1 provides a schematic visualization of

the process with k = 3 candidates. While our model is phrased in terms of a large

population of elections—just as the classic replicator dynamics models a popula-

tion of organisms—there is a deep connection between replicator dynamics and

reinforcement learning (Börgers and Sarin, 1997; Bloembergen et al., 2015), so our

conclusions are likely to generalize to models of individual-level trial-and-error.

Our results. Our main technical contributions characterize the long-run behav-

ior of the replicator dynamics for different values of k, the number of candidates

per election. We find a dramatic qualitative change in the dynamics as the number

of candidates k increases. For our analysis, we focus on the case in which the initial
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Figure 8.2: Replicator dynamics runs for k = 2, . . . , 7 and 200 generations. Each
plot shows 50 runs layered on top of each other, where each run simulates 100,000
elections per generation. We also use enhanced symmetry, a trick to keep the
symmetry of the analytical model by reflecting copied points across 1/2 (discussed
further in Section 8.5). Darker regions indicate higher candidate density; we use a
log-scaled colormap to make low-density regions visible. As our theory establishes,
the candidate distribution converges to the center for k = 2, 3, 4, but does not for
k ≥ 5. The convergence is very fast for k = 2 and 3, but much slower for k = 4.

distribution of candidates is symmetric and has a continuous CDF and that voters

are uniformly distributed over [0, 1], but we find evidence in simulation that the

same patterns hold with other symmetric voter distributions. When k = 2, we

prove that the candidate distribution converges to a point mass at 1/2 under the

replicator dynamics, just like rational candidates in the Hotelling–Downs model.

However, we also prove in our model that the candidate distribution converges

to the center for k = 3 and 4, in stark contrast to three- and four-candidate ex-

tensions of the Hotelling–Downs argument (Cox, 1987). Given the behavior for

k = 2, 3, and 4, one might be tempted to hypothesize that the replicator dynamics

always cause the candidate distribution to converge to the center. Surprisingly,

we prove that the pattern ends there: for any k ≥ 5, we show that the candidate

distribution does not converge to 1/2. See Figure 8.2 for simulations demonstrat-

ing the patterns that we characterize theoretically. These simulations reveal a

tendency for candidate counts larger than 4 to result in two distinct clusters of

policies (around 1/4 and 3/4 with uniform voters). This is strongly reminiscent

of Duverger’s Law (Duverger, 1959; Riker, 1982), the observation that plurality

elections tend towards two-party systems; it is striking that it emerges here from a
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model that does not include any explicit reward for clustering at points away from

the center or any mechanisms like the threat of third-party candidates (Bol et al.,

2016).

To strengthen this characterization of the long-run replicator dynamics, we

show that our convergence results are robust to noise: even if a small fraction of

candidates position themselves uniformly at random, we can still show (approx-

imate) convergence to the center for k = 2, 3, 4 and non-convergence for k ≥ 5.

While we are not able to theoretically derive the asymptotic distribution for k ≥ 5

in general, we show that when the initial candidate distribution is supported only

on (1/4, 3/4), the candidate density in an interval around 1/2 goes to 0. Addition-

ally, we explore several variants of the model in simulation, including non-uniform

voter distributions, noisy position-copying, memory of prior rounds of elections,

and mixtures of candidate counts. Across these variants, we observe the same gen-

eral pattern: convergence to the center with up to four candidates, but not with

five or more. For candidate counts k > 5 we sometimes see complex and chaotic

finite-sample effects in simulation. We conclude by relating our replicator dynam-

ics model back to traditional analyses of Nash equilibria in the style of Hotelling

and Downs. The close relationship between replicator dynamics fixed points and

Nash equilibria is well-known (Hofbauer and Sigmund, 2003), but we argue that

ignoring dynamics and focusing only on Nash equilibria leads to brittle conclu-

sions. In particular, we show that different assumptions on voter behavior when

candidates occupy the same points lead to dramatically different Nash equilibria

than reported in prior work (Cox, 1987); in contrast, this choice has no effect on

our replicator dynamics results.

To summarize, our main finding is that a simple imitation heuristic can cause
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candidates to either converge to the median voter or to form two distinct parties,

depending on how many candidates run in each election. Intuitively, this phe-

nomenon is driven by the bogeyman of one-dimensional plurality elections: being

flanked. If a candidate is stuck between two others, they lose votes from both

the left and the right. When there are too many candidates all imitating previous

moderate winners, only the leftmost or rightmost of them will avoid being flanked,

making more extreme candidates more successful. However, with a small enough

pool of opponents, the higher vote share a moderate can receive is worth the risk

of ending up stuck between two others. This emerges naturally from our dynam-

ics, without the need for strategic forethought. The surprising fact that falls out

of our mathematical analysis is that when candidates are imitators rather than

optimizers, the tipping point between the Hotelling–Downs centripetal force and

the centrifugal force fueled by the problem of flanking occurs between four- and

five-candidate elections.

8.1 Related work

Before diving into our theoretical analysis, we briefly summarize the literature in

relevant areas.

One-shot candidate positioning games. Expanding on the two-candidate

Hotelling–Downs foundation, subsequent research has explored higher-dimensional

spaces (Plott, 1967; Irmen and Thisse, 1998), more than two candidates (Cox,

1987), policy motivation (Wittman, 1983), uncertainty about voter posi-

tions (Calvert, 1985), and candidate valence (i.e., charisma or name recogni-

tion) (Groseclose, 2001; Bruter et al., 2010), among many other variations (see
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Osborne (1995); Kurella (2017) for surveys).1 Some models allow a third-party

candidate to enter the race after the established candidates select their positions,

which can lead to non-central two-party equilibria (Palfrey, 1984; Weber, 1992;

Bol et al., 2016).

Dynamic models of candidate positioning. In addition to the work on one-

shot games, there is also a literature on candidate positioning dynamics (Duggan

and Martinelli, 2017), although in contrast to our work, the focus of this liter-

ature has been on rational two-candidate contests. One notable early paper in

this line of work studies a two-party system where the party which lost the pre-

vious election is allowed to reformulate its policy to maximize votes in the next

election, which can yield predictable trajectories even in higher-dimensional policy

spaces (Kramer, 1977). As in the one-shot literature described above, extensions

of this model of two-party dynamics have added a variety of features, including

policy motivation (Wittman, 1977; Chappell and Keech, 1986), forward-looking

parties (Rosenthal, 1982; Forand, 2014; Nunnari and Zápal, 2017), and—most

closely related to our work—boundedly-rational candidates who are unable to ex-

actly optimize their positions (Kollman et al., 1992, 1998; Bendor et al., 2011).

Our work is set apart from this prior research on electoral dynamics with bounded

rationality in our replicator dynamics approach, and our success deriving analyt-

ical results for more than two candidates. We are aware of one paper (Laslier

and Ozturk Goktuna, 2016) combining a spatial model of elections and replicator

dynamics, but the number of parties is fixed to two and the focus is instead on

competition between office- and policy-motivated party members (“opportunists”
1Hotelling framed the game in terms of two shops positioning themselves along a line (or the

design of two competing goods along a single axis), while Downs applied the idea to plurality
elections. The two motivations yield equivalent models, so some of the papers we cite use the
language of facility location or product design rather than candidate positioning.
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and “militants”), where opportunists may defect to the other party.

Evolutionary game theory and replicator dynamics. Replicator dynam-

ics (Taylor and Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and Sig-

mund, 2003) were introduced to study the evolution of biological populations, but

have since found much broader use. Economists have used evolutionary models—

including replicator dynamics—to understand investment behavior (Blume and

Easley, 1992), technological innovation (Saviotti and Mani, 1995; Safarzynska and

van den Bergh, 2011), and resource harvesting (Noailly et al., 2003), among many

other phenomena. See Friedman (1991) for an introduction to evolutionary game

theory from an economic perspective and Nelson et al. (2018); Safarzyńska and

van den Bergh (2010) for surveys of evolutionary economics. Evolutionary models

can even be justified without population-level evolution: models of individual-level

learning can give rise to behavior equivalent to replicator dynamics (Börgers and

Sarin, 1997); see Bloembergen et al. (2015) for a survey of the connection be-

tween replicator dynamics and reinforcement learning. Evolutionary models are

much less common in political science than in economics, but have been used to

model the corruption of elected officials (Accinelli et al., 2017), coordination by vot-

ers (Mebane Jr, 2005), and party defection (Laver and Benoit, 2003). Extensions

of the classical replicator dynamics have explored the various modifications found

in our model, including multi-way interactions (Gokhale and Traulsen, 2010), dis-

crete time (Losert and Akin, 1983), and a continuous strategy space (Oechssler

and Riedel, 2001; Cheung, 2016).

Elections with strategic voters. Another line of research around strategic as-

pects of elections focuses instead on the strategic choices made by voters rather
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than candidates (Desmedt and Elkind, 2010; Thompson et al., 2013; Obraztsova

et al., 2016) (with some papers combining both voter and candidate strategy (Fed-

dersen et al., 1990; Myerson and Weber, 1993)). Dynamics have featured promi-

nently in the strategic voting literature (Dekel and Piccione, 2000; Callander,

2007)—in particular, under the framework of iterative voting (Meir et al., 2010;

Lev and Rosenschein, 2012; Obraztsova et al., 2015), where voters are allowed to

update their votes in successive rounds until they are satisfied. Intriguingly, this

style of voter-dynamics analysis can also produce conclusions paralleling Duverger’s

Law, where two major candidates emerge, despite using a completely different ap-

proach to ours (Meir et al., 2014). Evolutionary dynamics have also been applied

to voter behavior to explain the paradox of voting (why do people vote when their

probability of affecting the outcome is near zero?) (Sieg and Schulz, 1995).

8.2 Replicator dynamics for candidate positioning

We now formally introduce our model. We consider a one-dimensional policy space

represented by the unit interval [0, 1]. Candidates and voters reside at points in

the interval. To model a large population of voters, we treat the voting population

as a continuum; for our theoretical analysis, we assume voters are uniform over

[0, 1], but we later relax this assumption in simulation. We assume voters have

1-Euclidean preferences (Elkind et al., 2016)—that is, they vote for the closest

candidate. The vote share of a candidate i is the fraction of voters who vote

for i. With uniform voters, the vote share of a candidate is equal to half the

distance between the candidates to its left and right (a candidate adjacent to a

boundary gets the entire vote share on its boundary side). Under plurality voting,

the candidate with the largest vote share wins; in the case of tied maximum vote
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shares, the tie is broken uniformly at random.

Our replicator dynamics model of candidate positioning supposes that elections

proceed in generations t = 1, 2, . . . , with (infinitely) many elections per generation.

We assume the number of candidates in each election is fixed at k (later, we relax

this assumption in simulation). The core idea of our model is that candidates

in generation t chose their policy positions by copying the position of a winner

from the previous generation t− 1. More formally, let F0 be the initial candidate

distribution and let Fk,t denote the distribution of winner positions in generation t

with k candidates per election. We define Fk,0 = F0 for all k, although we typically

write F0 since the initial distribution does not depend on k. In generation t, each

election consists of k candidates with positions X1,t, . . . , Xk,t ∼ Fk,t−1. We use

Fk,t(x) to denote the CDF of the winner distribution in generation t and fk,t(x)

to denote the PDF. Let Plurality(X1,t, . . . , Xk,t) be the position of the plurality

winner given candidate positions X1,t, . . . , Xk,t and uniformly distributed voters.

Definition 3. Given an initial candidate distribution F0 and a candidate count

k, the replicator dynamics for candidate positioning (under plurality with uniform

1-Euclidean voters) are, for all t > 0,

Fk,t(x) = Pr(Plurality(X1,t, . . . , Xk,t) ≤ x), (8.1)

Xi,t ∼ Fk,t−1, ∀i = 1, . . . , k.

Or, in terms of the PDF:

fk,t(x) = k · Pr(Plurality(x,X2,t, . . . , Xk,t) = x) · fk,t−1(x). (8.2)

This model can be viewed through the lens of evolutionary replicator dynam-

ics (Taylor and Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and Sigmund,
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2003), although there are several differences from the classical case. In the clas-

sic replicator dynamics, there are n discrete strategies, each of which increases in

frequency proportionally to how well that strategy performs against the current

population. This proportionality is exactly what Equation (8.2) captures: strat-

egy x increases in density proportional to its plurality win rate against the current

population.

The main question we study is how the candidate distribution evolves over time

under the replicator dynamics. We focus on cases where F0 is symmetric about

1/2 and contains no point masses (i.e., the initial CDF F0(x) is continuous); we

call such distributions symmetric and atomless. This ensures that the probability

multiple candidates share the exact same point is 0, so we can ignore these cases

for now. Since we assume F0 is symmetric, all subsequent winner distributions are

also symmetric by the symmetry of plurality with a uniform voter distribution—we

lean heavily on this fact in our analysis. Some of our results require an additional

assumptions on F0. We say F0 is positive near 1/2 if F0(x) < 1/2 for all x < 1/2

(equivalently, f0(x) > 0 in an interval around 1/2); the symmetry of F0 allows us

to phrase definitions like this in terms of the left half of the unit interval, and it

then applies equivalently to the right half as well. We define F to be the set of all

symmetric and atomless distributions over [0, 1] and F+ ⊂ F to be the subset of

such distributions which are also positive near 1/2.

In this section, we prove our main result piece-by-piece.

Theorem 32. Let F0 ∈ F+. For k ∈ {2, 3, 4}, the candidate distribution converges

to a point mass at 1/2 under the replicator dynamics. In contrast, for k ≥ 5, the

candidate distribution does not converge to a point mass at 1/2.

Theorem 32 follows from Theorems 33 to 36. Our results for k ∈ {2, 3, 4} give
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fine-grained characterizations of the dynamics, which imply convergence to the

center: for k = 2, we derive a closed form for the CDF at generation t (Theorem 33),

while for k = 3 and 4 we derive closed-form bounds for the CDF (Theorems 34

and 35). The negative portion of Theorem 32 offers less insight into the dynamics

for k ≥ 5, only showing non-convergence to the center (Theorem 36), but in

Section 8.4 we prove a stronger result in the special case where F0 has no extreme

candidates. All proofs omitted from this section for the sake of readability can be

found in Appendix G.2.1.

8.2.1 k = 2

Two-candidate plurality with symmetric voters is simple: whichever candidate is

closer to 1/2 has the larger vote share and wins. This simplicity allows us to fully

characterize the dynamics with k = 2. In particular, we derive a closed form for

the CDF F2,t(x).

Theorem 33. Let F0 ∈ F . For all x < 1/2 and t ≥ 0, F2,t(x) = [2 · F0(x)]
2t /2.

Proof. Let x < 1/2. Since the candidate closer to 1/2 wins with k = 2,

Plurality(X1,t, X2,t) /∈ (x, 1 − x) if and only if both X1,t /∈ (x, 1 − x) and

X2,t /∈ (x, 1− x), which occurs with probability (2 · F2,t−1(x))
2. By symmetry, we

then have F2,t(x) = Pr(Plurality(X1,t, X2,t) ≤ x) = (2·F2,t−1(x))
2/2 = 2·F2,t−1(x)

2.

We can now prove the claim by induction on t. For the base case t = 0,

(2 · F0(x))
20/2 = F0(x). For the inductive case t ≥ 1, applying the inductive

hypothesis yields:

F2,t(x) = 2 · F2,t−1(x)
2 = 2

[
(2 · F0(x))

2t−1

/2
]2

= [2 · F0(x)]
2t /2.
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This result shows that for k = 2, the CDF at any point x < 1/2 with F2,0(x) <

1/2 rapidly goes to 0—that is (apart from degenerate initial distributions) the

candidate distribution converges toward a point mass at 1/2.

Corollary 6. Let F0 ∈ F+. For all x < 1/2, limt→∞ F2,t(x) = 0.

Note that by symmetry, it follows from such a statement that for all x > 1/2,

limt→∞ F2,t(x) = 1.

8.2.2 k = 3

For k = 3, plurality becomes more complex: the winner need not be the closest to

1/2 (for instance, consider candidates at positioned at 1/3, 1/2, and 2/3). Nonethe-

less, we can still show that the candidate distribution converges to the center. To

do so, we find an upper bound on F3,t(x) which goes to 0. The idea behind the

proof is to enumerate cases where a candidate in an inner interval (x, 1− x) wins

and add up the probability of these cases, as a function of Fk,t−1(x). For example,

if there are two candidates in [0, x) and one in (1/2, 1 − x), then the candidate

in (1/2, 1 − x) gets vote share greater than 1/2 and wins; this case occurs with

probability
(
3
2

)
F3,t−1(x)

2 · (1/2− F3,t−1(x)). By symmetry, we can then transform

this lower bound on the probability the winner is inside (x, 1 − x) into an upper

bound on F3,t(x), the probability that the winner is in [0, x].

Theorem 34. Let F0 ∈ F . For all x < 1/2 and t > 0,

F3,t(x) ≤ 3/4 · F3,t−1(x) + F3,t−1(x)
3. (8.3)

This can be written as a looser closed form

F3,t(x) ≤ F0(x) ·
[
3/4 + F0(x)

2
]t
. (8.4)
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This result reveals that the candidate distribution for k = 3 also converges

rapidly to the center. In particular, (8.4) shows that the CDF at any point x

with F0(x) < 1/2 decays exponentially towards 0 in t. This can also be seen

by analyzing the cubic iterated map suggested by the upper bound (8.3), which

converges to a stable fixed point at 0 for all initial values in [0, 1/2).

Corollary 7. Let F0 ∈ F+. For all x < 1/2, limt→∞ F3,t(x) = 0.

8.2.3 k = 4

As with k = 3, we derive an upper bound on the CDF which converges to 0.

However, the bound suggests convergence is much slower for k = 4 than for 2 or

3 (which we will see later confirmed in simulation). The proof follows the same

case-enumeration strategy as k = 3, but simple cases only show that the CDF is

non-increasing in t for x ∈ (1/3, 1/2), giving us the following lemma.

Lemma 4. Let F0 ∈ F . For all x ∈ (1/3, 1/2) and t ≥ 0, F4,t(x) ≤ F4,0(x).

By using Lemma 4, we can strengthen the case analysis with one additional

case that tips the recurrence from breaking even to shrinking exponentially towards

0. However, the base of the exponential depends very strongly on x, increasing

rapidly towards 1 near 1/2.

Theorem 35. Let F0 ∈ F . For all x ∈ (1/3, 1/2) and t ≥ 0,

F4,t(x) ≤ F0(x) ·
[
1− 4(1/2− F0(x/3 + 1/3))3

]t
. (8.5)

Note that x/3 + 1/3 is the point two-thirds of the way from x to 1/2. As long

as F0(x/3 + 1/3) < 1/2, which is true for any x < 1/2 if F0 is positive near 1/2,
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this result shows that the CDF left of 1/2 decays to 0 as t grows. That is, the

candidate distribution converges to the center again.

Corollary 8. Let F0 ∈ F+. For all x < 1/2, limt→∞ F4,t(x) = 0.

8.2.4 k ≥ 5

In contrast to k = 2, 3, 4, we now show that for any larger k, the candidate dis-

tribution does not converge to the center. The proof is based on the following

observation.

Lemma 5. For any k, if all candidates are in (1/4, 3/4), then only the left- or

rightmost candidate can win with uniform voters.

Proof. Suppose all candidates are in (1/4, 3/4). Any candidate between two others

gets vote share less than (1/2)/2 = 1/4, since no two candidates are distance 1/2

or greater apart. Meanwhile, the left- and rightmost candidates each get vote share

> 1/4.

Intuitively, if the candidate distribution starts converging to the center, then

all candidates will likely be inside (1/4, 3/4), at which point only the most extreme

candidates can win. When k is sufficiently large (i.e., ≥ 5), the left- and rightmost

candidates are likely on opposite sides and farther from 1/2 than the average

candidate. This results in a centrifugal force preventing further progress towards

the center. Formally, we prove the following theorem.

Theorem 36. Let F0 ∈ F . For any k ≥ 5, there exists some x < 1/2 such that

limt→∞ Fk,t(x) ̸= 0. That is, the candidate distribution does not converge to a point

mass at 1/2.

204



More specifically, our proof assumes for a contradiction that the distribution

converges to 1/2, so at some generation t∗, the probability mass left of 1/4 must

be less than some small α. We then show that the CDF can never decrease at

F−1k,t∗(1/4) after generation t∗, since all candidates will likely be inside (1/4, 3/4),

causing only the most extreme candidates to win. This contradicts convergence to

the center.

8.3 Replicator dynamics with noise

So far, we have assumed that all candidates copy winner positions from the previous

generation. We now show that our results still hold in approximate forms if some

of the candidates violate this behavior and instead position themselves uniformly

at random. This demonstrates a way in which the convergence of the model is

robust to alternative specifications.

Definition 4. Given an initial candidate distribution F0, a candidate count k,

and a noise level ϵ ∈ (0, 1], the replicator dynamics for candidate positioning with

ϵ-uniform noise (under plurality with uniform 1-Euclidean voters) are, for all t > 0,

F ϵ
k,t(x) = Pr(Plurality(Xϵ

1,t, . . . , X
ϵ
k,t) ≤ x), (8.6)

F ϵ
k,0 = F0

Xϵ
i,t ∼


Uniform(0, 1) w.p. ϵ,

F ϵ
k,t−1 w.p. 1− ϵ.

As in the noiseless case, we show that the candidate distribution converges to

the center under the dynamics with ϵ-uniform noise for k = 2, 3, 4 but do not for

k ≥ 5. However, since ϵ-uniform noise introduces non-central candidates at every
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t, we need to relax the convergence requirement. The idea behind our notion of

approximate convergence is that if we make the noise sufficiently small, then the

distribution should get arbitrarily close to a point mass at 1/2. That is, the CDF

at any point x < 1/2 eventually goes below any positive threshold c, for sufficiently

small ϵ > 0.

Definition 5. Let F0 ∈ F . The candidate distribution approximately converges

to the center under the replicator dynamics with ϵ-uniform noise if for all x ∈

[0, 1/2) and c > 0, there exists some ϵmax > 0 such that if ϵ ∈ (0, ϵmax], then

lim supt→∞ F
ϵ
k,t(x) < c.

We now give the analogue of our main result with ϵ-uniform noise. One addi-

tional benefit of adding noise is that we no longer need to assume F0 is positive

near 1/2.

Theorem 37. Let F0 ∈ F . For k ∈ {2, 3, 4}, the candidate distribution approxi-

mately converges to the center under replicator dynamics with ϵ-uniform noise. In

contrast, for all k ≥ 5, the candidate distribution does not approximately converge

to the center.

Theorem 37 follows from Theorems 38 to 41. See Appendix G.2.2 for proofs

omitted from this section.

8.3.1 k = 2

We first show that the replicator dynamics with ϵ-uniform noise approximately

converge to the center with two candidates. In fact, we can exactly characterize

the limiting candidate distribution for k = 2. As before with k = 2, whichever
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candidate is closer to 1/2 wins, but now these candidates can either be winner-

copiers or randomly positioned. The idea behind the proof is to find an iterated

map for F ϵ
2,t(x) and find the stable fixed point it converges to for x < 1/2, which

we show is smaller than ϵ.

Theorem 38. Let F0 ∈ F . For any ϵ ∈ (0, 1) and x ∈ [0, 1/2) with ϵ-uniform

noise,

lim
t→∞

F ϵ
2,t(x) =

1− 4xϵ(1− ϵ)−
√

1− 8ϵx(1− ϵ)
4(1− ϵ)2

≤ ϵ. (8.7)

Proof. Let x < 1/2 and p = F ϵ
2,t−1(x). Each candidate in generation t is drawn from

F ϵ
2,t−1 w.p. (1 − ϵ) and from Uniform(0, 1) w.p. ϵ (call such candidates uniform).

Uniform candidates fall outside (x, 1 − x) w.p. 2x, while non-uniform candidates

fall outside (x, 1 − x) w.p. 2p by symmetry. A winner in generation t is not in

(x, 1−x) if and only if both candidates fall outside this interval, which thus occurs

with probability

Pr(Xϵ
1,t /∈ (x, 1− x), Xϵ

2,t /∈ (x, 1− x)) = (1− ϵ)2(2p)2︸ ︷︷ ︸
neither uniform

+2ϵ(1− ϵ)(2x)(2p)︸ ︷︷ ︸
one uniform

+ ϵ2(2x)2︸ ︷︷ ︸
both uniform

= 4p2(1− ϵ)2 + 8pxϵ(1− ϵ) + 4x2ϵ2.

By symmetry, we then have

F ϵ
2,t(x) = Pr(Xϵ

1,t /∈ (x, 1− x), Xϵ
2,t /∈ (x, 1− x))/2

= 2p2(1− ϵ)2 + 4pxϵ(1− ϵ) + 2x2ϵ2. (8.8)

The claim then follows from the following technical lemma, proved in Ap-

pendix G.2.2.

Lemma 6. For all initial p ∈ [0, 1/2], ϵ ∈ (0, 1), and x ∈ [0, 1/2), the quadratic

iterated map p′ = 2p2(1 − ϵ)2 + 4pxϵ(1 − ϵ) + 2x2ϵ2 converges to the fixed point

p∗ =
1−4xϵ(1−ϵ)−

√
1−8ϵx(1−ϵ)

4(1−ϵ)2 ≤ ϵ.
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This result implies approximate convergence to the center: we can simply take

ϵmax < c and we then have limt→∞ F
ϵ
2,t(x) ≤ ϵmax < c.

Corollary 9. Let F0 ∈ F . For k = 2, the candidate distribution approximately

converges to the center under replicator dynamics with ϵ-uniform noise.

8.3.2 k = 3

We now show approximate convergence to the center for k = 3 with ϵ-uniform noise.

As in the noiseless case, we cannot fully characterize the limiting distribution, but

we are able to bound it for ϵ < 1/3. The proof repeats the case analysis from the

proof of Theorem 34 but with ϵ-uniform candidates, which yields a cubic iterated

map. We then bound the attracting fixed point of this map, as we did for k = 2.

Theorem 39. Let F0 ∈ F . For any ϵ ∈ (0, 1/3) and x ∈ [0, 1/2),

lim supt→∞ F
ϵ
3,t(x) ≤ 1.5ϵ.

As with k = 2, this shows that for any c > 0, we can pick a small enough ϵ

(i.e., ϵ < min{1/3, 2/3 · c}) so that lim supt→∞ F
ϵ
3,t(x) < c.

Corollary 10. Let F0 ∈ F . For k = 3, the candidate distribution approximately

converges to the center under replicator dynamics with ϵ-uniform noise.

8.3.3 k = 4

As with two and three candidates, we can also show approximate convergence

to the center for replicator dynamics with ϵ-uniform noise and four candidates.
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However, for k = 4, the bound on ϵ required for convergence depends on the

point’s distance from 1/2—just as the convergence rate did in the noiseless case.

We begin with the noisy analogue of Lemma 4.

Lemma 7. Let F0 ∈ F . With ϵ-uniform noise, for any ϵ ∈ (0, 1], x ∈ (1/3, 1/2),

and t > 0,

F ϵ
4,t(x) ≤ ϵx+ (1− ϵ)F ϵ

4,t−1(x).

Thus, F ϵ
4,t(x) ≤ max{x, F ϵ

4,0(x)}.

We can then apply the same strategy as we did in the noiseless case and analyze

the resulting iterated map as we have done for k = 2 and 3.

Theorem 40. Let F0 ∈ F . For any ϵ ∈ (0, 1] and x ∈ (1/3, 1/2), let β =

1/2− ϵ(x/3+1/3)− (1− ϵ)max{x/3+1/3, F0(x/3+1/3)}. Then β ∈ (0, 1/2] and

lim supt→∞ F
ϵ
4,t(x) ≤ 1

8β3 ϵ.

As long as we make ϵ sufficiently small (relative to 8β3), the CDF at x < 1/2

eventually goes below any desired threshold c—although the closer x is to 1/2, the

smaller β becomes, and likewise the required ϵ.

Corollary 11. Let F0 ∈ F . For k = 4, the candidate distribution approximately

converges to the center under replicator dynamics with ϵ-uniform noise.

8.3.4 k ≥ 5

Now that we have seen approximate convergence to the center for k = 2, 3, 4, we

prove that this does not happen for any higher k. The argument uses the same
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idea as in Theorem 36 (k ≥ 5 without noise): that when all candidates are in

(1/4, 3/4), only the left- and rightmost candidates can win. As long as we make

ϵ sufficiently small, the exact same approach applies, albeit with some added care

to account for randomly positioned candidates.

Theorem 41. Let F0 ∈ F . For k ≥ 5, the candidate distribution does not approx-

imately converge to the center under replicator dynamics with ϵ-uniform noise.

8.4 Positive results for k ≥ 5 with no extreme candidates

In the previous sections, our results for k ≥ 5 have been negative, showing the can-

didate distribution does not converge to the center, but without indicating what

the distribution converges to instead. While simulations indicate a tendency to-

wards a two-spike equilibrium, we have not been able to theoretically characterize

the limiting distribution in general for k ≥ 5, either with or without noise. How-

ever, Lemma 5 enables us to analyze the dynamics for k ≥ 5 (without noise) in the

special case that F0 has no extreme candidates, with support only on (1/4, 3/4).

In this setting, the dynamics are much simpler, as only the left- and rightmost

candidates can win. The same type of argument we used before for k ≥ 5 then

provides a positive result, showing that the candidate distribution converges to

one with zero mass in an interval around 1/2. In contrast, our central convergence

results for k ∈ {2, 3, 4} still hold in this special case. Proofs of results in this

section can be found in Appendix G.2.3.

Theorem 42. Suppose F0 ∈ F is supported on (1/4, 3/4). Let ℓ = [1−
√

3/7]/2 =

0.172 . . . . For k ≥ 5 and x ∈ (F−10 (ℓ), 1/2), limt→∞ Fk,t(x) = 1/2.

When F0 is Uniform(1/4, 3/4), note that F−10 (0.172 . . . ) = 0.336 . . . , so The-
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Table 8.1: Base of the exponential from Theorem 43 for small k.

k 2 3 4 5 6

k(1/2)k−2 2 3/2 1 5/8 3/8

orem 42 implies that as t → ∞, the candidate density in [0.34, 0.66] goes to 0

for k ≥ 5. With no extreme candidates, we can also precisely characterize the

density of the candidate distribution at 1/2 using a simple argument. Since only

the left- or rightmost candidates can win, a candidate i at 1/2 only wins if the

other candidates are all on the left or on the right. By symmetry, this occurs

with probability 2 · (1/2)k−1 = (1/2)k−2. Accounting for the k-fold symmetry in

choosing candidate i and applying an inductive argument based on Equation (8.2)

then gives the following result.

Theorem 43. Suppose F0 ∈ F is supported on (1/4, 3/4). For any k ≥ 2 and

t ≥ 0,

fk,t(1/2) = f0(1/2) ·
[
k(1/2)k−2

]t
. (8.9)

With support on (1/4, 3/4), the behavior of the density at 1/2 therefore depends

on whether k(1/2)k−2 is smaller or larger than 1. This quantity is smaller than 1 for

k ≥ 5, larger than 1 for k = 2, 3 and equal to 1 for k = 4 (see Table 8.1). The larger

k is, the more rapidly the density at 1/2 goes to 0. This simple argument reveals

a mechanism driving the k < 5 vs k ≥ 5 divide: (1/2)k−2 is exactly the probability

that a central candidate is not flanked. This probability decreases rapidly with k

and is counterbalanced at first by the increasing number of candidates k who can

be at the center—by as soon as k ≥ 5, the exponentially low probability of being

the left- or rightmost candidate at the center becomes too small.

Theorem 43 is particularly interesting for k = 4, since we know the distribution

converges to a point mass at 1/2, but the density at 1/2 stays constant at f0(1/2)
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Figure 8.3: Replicator dynamics runs with 0.01-uniform noise for k = 2, . . . , 7 and
200 generations, using enhanced symmetry, 50 trials per plot, and 100,000 elections
per generation. The behavior is qualitatively identical to the model without noise
(Figure 8.2).

when F0 is supported on (1/4, 3/4). These seemingly contradictory facts are both

possible since the distribution converges by accumulating more and more mass

in two spikes on each side of 1/2 that approach the center arbitrarily closely.

Theorem 43 thus highlights how k = 4 is a marginal tipping point which just

barely converges to the center—a phenomenon also hinted at by the marginal

nature of our k = 4 case analysis in Lemma 4 and Theorem 35: the analysis in

Lemma 4 just breaks even, with the low-probability case in Theorem 35 needed

to tip the scales. As we saw in Figure 8.2, this manifests in simulation as slow

convergence to the center for k = 4.

8.5 Simulations

Having established our primary theoretical results, we demonstrate them in sim-

ulation.2 To do so, we use Monte Carlo sampling, simulating a large number of

elections per generation (100,000) and using the winners to approximate Fk,t. We

initialize F0 to be uniform. With this basic setup, we observe some effects due

purely to sampling, such as oscillations due to small asymmetries in the Monte

Carlo samples. In contrast, our theoretical model revolves around an evolving
2All of our simulation code and results are available at https://github.com/tomlinsonk/

plurality-replicator-dynamics.
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Figure 8.4: Replicator dynamics runs with no noise (top row) and 0.01-uniform
noise (bottom row) for larger candidate counts k and using enhanced symmetry.
Other settings are identical to Figure 8.3, with 50 runs shown in each plot. As the
theory predicts, the candidate distribution does not converge to the center; but
the exact behavior varies.

density which by definition is always symmetric. To preserve symmetry while

maintaining the same evolving distribution, we configure our Monte Carlo sam-

pling to use a trick we term enhanced symmetry, mirroring each copied position

across 1/2 with probability 1/2 in every generation.

Figure 8.3 shows 50 aggregated simulation runs for k = 2, . . . , 7 using enhanced

symmetry and 0.01-uniform noise (recall Figure 8.2 for equivalent plots without

noise). See Appendix G.1 for additional plots without enhanced symmetry and

showing a single trial—these results follow the same general patterns across values

of k. The candidate distributions evolve exactly as we would expect from our

theory: rapid convergence to the center for k = 2 and 3, slow convergence for k = 4,

and non-convergence to the center for k ≥ 5; both with and without ϵ-uniform

noise. Interestingly, k = 5, 6, and 7 show a tendency to converge towards two point

masses at 1/4 and 3/4—but this phenomenon is sensitive to sampling asymmetries

for k = 6 and 7 (see Figures G.1 and G.3 in Appendix G.1). In Section 8.4, we

will see some theoretical justification for this two-spike behavior in a special case
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Figure 8.5: Simulations demonstrating our convergence results Theorems 33 to 35,
showing the simulated candidate distribution CDF at various points x alongside
the theoretical predictions. The simulations use 50 trials with 100,000 elections
per generation, no noise, and enhanced symmetry. The theorems get progressively
weaker: Theorem 33 provides an exact characterization of the two-candidate dy-
namics, while Theorems 34 and 35 give upper bounds that converge to 0.

when F0 has no extreme candidates. In Figure 8.4, we also show simulations with

larger candidate counts, from 8 to 50. In line with Theorem 36, the distributions

with large k do not converge to the center. However, we see some surprising

differences depending on k; for instance, the asymptotic distribution with k = 8

appears to have four clusters rather than two (mysteriously, all other large values

of k we have tested tend towards two clusters, at least with enhanced symmetry).

In Appendix G.1, we provide several additional visualizations: Figure G.4 shows

simulations with only 50 elections per generation, demonstrating that our findings

still hold in a small-sample setting; Figure G.5 shows large-k simulations without

enhanced symmetry; finally, Figure G.6 demonstrates the no-extremes setting of

Theorem 42, starting from Uniform(1/4, 3/4).

In addition to confirming the picture painted by our theory, we also use simu-

lations to explore how tight our bounds are—although our core focus is on char-

acterizing the qualitative behavior of the model rather than achieving the tighest

bounds on convergence rate. In Figure 8.5, we demonstrate the exact result from

Theorem 33 and the closed-form upper bounds on the candidate distribution CDF

from Theorems 34 and 35. The bounds on convergence rates for k = 3 and 4 are
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Figure 8.6: Simulations demonstrating Theorems 38 to 40, showing the simulated
candidate distribution CDF at various points x and various noise levels ϵ alongside
the theoretical asymptotic bounds. The simulations use 50 trials with 100,000
elections per generation and enhanced symmetry. As in the noiseless case, the
theorems get progressively weaker as k increases. For k = 3, the asymptotic
bounds depend only on ϵ, while the bounds for k = 4 and the exact limit for k = 2
depend on both ϵ and x.

indeed loose, as there are several ways that central candidates can win that are not

easily captured by our case analysis. In Figure 8.6, we demonstrate Theorems 38

to 40. Note that these results are all asymptotic, characterizing or bounding the

limit of the candidate distribution CDF as t → ∞, whereas the results in Fig-

ure 8.5 hold for finite t. Additionally, the results with ϵ-uniform noise depend

on the value of ϵ, so we experiment with several different values. Again, we see

that our bounds from Theorems 39 and 40 are loose, but nonetheless hold and

are non-trivial. Moreover, the exact result in Theorem 38 is nicely confirmed by

simulation.

8.6 Variants of the replicator dynamics

We now demonstrate in simulation that the qualitative picture provided by our

results from Theorem 32 is robust to different specifications of the model. At a

high level, our model of candidate positioning consists of the following components:

(1) a fixed voter distribution, (2) a subset of previous candidate positions which
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new candidates imitate, and (3) a rule for sampling from those previous positions.

In the basic model, the voter distribution is uniform, the imitated positions are

plurality winners from the previous generation, and the sampling rule chooses

uniformly from those winners. Adding ϵ-uniform noise modifies the sampling rule

to sometimes pick uniformly random positions. In simulation, we explore natural

variations of each of these modeling components: changing the voter distribution,

adding plurality winners from earlier generations or runners-up to the imitation

pool, and adding copying errors to the sampling rule or sampling different numbers

of candidates across elections. See Appendix G.3 for formal definitions of the

variants in this section.

Non-uniform voters. We explore our replicator dynamics with symmetric uni-

modal and bimodal voter distributions. In Figure 8.7, we show results with three

voter distributions: the unimodal distribution Beta(2, 2), the bimodal, extreme

voter distribution Beta(0.5, 0.5), and a bimodal double Weibull distribution (Bal-

akrishnan and Kocherlakota, 1985) with shape 4, location 0.5, and scale 0.3 (see

Figure G.7 in Appendix G.1.1 for visualizations of these distributions). The ba-

sic pattern from Theorem 32 continues to hold with these voter distributions.

However, when voters are Beta(2, 2)-distributed, the two clusters at k = 5 are

significantly closer to the center.

Memory. In the basic model, candidates only copy the positions of winners in

the previous generation. However, real-world candidates will likely have memory

of earlier winners, so in this variant, we allow candidates to sample from winner

positions in any of the last m generations. In Figure 8.7, we see that adding m = 2

generations of memory for candidates still maintains the pattern from Theorem 32.
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The results for m = 3 are extremely similar (see Figure G.8 in Appendix G.1).

Perturbation noise. With perturbation noise, each candidate slightly deviates

from the position they copy, as if their imitation is imperfect. In our simulations, we

add Gaussian noise with mean 0 and variance σ2 to each copied position. Figure 8.7

shows that the candidate distribution with a small amount of perturbation noise

(σ2 = 0.005) converges to the center for k = 2, 3, 4 but does not for k ≥ 5. However,

with sufficient noise, higher values of k form a single central cluster; we see this in

Figure 8.7 with k = 6 and σ2 = 0.01. Additionally, for k ≥ 6 the behavior varies

significantly across runs without enhanced symmetry. We even observe phenomena

such as party movement, divergence, and extinction, particularly for higher values

of k (see Figure G.9 in Appendix G.1).

Variable candidate counts. In real-world elections, we might expect different

numbers of candidates to run in different elections, but our model keeps the can-

didate count k constant. In this variant, we allow elections in each generation to

have a mixture of several candidate counts, where candidates copy from winner

positions across all k in the previous generation. We find that our results interpo-

late smoothly to this setting: when most elections have fewer than five candidates,

we see convergence to the center, but not when most elections have k ≥ 5 (see

Figure 8.7, where we simulate an equal mixture of the listed candidate counts in

each generation, with 50,000 elections per k). See Figure G.10 in Appendix G.1

for a more fine-grained experiment in which we smoothly vary the proportions of

elections with k = 3, 4, 5.
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Top-h copying. Finally, we explore a variant where candidates in generation t

choose a position to copy from the pool of candidates with the top-h highest vote

shares in generation t − 1, rather than only winners (i.e., h = 1). In simulation,

top-h copying is the only variant which strays from the dichotomy we establish

in Theorem 32—perhaps unsurprisingly, given that our result is about copying

winners. For k = 3, 4, when h = 2 the candidate distribution does not converge

to the center and instead ends up as k = 5 usually does, with two clusters (see

Figure 8.7, bottom right). For h = 3, the candidate distribution does not even

appear to converge towards point masses (see Figure G.11 in Appendix G.1.1).

These simulations suggest that our central finding (convergence to the center for

k < 5) is a result of copying the positions of plurality winners specifically, and the

dynamics under this heuristic.

8.7 Relationship to Nash equilibria of one-shot games

We now take a step back and examine the relationship between our dynamics and

prior research on strategic positioning. As we discussed, much of the literature on

candidate positioning has focused on one-shot games rather than dynamics (Os-

borne, 1995; Bol et al., 2016; Kurella, 2017), as in the Hotelling–Downs model.

In our 1-Euclidean setting with uniform voters, the Hotelling–Downs equilibrium

has both candidates positioned at 1/2—which as we showed, is also the attracting

distribution of the replicator dynamics with k = 2. Indeed, it is well-known that

Nash equilibria of one-shot games are fixed points of the corresponding replicator

dynamics (Hofbauer and Sigmund, 2003), but replicator dynamics fixed points may

not be Nash equilibria. We can see this intuitively in our setting by noting that

a distribution F is a (symmetric, mixed-strategy) Nash equilibrium if no strategy
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Figure 8.7: Variants of the replicator dynamics. Each plot shows 50 trials with no
enhanced symmetry. Left column, top to bottom: three different voter distribu-
tions and 2 generations of memory. Right column, top to bottom: perturbation
noise with σ2 = 0.005 and 0.01, variable candidate counts, and top-2 copying.
Except for top-2 copying, all of the variants converge to the center for k < 5. Ad-
ditionally, sufficiently high perturbation noise can cause a central cluster to form
for high k.

does better against F than sampling from F , while F is a fixed point of the repli-

cator dynamics if no strategy drawn from F does better against F than sampling

from F . For F with full support, symmetric mixed-strategy Nash equilibria and

replicator dynamics fixed points thus coincide (Bauer et al., 2019). However, Nash

equilibria can be unstable under the dynamics—and even if they are attractors,

their basins of attraction may be negligible.

Before analyzing Nash equilibria, we first need a brief digression to address
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what happens when multiple candidates occupy the same point—we call these

positional ties. Since we have so far assumed that candidate distributions are

atomless, our analyses of the replicator dynamics has avoided this issue: with

an atomless candidate distribution, positional ties occur with probability 0. One

option for handling positional ties is to suppose that candidates fail to position

themselves exactly at the same point and imagine that there is some infinitesimal

jitter in their positions which determines a left–right order. Alternatively, we could

suppose that candidates are in fact precisely at the same point, forcing voters to

make an arbitrary choice between them.

Definition 6. Suppose multiple candidates occupy the same point. Under left–

right tie-breaking, one of these candidates (chosen u.a.r.) receives the entire left

vote share allocated to that point, while a different candidate (also u.a.r.) receives

the entire right vote share. Under equal split tie-breaking, all candidates at a point

share the vote share allocated to that point equally. Equivalently, voters randomly

choose between equidistant candidates.

Armed with these positional tie-breaking rules, we now provide several results

that demonstrate how a static analysis of Nash equilibria yields more fragile con-

clusions than analyzing the asymptotic behavior of the replicator dynamics. We

focus on two types of equilibria: (1) symmetric mixed-strategy Nash equilibria

(SMSNEs), since these relate to fixed points of the replicator dynamics; and (2)

pure-strategy Nash equilibria (PSNEs), since these are the focus of classical can-

didate positioning analyses.

We begin by showing there are multiple SMSNEs in the one-shot candidate po-

sitioning game, but they are often unstable or have tiny basins of attraction under

the dynamics; that is, they are unlikely to be relevant in practice. In contrast, as
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we have seen in theory and simulation, the replicator dynamics behave in quali-

tatively similar ways under a range of specifications. Then, we show that PSNEs

are very sensitive to the choice of positional tie-breaking rule: we arrive at entirely

different conclusions if we adopt left–right versus equal split tie-breaking. In con-

trast, the positional tie-breaking rule is irrelevant to our analysis with atomless

candidate distributions.

8.7.1 Symmetric mixed-strategy Nash equilibria

Since SMSNEs are a subset of the replicator dynamics fixed points, we might hope

to understand the dynamics by analyzing SMSNEs of the game where candidates

seek to maximize their plurality win probability. However, we find that there are

multiple SMSNEs and they can have trivial basins of attraction. For instance,

every candidate at 1/2 is a SMSNE and a replicator dynamics fixed point (with

left–right tie-breaking3). But as we have seen, for k ≥ 5 all symmetric atomless

initial distributions do not converge to a point mass at 1/2. On the other hand, if

we allow initial distributions with point masses and the mass at 1/2 is sufficiently

high, the candidate distribution does indeed approach the all-at-1/2 SMSNE.

Theorem 44. Suppose F0 places probability mass p at 1/2. For any k ≥ 2, there

is some p∗k < 1 such that if p > p∗k, the candidate distribution converges to a point

mass at 1/2 under the replicator dynamics with left–right tie-breaking. One of the

fixed points of pk + kpk−1(1− p) is such a p∗k.

See Appendix G.2.4 for proofs omitted from this section. Additionally, there
3In this subsection, we adopt left–right tie-breaking since it yields equilibria that more closely

align with the typical behavior of the replicator dynamics. For instance, we will see in Sec-
tion 8.7.2 that with equal split tie-breaking, all candidates at 1/2 is only a SMSNE for k = 2—not
k = 3 or 4, where we know the candidate distribution also converges to the center.
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is another family of SMSNEs where each candidate randomly picks between the

points x and 1− x (for x ∈ (1/4, 1/2)).

Theorem 45. With k ≥ 4 and left–right tie-breaking, for any x ∈ (1/4, 1/2), the

strategy where each candidate picks uniformly at random between x and 1− x is a

SMSNE.

Just as with the all-at-1/2 equilibrium, this SMSNE is not indicative of the

typical behavior of the replicator dynamics. However, we can show as before that

for non-atomless distributions, the candidate distribution can converge to this type

of equilibrium.

Theorem 46. Suppose F0 places probability mass p at x and at 1−x, for 1/4 < x <

1/2. For any k ≥ 5, there exists some p∗k < 1/2 such that if p > p∗k, the candidate

distribution converges to point masses at x and 1−x under the replicator dynamics.

In particular, one of the fixed points of (2p)k/2 + k(1 − 2p)((2p)k−1 − 2pk−1)/2 is

such a p∗k.

These results demonstrate the existence of many SMSNEs that alone do not

tell us how we should expect the replicator dynamics to behave.

8.7.2 Positional tie-breaking and pure-strategy Nash equi-

libria

We now demonstrate how ignoring dynamics and focusing on static equilibria can

yield results very sensitive to tie-breaking rules. Cox (1987) extends the Hotelling–

Downs analysis to more than two candidates, characterizing PSNEs of a one-shot
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candidate positioning game—crucially, with equal split tie-breaking. With uniform

voters and k ≥ 3 candidates, Cox proves that there is no PSNE for odd k and that

the only PSNE for even k has evenly-spaced pairs of candidates at 1/k, 3/k, . . . , (k−

1)/k. Clearly, this analysis makes very different predictions than our replicator

dynamics. However, we show that Cox’s results depend strongly on equal split

tie-breaking.

To state Cox’s result formally, we need to fully specify the candidate objective.

We focus on the objective Cox calls complete plurality maximization, where candi-

dates seek first to maximize their vote margin against their strongest competitor,

then second-strongest, etc. We extend this objective to allow stochastic positional

tie-breaking, assuming candidates first maximize their win probability, then each

of their expected vote margins. We can then state Cox’s result.

Theorem 47 (Special case of Theorem 2 from Cox (1987)). With uniform voters,

k ≥ 3 complete plurality maximizing candidates, and equal split tie-breaking,

1. if k is odd, there is no PSNE,

2. if k is even, then the unique PSNE has two candidates at each of the points

1/k, 3/k, . . . , (k − 1)/k.

If we instead use left–right tie-breaking, the picture is dramatically different. In

particular, all candidates at 1/2 is then a PSNE for all k: any deviant who moves

from 1/2 loses with certainty to the center candidate who captures the opposite

side of the vote. Left–right tie-breaking also introduces many additional PSNEs;

we list some of them in the following theorem.

Theorem 48. The following are (some4 of the) PSNEs with uniform voters, com-
4In Appendix G.2.4, we show that for k ≤ 5, this list of PSNEs is exhaustive (Theorem 50);

for k > 6, there may be others.
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plete plurality maximizing candidates, and left–right tie-breaking:

1. Any k ≥ 2: all k candidates at 1/2.

2. Any k ≥ 4: for any x ∈ (1/4, 1/2), ⌊k/2⌋ candidates at x, ⌊k/2⌋ candidates

at 1− x, and the last candidate (if k is odd) at either x or 1− x.

3. Any k ≥ 5: ⌊(k−1)/2⌋ candidates at 1/4, ⌊(k−1)/2⌋ candidates at 3/4, one

candidate at 1/2, and the last candidate (if k is even) at either 1/4 or 3/4.

4. Even k: Cox’s equilibrium; two candidates at each of the points

1/k, 3/k, . . . , (k − 1)/k.

Thus, the qualitative conclusions we arrive by examining Nash equilibria are

very different from Cox’s if we make another similarly reasonable assumption.

Cox’s analysis tells us we should not expect candidates converging to the center for

any k > 2, but if we use left–right tie-breaking, we find that central configurations

are equilibria for all k. The replicator dynamics reveal when these configurations

are stable: only for small k. These results highlight how analyzing Nash equilibria

provides a brittle picture of candidate positioning, yielding results that are sensitive

to tie-breaking and do not capture iterated play. Even SMSNEs, which are closely

related to replicator dynamics fixed points, fail to reveal the typical behavior of

the dynamics.

8.8 Discussion

We introduced a replicator dynamics model of one-dimensional candidate position-

ing in plurality elections based on simple heuristic inspired by bounded rationality.

Our theoretical results show that the candidates converge to the center when there
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are at most four candidates per election, but diverge when there are five or more

candidates per election. Simulations confirm that this pattern is robust to a large

range of model variations. We contrast our results to prior work that focuses on

static equilibria or lacks theoretical results for more than two candidates.

Many open questions remain in the analysis of our model. The foremost is a

theoretical characterization of the asymptotic candidate distribution for k ≥ 5,

although this may be challenging given the complex high-k behavior we observe in

simulation. An even larger challenge is posed by expanding beyond symmetric and

atomless initial candidate distributions to distributions which have points masses

or are asymmetric. As we saw in Theorem 46, allowing atomless distributions

means there are infinitely attracting distributions for k ≥ 5, so the task becomes

one of cataloguing all of the possible long-run candidate distributions. Theoretical

results for our model variants would be interesting, such as characterizing which

mixtures of candidate counts k lead to convergence to the center, or conditions on

voter distributions that result in central convergence for k ≤ 4.

While we explored several model variations in simulation, there are many more

than can possibly be covered in a single chapter. Additional variations of par-

ticular interest include policy-motivated candidates, strategic voters, probabilistic

voters, and higher-dimensional preferences. Another natural direction would be to

explore voting systems other than plurality, like two-round runoff, instant runoff,

or Borda count; Condorcet methods are considerably less interesting under our

one-dimensional replicator dynamics, since the candidate closest to the median

voter always wins, but might exhibit more complex behavior in higher dimensions.
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Part IV

Conclusion and Future Directions
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CHAPTER 9

CONCLUSION AND FUTURE DIRECTIONS

This dissertation applied a computational perspective to two areas of the study

of decision-making: discrete choice, at the individual level, and voting, at the col-

lective level. In Part II, we developed tools for recovering contextual and social

factors from observational choice data, including new models and adaptations of

techniques from causal inference and graph learning. In Part III, we focused on

better understanding the consequences of different voting systems, with a partic-

ular focus on instant runoff voting and plurality, showing how IRV favors moder-

ate candidates and how imitation can lead to convergent policies under plurality.

Bridging the two parts, Chapter 5 applied discrete choice models to an optimal

intervention problem in group decision-making. The complexity and opacity of

decision-making, both at the individual level where a multitude of factors shape

preferences and at the collective level where paradoxes and impossibilities abound,

necessitate a variety of different approaches—here, we have seen how computa-

tional techniques can contribute.

Of course, we have only scratched the surface. Nonetheless, our explorations

have revealed many possible paths for future exploration. Regarding choice mod-

els of context effects, it would be valuable to expand the scope of interpretable

and learnable models to include more complex relational effects, like the compro-

mise effect, that describe how the interaction of multiple item features influences

preferences. Ideally, we should be able to recover such effects from data without

baking them explicitly into a model. Some recent approaches have turned to neu-

ral networks to capture higher-order preference interactions (Rosenfeld et al., 2020;

Pfannschmidt et al., 2022). While they brings the advantage of extreme flexibility,

227



neural networks also come with baggage, namely challenges for interpretability.

An ideal middle ground would be some model capable of expressing relational con-

text effects while maintaining the ease of interpretation of a model like the LCL.

How we might design and implement such a model is a challenging open question.

Given our analysis of the challenges of recovering true context effects in obser-

vational choice data, collaboration with experimental discrete choice researchers

would be very useful in validating models like the LCL as well as our causal in-

ference tools. On the side of social rather than contextual influences, it would be

valuable to compare the predictive and explanatory power of the full-graph social

influence methods we developed with classical local-neighborhood feature-based

modeling. Other future directions in the discrete choice arena include investigat-

ing interventions like assortment optimization using new contextual choice models

and exploring such models in online or adaptive settings.

On the collective decision-making side, our worst-case analysis of ballot length

could also be applied to other voting systems, such as Borda count, or even to

the multi-winner setting, where IRV is called single-transferrable vote (STV). For

voting systems that satisfy the Condorcet criterion, like Copeland or ranked pairs,

it would be useful to know if some restricted form of the criterion still applies when

ballots are truncated. More generally, this expands on the theme of investigating

how theoretical properties of voting systems interact with practical considerations

of real-world elections. Another direction relating to ballot length regards how

voters actually decide on the length of their ideal ranking. Incorporating other be-

havioral models into our analysis (other than voters merely truncating their ideal

rankings to the ballot length) would make it more robust. Regarding our work on

moderation, the clear future step is expanding beyond IRV in 1-Euclidean profiles.

Two different aspects can be explored: the voting system and the preference model.
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One the voting system side, we could ask which non-Condorcet methods have a

moderating effect in symmetric 1-Euclidean profiles (any Condorcet method would

always elect the most moderate candidate). Moving to other preference models,

we could ask if there are exclusion zones (for IRV or other systems) in higher-

dimensional Euclidean profiles, or in other preference models like single-peaked,

single-crossing, and single-peaked on a tree (Elkind et al., 2022). Our ongoing

research in this direction indicates that IRV’s exclusion zones disappear in two or

more dimensions, but the question remains open for other voting systems. We have

also been developing a theory of exclusion zones on graph-structured preferences,

where candidates and voters are nodes in a graph and preferences are determined

by path length. Finally, our work on replicator dynamics for candidate positioning

opens up a broad range of questions. What are the dynamics with higher dimen-

sional preferences? With voting systems other than plurality? With additional

behavioral features beyond imitation and random positioning? The varied and

chaotic simulation results we observed with some variations of the model indicate

that there are complex and subtle phenomena at play.

229



Part V
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APPENDIX A

TECHNICAL DETAILS FOR CHAPTER 2: LEARNING

INTERPRETABLE FEATURE CONTEXT EFFECTS IN DISCRETE

CHOICE

PREFERENCE, n. A sentiment, or frame of mind, induced

by the erroneous belief that one thing is better than another.

Ambrose Bierce, The Devil’s Dictionary, 1906

A.1 Proofs

The proof of Theorem 1 relies on three lemmas.

Lemma 8 ((Seshadri et al., 2019), Appendix A). For any choice set C, there is a

bijection between the choice probabilities {Pr(i, C) | i ∈ C} and the log probability

ratios {βi,C | i ∈ C} defined by

βi,C = log

 Pr(i, C)[∏
j∈C Pr(j, C)

] 1
|C|

 . (A.1)

Proof. We can compute βi,C given all choice probabilities in C as defined above.

To obtain probabilities given log probability ratios, take

exp(βi,C)∑
j∈C exp(βj,C)

=

Pr(i,C)

(
∏
h∈C Pr(h,C))

1
|C|∑

j∈C
Pr(j,C)

(
∏
h∈C Pr(h,C))

1
|C|

=
Pr(i, C)∑
j∈C Pr(j, C)

= Pr(i, C).
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This means we can prove identifiability from the βs rather than from choice

probabilities. We can also get a simple form for βi,C under the LCL.

Lemma 9. In the LCL, βi,C = (θ + AyC)
T (yi − yC).

Proof. Define θC = θ + AyC for brevity.

βi,C = log

 Pr(i, C)(∏
h∈C Pr(h,C)

) 1
|C|


= log

 exp
(
θTCyi

)∑
j∈C exp (θTCyj)

/(∏
h∈C

exp
(
θTCyh

)∑
j∈C exp (θTCyj)

) 1
|C|


= log

 exp
(
θTCyi

)[∏
h∈C exp (θTCyh)

] 1
|C|


= θTCyi −

1

|C|
∑
h∈C

θTCyj

= θTC(yi − yC).

Let vec(A) denote the vectorization of the matrix A (the vector formed by

stacking the columns of A).

Lemma 10 (Special case of the vec trick, (Roth, 1934)). For any vectors x ∈

Rm, y ∈ Rn and matrix A ∈ Rm×n, xTAy = (y ⊗ x)T vec(A).
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Proof.

xTAy =
m∑
i=1

n∑
j=1

Aijxiyj =
n∑
j=1

yj

m∑
i=1

Aijxi

=



y1x

y2x

...

ynx



T

vec(A)

= (y ⊗ x)T vec(A).

With these facts in hand, we are ready to prove Theorem 1.

Proof of Theorem 1. Consider the log probability ratio of an item i appearing in

choice set C:

βi,C = (yi − yC)T (θ + AyC) (by Lemma 9)

= (yi − yC)T
[
A θ

]yC
1


=


yC
1

⊗ (yi − yC)


T

vec

([
A θ

])
. (by Lemma 10)

Let m = |{(i, C) | C ∈ CD, i ∈ C}| be the number of distinct (item, choice set)

pairs in the dataset. Index these pairs from 1 to m. We construct the following
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m× (d2 + d) linear system by stacking all the βi,C equations:


yC1

1

⊗ (yi1 − yC1)


T

...
yCm

1

⊗ (yim − yCm)


T


vec

([
A θ

])
=


βi1,C1

...

βim,Cm

 .

Supposing the choice probabilities are generated according to the LCL, this system

is consistent (although it is highly overdetermined with a large dataset). Any

solution to this system is a setting of the parameters θ, A that results in the

observed log probability ratios (and therefore choice probabilities, by Lemma 8).

Since we know the system is consistent, it has a unique solution (i.e., the LCL is

identifiable) if and only if the rows of the matrix span Rd2+d.

Proof of Proposition 1. Suppose that yC1 , . . . , yCk (k < d + 1) is a maximal set

of affinely independent mean feature vectors appearing in the dataset D. In

each one of these choice sets Ci, the choice probabilities are determined by

θCi = θ + AyCi . However, since k < d + 1, there are infinitely many affine

transformations θ + AyCi that map every yCi to its corresponding θCi . For any

other choice set C ′ /∈ {C1, . . . , Ck}, we can express its mean feature vector as

an affine combination yC′ =
∑k

i=1 αiyCi , where
∑k

i=1 αi = 1. We then have

θC′ = θ + A(
∑k

i=1 αiyCi) =
∑k

i=1 αi(θ + AyCi) =
∑k

i=1 αiθCi , so any of the in-

finitely many affine transformations that correctly map yCi to θCi will also map

yC′ to θC′ . This means there are infinitely many parameter settings θ and A that

would result in the same choice probabilities, so the LCL is not identifiable.

Proof of Proposition 2. We will use differences in log probability ratios to first
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identify the choice set dependent utilities θC = θ+AyC in each choice set and then

combine those to determine θ and A.

To remove a dependence on mean feature vectors, consider the difference of two

log probability ratios in the same choice set:

βi1,C − βi2,C = θTC(yi1 − yC)− θTC(yi2 − yC) (by Lemma 9)

= θTC(yi1 − yi2).

In order to identify the vector θC , form the following linear system from d such

differences, all in the same choice set C:

(yi1 − yi0)T

(yi2 − yi0)T
...

(yid − yi0)T


θC =



βi1,C − βi0,C

βi2,C − βi0,C
...

βid,C − βi0,C


If the rows of the matrix are linearly independent, then we can uniquely solve

this system to find θC . For this to be the case, we need the d + 1 feature vectors

yi0 , . . . , yid to be affinely independent.

In order to recover θ and A, we need to solve the affine system θ+AyC = θC for

θ and A given observations of yC and θC . Affine transformations in d dimensions

are uniquely specified by their action on a set of d+1 affinely independent vectors.

So, if we have d + 1 observed choice sets C0, . . . , Cd whose mean feature vectors

yC0 , . . . , yCd are affinely independent (and if we know θC0 , . . . , θCd), then we can

uniquely identify θ and A. As we have seen, we can find θC0 , . . . , θCd if each of

C0, . . . , Cd has d+ 1 items with affinely independent feature vectors.
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Algorithm 2 EM algorithm for estimating DLCL parameters.
1 Input: m observations D, d features
2 A(0), B(0) ← d× d randomly initialized matrices
3 π(0) ← d-dimensional vector with all entries equal to 1

d

4 t← 0
5 while not converged do

6 phk ←
exp
(
[B

(t)
k +A

(t)
k (yC)k]

T yi

)
∑
j∈C exp

(
[B

(t)
k +A

(t)
k (yC)k]T yj

)
for each (i, C) = Dh and k = 1, . . . , d

7 rhk ←
π
(t)
k phk∑d

g=1 π
(t)
g phg

for each h = 1, . . . ,m and k = 1, . . . , d

8
Q(A,B | θ(t))←

∑
(i,C)=Dh

d∑
k=1

rhk

[
[Bk + Ak(yC)k]

Tyi

− log
∑
j∈C

exp
(
[Bk + Ak(yC)k]

Tyj
) ]

9 Find a minimizer A∗, B∗ of −Q(A,B | θ(t)) using gradient descent
10 A(t+1) ← A∗, B(t+1) ← B∗

11 π
(t+1)
k ← 1

|D|
∑|D|

h=1 rhk for each k = 1, . . . , d
12 t← t+ 1
13 return A(t), B(t), π(t)

A.2 EM algorithm for DLCL estimation

Let Dh denote hth observation (i, C) and ∆h ∈ {1, . . . , d} denote the latent mix-

ture component that the observation Dh comes from (taking the view that each

observation belongs to one component).

The EM algorithm (see (Hastie et al., 2009) for a general treatment) is an

iterative procedure that begins with initial guesses for the parameters θ(0) =

(A(0), B(0), π(0)) and updates them until convergence. In the update step, we max-

imize the expectation of the log-likelihood ℓ(A,B;D,∆) over the distribution of

the unobserved variable ∆ conditioned on the observations D and the current es-

timates of the parameters, denoted E∆[ℓ(A,B;D,∆) | D, θ(t)]. The new estimates

A(t+1) and B(t+1) are the maximizers of this function. The new estimate of the
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mixture proportions π(t+1) has a closed form based on the probability that each ob-

servation comes from each mixture component according to the current estimates

of A and B. See Algorithm 2 for the complete procedure. We derive the details

here, starting with a breakdown of the expectation function:

E∆[ℓ(A,B;D,∆) | D, θ(t)]

=
∑

(i,C)=Dh

d∑
k=1

Pr(∆h = k | i, C, θ(t)) log Pr(i, C | ∆h = k,A,B).
(A.2)

We can compute the first part of the summand (the responsibilities) using Bayes’

Theorem:

Pr(∆h = k | i, C, θ(t)) = Pr(i, C | ∆h = k, θ(t)) Pr(∆h = k | θ(t))
Pr(i, C | θ(t))

(A.3)

= π
(t)
h

Pr(i, C | ∆h = k, θ(t))

Pr(i, C | θ(t))
. (A.4)

The numerator of Equation (A.4) is the kth component of the DLCL choice prob-

ability (with our estimates for A and B):

Pr(i, C | ∆h = k, θ(t)) =
exp

(
[B

(t)
k + A

(t)
k (yC)k]

Tyi
)∑

j∈C exp
(
[B

(t)
k + A

(t)
k (yC)k]Tyj

) . (A.5)

Meanwhile, the denominator of Equation (A.4) is the sum of these probabilities

weighted by the mixture weight estimates:

Pr(i, C | θ(t)) =
d∑

k=1

π
(t)
k Pr(i, C | ∆h = k, θ(t)). (A.6)

The last term in Equation (A.2) is a function of the parameters A,B (not their

estimates):

log Pr(i, C | ∆h = k,A,B) = log

[
exp

(
[Bk + Ak(yC)k]

Tyi
)∑

j∈C exp ([Bk + Ak(yC)k]Tyj)

]
(A.7)

= [Bk + Ak(yC)k]
Tyi − log

∑
j∈C

exp
(
[Bk + Ak(yC)k]

Tyj
)
. (A.8)
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Equation (A.8) is concave by the same reasoning that the LCL’s NLL (Equa-

tion (2.7)) is convex. Thus, the expectation E∆[ℓ(A,B;D,∆) | D, θ(t)], being the

sum of positively scaled concave functions, is also concave. Its gradient is also

Lipschitz continuous, just like the LCL’s NLL. We can therefore find a global

maximum using gradient ascent (in practice, we use gradient descent to minimize

−Q(A,B | θ(t))).
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APPENDIX B

TECHNICAL DETAILS FOR CHAPTER 3: CHOICE SET

CONFOUNDING IN DISCRETE CHOICE

Anything that happens, happens. Anything that, in

happening, causes something else to happen, causes

something else to happen. Anything that, in happening,

causes itself to happen again, happens again. It doesn’t

necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless, 1992.

B.1 Proofs

Proof of Theorem 3. We need positivity in order for IPW (and therefore D̃) to be

well-defined. Fix i and C. Consider the coefficient of log Prθ(i | C) in ℓ(θ;D∗). In

expectation, this term appears |D|Pr(i, C) times. Expanding this:

|D|Pr(i, C) = |D|
∑
a∈A

Pr(i, C | a) Pr(a)

= |D|
∑
a∈A

Pr(i | C, a) Pr(C | a) Pr(a)

=
|D|
|CD|

∑
a∈A

Pr(i | C, a) Pr(a),

where the last step follows from D∗ having uniformly random choice sets. Now

consider the coefficient of log Prθ(i | C) in ℓ(θ; D̃). By IPW, this coefficient is

∑
(a,C′,i)∈D
i′=i,C′=C

1

|CD|Pr(C | xa)
=

1

|CD|
∑
a∈A

∑
(a′,C′,i′)∈D

a′=a,C′=C,i′=i

1

Pr(C | xa)
.
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In expectation, the sample (a, C, i) occurs |D|Pr(a, C, i) times. Additionally, by

choice set ignorability, Pr(C | xa) = Pr(C | a). We thus have that the expected

coefficient is

1

|CD|
∑
a∈A

1

Pr(C | xa)
|D|Pr(a, C, i)

=
|D|
|CD|

∑
a∈A

1

Pr(C | a)
Pr(a) Pr(C | a) Pr(i | C, a)

=
|D|
|CD|

∑
a∈A

Pr(a) Pr(i | C, a),

which matches the coefficient in ℓ(θ;D∗). Since the expected coefficients agree for

all i and C, we then have the equality.

Proof of Theorem 4. By the consistency of the MLE, as |D| → ∞, parameter

estimates for a correctly specified choice model converge to the true parameters.

Thus, estimated choice probabilities also converge:

lim
|D|→∞

P̂r(i | xa, C) = Pr(i | xa, C)

= Pr(i | a,xa, C) (by preference ignorability)

= Pr(i | a, C).

Proof of Theorem 5. Observing the choice set gives us a noisy measurement of xa,

which we can adjust using our knowledge of the distribution of xa. The posterior

of a Gaussian with a Gaussian prior is also Gaussian—in particular, xa | C is

Gaussian, with mean

E[xa | C] = Σ0

(
Σ0 +

1

k
Σ

)−1
yC +

1

k
Σ

(
Σ0 +

1

k
Σ

)−1
µ
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(Duda et al., 2001, Section 3.4.3). Thus, the expected chooser x∗
a has utilities

ui(a
∗, C) =

[
Σ0

(
Σ0 +

1

k
Σ

)−1
yC +

1

k
Σ

(
Σ0 +

1

k
Σ

)−1
µ

]T
yi.

This is exactly an LCL with θ and A as claimed.

Proof of Theorem 6. Consider the bipartite graph whose left nodes are choosers

and whose right nodes are items, each split into blocks according to their type.

The choice set assignment process above defines a bipartite SBM on this graph with

intra-type probabilities p and inter-type probabilities q (between chooser nodes and

item nodes). Recovering types from choice sets can then be viewed as an instance

of the planted partition problem (McSherry, 2001).

We can thus directly1 apply Theorem 4 of McSherry (2001) to achieve the

desired result given Equation (3.4), with the caveat that algorithm is random and

succeeds with probability 1/k.

Repeating the algorithm ck times achieves failure probability (1− 1
k
)ck ≤ 1/ec,

which is smaller than δ if c > log(1/δ). We can thus make δ smaller by a factor of 2

(absorbing this into the constant C in eq. (3.4)) and we are left with the guarantee

as stated, only increasing the running time by a factor k log(1/δ).

B.2 Affine-mean Gaussian choice set model

For estimating choice set propensities in expedia, we model the distribution of

mean choice set features using an affine-mean Gaussian. Here, we show how this

model can be easily estimated from data.
1Notice that s(p − q)2 is a lower bound on the squared 2-norm of the columns of the SBM

edge probability matrix required by (McSherry, 2001, Theorem 4). Additionally, we use the crude
variance upper bound σ2 = 1 for simplicity.
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Propostion 5. Given a dataset D, the model yC ∼ N (Wxa+z,Σ) is identifiable

iff there are m+1 choosers in D with affinely independent covariates. If the model

is identified, the maximum likelihood parameters W ∗, z∗ are the solution to the

least-squares problem

(W ∗, z∗) = argmin
W∈Rn×m

z∈Rn

∑
(a,C)∈D

∥yC − (Wxa + z)∥22, (B.1)

which have the closed form:

W ∗ =

 ∑
(a,C)∈D

(yC − yD)x
T
a

 ∑
(a,C)∈D

(xa − xD)x
T
a

−1 (B.2)

z∗ = yD −W ∗xD, (B.3)

where xD = 1/|D|
∑

(a,C)∈D xa and yD = 1/|D|
∑

(a,C)∈D yC.

Additionally, the maximum likelihood covariance matrix is the sample covari-

ance:

Σ∗ =
1

|D|
∑

(a,C)∈D

(yC −W ∗xa − z∗)(yC −W ∗xa − z∗)T . (B.4)

Proof sketch. This can be derived following the same steps as the standard Gaus-

sian MLE proof (with a bit of extra matrix calculus): (1) take partial derivatives

of the log-likelihood with respect to W and z, (2) set them to zero, (3) solve for z,

(4) plug this in to solve for W , (5) do the same to solve for Σ in its partial deriva-

tive. This works since the log-likelihood is still convex after adding in the affine

trasformation. We omit the details as they are tedious and unenlightening.

242



B.3 Experiment details

We implemented all choice models with PyTorch and (except mixed logit) train

them using Rprop with no minibatching to optimize the log-likelihood for 500

epochs or until convergence (squared gradient norm < 10−8), whichever comes

first. We use ℓ2 regularization with coefficient λ = 10−4 for all models to ensure

identifiability. For mixed logit, we use an expectation-maximization (EM) algo-

rithm (Train, 2009) with a one hour timeout. Our code, results, and links to data

are available at https://github.com/tomlinsonk/choice-set-confounding.
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APPENDIX C

TECHNICAL DETAILS FOR CHAPTER 4: GRAPH-BASED

METHODS FOR DISCRETE CHOICE

LYSANDER. Or else it stood upon the choice of friends—

HERMIA. O hell, to choose love by another’s eyes!

William Shakespeare, A Midsummer Night’s Dream, c. 1595

C.1 app-install highest-utility apps

In Tables C.1 and C.2 we examine the top 20 apps recommended by logit and

Laplacian logit, respectively. For logit, we look directly at utilities, while for the

Laplacian-regularized logit we count the number of participants for whom the app

in their top 10 by utility. For both, we compute utilities by averaging the best-

performing (on validation) model at training fraction 0.8 in each trial.
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Table C.1: Top 20 apps by their global logit utility. Bolded apps are deemed to
be non-built-in downloadable apps by manual inspection. Built-ins escaping our
filter are over-represented at the top of this list since they commonly appear in
app scans.

App Utility

edu.mit.media.funf.BluetoothService 2.15
android.tts 1.65
com.svox.pico 1.62
com.tmobile.selfhelp 1.52
com.noshufou.android.su 1.49
org.zenthought.android.su 1.14
com.facebook.katana 1.03
com.shazam.android 1.02
com.qo.android.moto 1.00
com.telenav.app.android.telenav 0.91
com.arcsoft.mediagallery 0.90
com.voxmobili.sync.MobileBackup 0.90
com.metago.astro 0.83
com.cooliris.media 0.78
com.pandora.android 0.78
com.gotvnetworks.client.android.altitude.activity 0.78
com.xtralogic.android.logcollector 0.77
com.orange.maps 0.74
com.myspace.android 0.70
com.telenav.app.android 0.70
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Table C.2: Top 20 apps by the number of participants for whom they have top-10
utilities under the Laplacian logit. See Table C.1 for additional details.

App Count

edu.mit.media.funf.BluetoothService 135
com.tmobile.selfhelp 120
android.tts 103
com.svox.pico 96
org.zenthought.android.su 95
com.qo.android.moto 82
com.noshufou.android.su 82
com.shazam.android 70
com.facebook.katana 70
com.voxmobili.sync.MobileBackup 68
com.arcsoft.mediagallery 67
com.cooliris.media 57
com.pandora.android 42
com.telenav.app.android 31
com.qo.android.gep 31
com.gotvnetworks.client.android.altitude.activity 30
com.myspace.android 27
com.telenav.app.android.telenav 26
com.vzw.vvm.androidclient 24
com.xtralogic.android.logcollector 23
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APPENDIX D

TECHNICAL DETAILS FOR CHAPTER 5: CHOICE SET

OPTIMIZATION UNDER DISCRETE CHOICE MODELS OF

GROUP DECISIONS

That was excellently observed, say I, when I read a Passage in

an Author, where his Opinion agrees with mine. When we

differ, there I pronounce him to be mistaken.

Jonathan Swift, Miscellanies in Prose, 1735

D.1 Hardness proofs

D.1.1 Disagreement functions from proofs of Theorems 8

and 9

0 1 2
sZ/t

0.16

0.18

0.20

0.22

D
(Z
)

0 1 2 3 4 5
sZ/t

0.0
0.1
0.2
0.3
0.4

D
(Z
)

Figure D.1: (Left) Plot of D(Z) =
∣∣ t
2t+sZ

− 3t
5t+sZ

∣∣ + ∣∣ t
2t+sZ

− 2t
5t+sZ

∣∣ from the
proof of Theorem 8. (Right) Plot of D(Z) =

∣∣ 2t
2t+sZ

− t/2
t/2+sZ

∣∣ from the proof of
Theorem 9. Both functions are re-parameterized in terms of the ratio sZ/t by
dividing through by t and achieve local optima at sZ/t = 1 (i.e. sZ = t); this can
be verified analytically.
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D.1.2 CDM Promotion is hard with |A| = 2, |C| = 2

In the main text, we show CDM Promotion is NP-hard when |A| = 1, |C| = 3

(Theorem 10). Here, we provide an additonal proof for the case when |A| = 2, |C| =

2. These are the smallest hard instances of the problem (|A| = 1, |C| = 2 is easy to

solve: introduce alternatives that increase utility for x∗ for than its competitor).

Theorem 49. In the CDM model, Promotion is NP-hard, even with just two

individuals and two items in C.

Proof. By reduction from Subset Sum. Let S, t be an instance of Subset Sum.

Let A = {a, b}, C = {x, y}, C = S. Using tuples interpreted entrywise, construct

a CDM with the following parameters.

ua(⟨x∗, y⟩) = ⟨t+ ε, 0⟩

ub(⟨x∗, y⟩) = ⟨ε, t⟩

ua(z) = ub(z) = −∞ ∀z ∈ C

pa(z, ⟨x∗, y⟩) = ⟨0, z⟩ ∀z ∈ C

pb(z, ⟨x∗, y⟩) = ⟨z, 0⟩ ∀z ∈ C

To promote x∗, we need to add more than t − ε to b’s utility for x∗, but add less

than t + ε to a’s utility for x∗. Since all pulls are integral, the only solution is a

set Z whose sum of pulls is t. If we could efficiently find such a set, then we could

efficiently find the Subset Sum solution.
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D.1.3 Proof of Theorem 11

Proof. By reduction from Subset Sum. Let S = {z1, . . . , zn}, t be an instance of

Subset Sum. Let A = {a, b}, C = {x∗, y}, C = S, and 0 < ε < 1. The nest

structures and utilities are shown in Figure D.2.

a’s root

y r

x∗ z1 . . . zn

0 log 2

log(t+ ε)
log z1

log zn

b’s root

x∗ r

y z1 . . . zn

0 log 2

log(t− ε)
log z1

log zn

Figure D.2: NL trees used in the proof of Theorem 11. The left tree is for individual
a and the right tree for individual b.

Notice that x∗ and y are swapped in the two trees. We wish to promote x∗.

With just the choice set C, a prefers x∗ to y, but b does not. To make b prefer x∗

to y, we need to cannibalize y by adding zi items. However, this simultaneously

cannibalizes x∗ in a’s tree, so we need to be careful not to introduce too much

additional utility. To ensure a prefers x∗, we need to pick Z such that

Pr(a← y | C ∪ Z) < Pr(a← y | C ∪ Z)

⇐⇒ 1

1 + elog 2
<

elog 2

1 + elog 2
· elog(t+ε)

elog(t+ε) +
∑

z∈Z e
log z

⇐⇒ 1

3
<

2

3
· t+ ε

t+ ε+
∑

z∈Z z

⇐⇒
∑
z∈Z

z < t+ ε.
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To ensure b prefers x∗, we need

Pr(b← x∗ | C ∪ Z) > Pr(b← y | C ∪ Z)

⇐⇒ 1

1 + elog 2
>

elog 2

1 + elog 2
· elog(t−ε)

elog(t−ε) +
∑

z∈Z e
log z

⇐⇒ 1

3
>

2

3
· t− ε
t− ε+

∑
z∈Z z

⇐⇒
∑
z∈Z

z > t− ε.

Since the z are all integers, we must then have
∑

z∈Z z = t. If we could efficiently

promote x∗, we could efficiently find such a Z.

D.1.4 Proof of Theorem 12

Proof. By reduction from Subset Sum. Let S, t be an instance of Subset Sum.

Let A = {a, b}, C = {x∗, y}, C = S, and s =
∑

z∈S z. Make aspects χz, ψz, γz for

each z ∈ S as well as two more aspects χ, ψ. The items have aspects as follows:

x∗′ = {χ} ∪ {χz | z ∈ S}

y′ = {ψ} ∪ {ψz | z ∈ S}

z′ = {χz, ψz, γz} ∀z ∈ S

The individuals have the following utilities on aspects, where 0 < ε < 1:

ua(χ) = 0

ua(χz) = z

ua(ψ) = s− t/2− ε

ua(ψz) = 0

ua(γz) = s− z

ub(χ) = s− t/2 + ε

ub(χz) = 0

ub(ψ) = 0

ub(ψz) = z

ub(γz) = s− z

∀z ∈ S

∀z ∈ S

∀z ∈ S
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We want to promote x∗. Notice that x∗ and y have disjoint aspects. Thus the

choice probabilities from C are proportional to the sum of the item’s aspects:

Pr(a← x∗ | C) ∝ s

Pr(a← y | C) ∝ s− t

2
− ε

Pr(b← x∗ | C) ∝ s− t

2
+ ε

Pr(b← y | C) ∝ s.

To promote x∗, we need to make b prefer x∗ to y. Adding a z item cannibalizes

from a’s preference for x∗ and b’s preference for y. As in the NL proof, we want to

add just enough z items to make b prefer x∗ to y without making a prefer y to x∗.

First, notice that the γz aspects have no effect on the individuals’ relative

preference for x∗ and y. If we introduce the alternative z, then if a picks the

aspect χz, y will be eliminated. The remaining aspects of x∗, namely x∗′ \ {χz},

have combined utility s− z, as does γz. Therefore a will be equallly likely to pick

x∗ and z. Symmetric reasoning shows that if b chooses aspect ψz, then b will end

up picking y with probability 1/2. This means that when we include alternatives

Z ⊆ C, each aspect χz, ψz for z ∈ Z effectively contributes z/2 to a’s utility for x∗

and b’s utility for y rather than the full z. The optimal solution is therefore a set

Z of alternatives whose sum is t, since that will cause a to have effective utility

s − t/2 on x∗, which exceeds its utility s − t/2 − ε on y. Meanwhile, b’s effective

utility on y will also be s− t/2, which is smaller than its utility s− t/2+ε on x∗. If

we include less alternative weight, b will prefer y. If we include more, a will prefer

y. Therefore if we could efficiently find the optimal set of alternatives to promote

x∗, we could efficiently find a subset of S with sum t.
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D.2 Restrictions on MNL that make Agreement and Dis-

agreement tractable

As we saw in the proofs of Theorems 8 and 9 that Agreement and Disagree-

ment are hard in the MNL model even when individuals have identical utilities

on alternatives. This is possible because the individuals have different sums of

utilities on C; one unit of utility on an alternative has a weaker effect for indi-

viduals with higher utility sums on C. To address the issue of identifiability, we

assume each individual’s utility sum over U is zero in this section. This allows us

to meaningfully compare the sum of utilities of two different individuals.

Definition 7. If an individual a has
∑

x∈U ua(x) = 0, then the stubbornness of a

is σa =
∑

x∈C e
u(x).

We call this quantity “stubbornness” since it quantifies how reluctant an indi-

vidual is to change its probabilities on C given a unit of utility on an alternative.

Propostion 6. In an MNL model where all individuals are equally stubborn and

have identical utilities on alternatives, the solution to Agreement is C.

Proof. Assume utilities are in standard form, with
∑

x∈U ua(x) = 0. Let σ =∑
x∈C e

u(x) be each individual’s stubborness and let Z be a set of alternatives.

Suppose all individuals have the same utility u(z) for each alternative z. The

disagreement between two individuals about a single item x in C is then:∣∣∣ eua(x)

σ +
∑

z∈Z e
u(z)
− eub(x)

σ +
∑

z∈Z e
u(z)

∣∣∣ = |eua(x) − eub(x)|
σ +

∑
z∈Z e

u(z)
.

Notice that this strictly decreases if
∑

z∈Z e
u(z) increases, so we minimize D by

including all of the alternatives.
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The same reasoning also allows us to solve Disagreement in this restricted

MNL model.

Corollary 12. The solution to Disagreement in an equal alternative utilities,

equal stubbornness MNL model is ∅.

D.3 Approximation algorithm details and extensions

D.3.1 Proof of Lemma 2

Proof. If a set Z has total exp-utility ta to individual a, then it is placed in L at

position ⌊log1+δ ta⌋ in dimension a. So, if two sets Z, Z ′ with exp-utility totals

ta, t
′
a for individual a are mapped to the same cell of L, then for all a ∈ A,

⌊log1+δ ta⌋ = ⌊log1+δ t′a⌋. We can therefore bound t′a:

log1+δ ta − 1 < log1+δ t
′
a < log1+δ ta + 1.

Exponentiating both sides with base 1 + δ and simplifying yields

ta
1 + δ

< t′a < ta(1 + δ). (D.1)

With this fact in hand, we proceed by induction on i. When i = 0, Ci is empty

and the lemma holds. Now suppose that i > 0 and that the lemma holds for i− 1.

Every set in Ci was made by adding (a) zero elements or (b) one element to a set

in Ci−1. We consider these two cases separately.

(a) For any set Z ⊆ Ci that is also contained in Ci−1, we know by the inductive

hypothesis that some element in Li−1 satisfied the inequality. Since we never

overwrite cells, the lemma also holds for Z after iteration i.
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(b) Now consider sets Z ′ ⊆ Ci that were formed by adding the new element

z to a set Z ⊆ Ci−1. In the inner for loop, we at some point encountered the

cell containing the set Y ∈ Li−1 satisfying the lemma for set Z by the inductive

hypothesis. Let ya be the exp-utility totals for Y and ta for Z. Notice that the

exp-utility totals of Z ′ are exactly ta+eaz. Starting with the inductive hypothesis,

we see that the exp-utility totals of Y ∪ {z} satisfy

ta + eaz
(1 + δ)i−1

< ya + eaz < (ta + eaz)(1 + δ)i−1.

When we go to place Y ∪ {z} in a cell, it might be unoccupied, in which case

we place it in Li and the lemma holds for Z ′. If it is occupied by some other set,

then by applying Equation (D.1) we find that the lemma also holds for Z ′.

D.3.2 Polynomial bound on runtime of Algorithm 1

The runtime of Algorithm 1 is O((m + kn2)(1 + ⌊log1+δ s⌋)n). We can show that

the second part is bounded by a polynomial in k,m, and 1
ε
:

(1 + ⌊log1+δ s⌋)n ≤
(
1 +

ln s

ln 1 + δ

)n
≤
(
1 + (1 + δ)

ln s

δ

)n
(since ln(1 + x) ≥ x

1+x
for x > −1)

=
(
1 +

ln s

δ
+ ln s

)n
=
(
1 +

2km
(
n
2

)
ln s

ε
+ ln s

)n
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D.3.3 Adapting Algorithm 1 for CDM with guarantees for

special cases

We can adapt Algorithm 1 for the CDM model, but we only maintain the ap-

proximation error bounds under special cases of the structure of the “pulls”. Still,

we can use this algorithm as a principled heuristic and it tends to work well in

practice, as we saw in Figure 5.2.

As a first step, we use the alternative parametrization of the model used by

Seshadri et al. (2019, Eq. (1)), which has fewer parameters. In this description

of the model, utilities and context effects are merged into a single utility-adjusted

pull qa(z, x) = pa(z, x)− ua(x), with the special case qa(x, x) = 0. We then have

Pr(a← x | C) =
exp(

∑
w∈C qa(w, x))∑

y∈C exp(
∑

z∈C qa(z, y))
. (D.2)

Refer to Seshadri et al. (2019, Appendix C.1) for details of the equivalence between

this formulation and the one we use in the main text.

Matching the notation of the proof of Theorem 13, we use the shorthand eax =

exp(
∑

w∈C qa(w, x)).

To adapt Algorithm 1 to the CDM, we expand Li to have nk dimensions for each

individual-item pair, increasing the runtime to O((m+kn2)(1+⌊log1+δ s⌋)nk). This

is only practical if nk is small, but as we have seen, Agreement, Disagreement,

and Promotion are all NP-hard even with n = 2 and k = 2 or 3. Each individual-

item dimension stores eax, the total exp-utility of that item to that individual given

that we have included some set of alternatives. When we include an additional

item from C, we place the new sets in Li with updated eax values.

This only preserves the ε-additive approximation if alternatives (items in C)
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have zero context effects on each other; however, they may still have context effects

on items in C. Formally, we need qa(z, z
′) = 0 for all z, z′ ∈ C and a ∈ A.

Although this is a serious restriction, it leaves Agreement, Disagreement,

and Promotion NP-hard, as the CDM we used in our proofs had this form

(see also Appendix D.3.5 for how to apply Algorithm 1 to Promotion). If this

version of the algorithm is applied to a general CDM, it may experience higher

error. Nonetheless, our real-data experiments show it to be a good heuristic.

For the following analysis, we assume a CDM with zero context effects between

items in C. We need to verify that if every item’s exp-utility is approximated to

within factor (1 + β)±1, then the total disagreement of a set is approximated to

within ε as we had in the MNL case. The approximation error guarantee increases

to 4ε in the restricted CDM version—to recover the ε-additive approximation, we

can make δ smaller by a factor of 4 (that is, we could pick δ = ε/(8km
(
n
2

)
); we

instead keep the old δ for simplicity in the following analysis).

Recall that Z ′ is the representative in Lm of the optimal set of alternatives Z∗.

For compactness, we define Ta to be the denominator of Equation (D.2), with T ′a

and T ∗a referring to those denominators under the choice sets C ∪ Z ′ and C ∪ Z∗,

respectively. This is where we require zero context effects between alternatives:

if alternatives interact, then storing every eax in the table (from which we can

compute Ta) is not enough to determine updated choice probabilities when we add

a new alternative.

The difference in the analysis begins when we bound Pr(a ← x | C ∪ Z ′) on

both sides using the fact that each exp-utility sum is approximated within a 1+ β
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factor (so the probability denomiators Ta are also approximated within this factor):

e∗ax
1+β

T ∗a (1 + β)
=

1

(1 + β)2
e∗ax
T ∗a

<
e′ax
T ′a

= Pr(a← x | C ∪ Z ′)

<
e∗ax(1 + β)

T ∗
a

1+β

= (1 + β)2
e∗ax
T ∗a

.

Based on the lower bound, the difference between Pr(a← x | C ∪Z∗) and Pr(a←

x | C ∪ Z ′) could be as large as

e∗ax
T ∗a
− 1

(1 + β)2
e∗ax
T ∗a
≤ 1− 1

(1 + β)2
.

Now considering the upper bound, the difference between Pr(a← x | C ∪Z∗) and

Pr(a← x | C ∪ Z ′) could be as large as

(1 + β)2
e∗ax
T ∗a
− e∗ax
T ∗a
≤ (1 + β)2 − 1.

Therefore, |Pr(a← x | C ∪Z ′)−Pr(b← x | C ∪Z ′)| can only exceed |Pr(a← x |

C∪Z∗)−Pr(b← x | C∪Z∗)| by at most 1− 1
(1+β)2

+(1+β)2−1 = (1+β)2− 1
(1+β)2

.

This is at most 4β:

4β − (1 + β)2 +
1

(1 + β)2
=
β2(2− β2)

(1 + β)2

> 0. (for 0 < β <
√
2)

So D(Z ′) and D(Z∗) are within 4β
(
n
2

)
k = 4ε.

D.3.4 Adapting Algorithm 1 for NL with full guarantees

We can also adapt Algorithm 1 for the NL model, and unlike the CDM, the ε-

additive approximation holds in all parameter regimes. Recall that the NL tree
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has two types of leaves: choice set items and alternative items. Let Pa be the set

of internal nodes of individual a’s tree that have at least one alternative item as

a child and let p = maxa∈A |Pa|. If we know the total exp-utility that alternatives

contribute as children of each v ∈ Pa, then we can compute a’s choice probabilites

over items in C in polynomial time.

With this in mind, we modify Algorithm 1 by having dimensions in L for each

individual for each of their nodes in Pa. This results in ≤ np dimensions. The

algorithm then keeps track of the exp-utility sums from alternatives under each

node in Pa for each individual. The exponent in the runtime increases to (at

most) np, but this remains tractable for some hard instances, such as those in our

hardness proofs. In some cases, we can dramatically improve the runtime of the

algorithm: if the subtree under an internal node contains only alternatives as leaves

in an individuals’s tree, then we only need one dimension L for that individual’s

entire subtree, and it has only two cells: one for sets that contain at least one

alternative in that subtree, and one for sets that do not. The only factor that

affects the choice probabilities of items in C is whether that subtree is “active” and

its root can be chosen.

We now show how the error from exp-utility sums of alternatives propagates to

choice probabilities. In the NL model, Pr(a← x | C) is the product of probabilities

that a chooses each ancestor of x as a descends down its tree. Let v1, . . . , vℓ be

the nodes in a’s tree along the path from the root to x. For compactness, we use

Pr(x, Z) instead of Pr(a← x | C ∪ Z) in the following analysis.

Pick δ ≤ ([ε/(2k
(
n
2

)
) + 1]1/ℓ − 1)/m and recall that β = 2mδ. We can use the

same analysis as in the proof of Theorem 13 to find that for any set Z∗ ⊆ C, there
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exists some Z ′ ∈ L such that

Pr(x, Z∗) = Pr(v1, Z
∗) · · · · · Pr(vx, Z∗)

<
(
Pr(v1, Z

′) +
β

2

)
· · · · ·

(
Pr(vx, Z

′) +
β

2

)
≤ Pr(x, Z ′) +

(
1 +

β

2

)ℓ
− 1

≤ Pr(x, Z ′) +
ε

2k
(
n
2

) .
Now for the lower bound, pick δ ≤ (1− [1− ε/(2k

(
n
2

)
)]1/ℓ)/m. Again from the

proof of Theorem 13:

Pr(x, Z∗) = Pr(v1, Z
∗) · · · · · Pr(vx, Z∗)

>
(
Pr(v1, Z

′)− β

2

)
· · · · ·

(
Pr(vx, Z

′)− β

2

)
≥ Pr(x, Z ′) +

(
1− β

2

)ℓ
− 1

≥ Pr(x, Z ′)− ε

2k
(
n
2

) .
Let h be the maximum height of any indivdual’s NL tree (so ℓ ≤ h). Then, by

picking δ = min{[ε/(2k
(
n
2

)
) + 1]1/h − 1, 1 − [1 − ε/(2k

(
n
2

)
)]1/h}/m, we find that

Pr(a ← x | C ∪ Z∗) and Pr(a ← x | C ∪ Z ′) differ by less than ε/(k
(
n
2

)
) for all

x ∈ C and a ∈ A, meaning that the total disagreement between a and b cannot

differ by more than ε as before.

Unfortunately, this means we need to make δ exponentially (in h) smaller in

the NL model. Put another way, our error bound gets exponentially worse as h

increases if we keep δ constant. However, we have seen that there are NP-hard

families of NL instances in which h is a small constant (e.g., h = 2 in our hardness

proof), so once again this algorithm is an exponential improvement over brute

force. Moreover, the error bound here is often far from tight, since we use the very

loose bounds Pr(vi, Z ′) ≤ 1 in the analysis. This means the algorithm will tend to

outperform the worst-case guarantee by a significant margin.
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D.3.5 Adapting Algorithm 1 for Promotion

CDM Promotion with special case guarantees

Algorithm 1 can be applied to Promotion in the (restricted) CDM model with

only a small modification to the CDM version described in Appendix D.3.3: at the

end of the algorithm, we return the set that results in the maximum number of

individuals having x∗ as an ε-favorite item. Additionally, we choose δ = ε/(10m)

(we don’t need the factors
(
n
2

)
or k since we aren’t optimizing D(Z)).

Following the analysis in Appendix D.3.3 (with β = 2mδ = ε/5), we find that

Pr(a← x | C ∪Z∗) and Pr(a← x | C ∪Z ′) differ by at most max{1− 1
(1+ε/5)2

, (1+

ε/5)2 − 1} for all x. On the interval [0, 1], this is bounded by ε/2. Thus, if x∗ is

the favorite item for a given the optimal choice set C ∪ Z∗, then it must be an

ε-favorite of individual a given C ∪Z ′ (as always, Z ′ is the representative of Z∗ in

Lm). This is because when we go from C ∪ Z∗ to C ∪ Z ′, the choice probability

of x∗ can shrink by at most ε/2 and the choice probability for any other item can

grow by at most ε/2. Thus, including Z ′ makes at least as many individuals have

x∗ as an ε-favorite item as including Z∗ makes have x∗ as a favorite item.

This is exactly what it means for Algorithm 1 to ε-approximate Promo-

tion in the CDM (when items in C do not exert context effects on each other).

Moreover, not having to compute D(Z) makes the runtime of Algorithm 1

O(m(1 + ⌊log1+δ s⌋)nk) when applied to Promotion in the CDM. In the gen-

eral CDM, this algorithm is only a heuristic.
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NL Promotion with full guarantees

A very similar idea allows us to apply the NL version of Algorithm 1 from Ap-

pendix D.3.4 to Promotion and retain an approximation guarantee. As be-

fore, use the NL version and return the set that results in the maximum num-

ber of individuals having x∗ as an ε-favorite item. However, we instead use

δ = min{(ε/4 + 1)1/h − 1, 1 − (1 − ε/4)1/h}/m, which by the analysis in Ap-

pendix D.3.4 results in Pr(a ← x | C ∪ Z∗) and Pr(a ← x | C ∪ Z ′) differing by

at most ε/2. As in the CDM case, this guarantees that if x∗ is the favorite item

for a given the optimal choice set C ∪ Z∗, then it must be an ε-favorite of a given

C ∪ Z ′. Therefore this version of Algorithm 1 ε-approximates Promotion in the

NL model with runtime O(m(1 + ⌊log1+δ s⌋)np).

D.4 Mixed-integer bilinear programs for MNL agreement

and disagreement optimization

D.4.1 Agreement

Let xi be a decision variable indicating whether we add in the ith item in C. Let

eya = eua(y) and eCa =
∑

y∈C eya. We can write Agreement as the following 0-1

optimization problem.

min
x

∑
a,b∈A

∑
y∈C

∣∣∣∣ eya
eCa +

∑
i∈C xieia

− eyb
eCb +

∑
i∈C xieib

∣∣∣∣
s.t. xi ∈ {0, 1}
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We can rewrite this with no absolute values by introducing new variables δyab that

represent the absolute disagreement about item y between individuals a and b. We

then use the standard trick for minimizing an absolute value in linear programs:

min
x

∑
a,b∈A

∑
y∈C

δyab

s.t.
eya

eCa +
∑

i∈C xieia
− eyb
eCb +

∑
i∈C xieib

≤ δyab

∀y ∈ C, {a, b} ⊂ A ,

eyb
eCb +

∑
i∈C xieib

− eya
eCa +

∑
i∈C xieia

≤ δyab

∀y ∈ C, {a, b} ⊂ A ,

xi ∈ {0, 1} ∀i ∈ C,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A

To get rid of the fractions, we introduce the new variables za = 1
eCa+

∑
i xieia

for

each individual a and add corresponding constraints enforcing the definition of za:

min
x

∑
a,b∈A

∑
y∈C

δyab

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zaeCa + za
∑
i∈C

xieia = 1 ∀a ∈ A,

xi ∈ {0, 1} ∀i ∈ C,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,

za ∈ R ∀a ∈ A
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This is a mixed-integer bilinear program (MIBLP) withm binary variables, n+k
(
n
2

)
real variables, 2k

(
n
2

)
linear constraints, and n bilinear constraints. We plug this

form of the problem directly into a branch-and-bound solver (we use Gurobi).

D.4.2 Disagreement

A similar technique works for Disagreement, but maximizing an absolute value

is slightly trickier than minimizing. In addition to the variables δyab that we used

before, we also add new binary variables gyab indicating whether each difference in

choice probabilities is positive or negative. With these new variables (and following

the same steps as above), Disagreement can be written as the following MIBLP:

max
x

∑
a,b∈A

∑
y∈C

δyab

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

2gyab + zaeya − zbeyb ≥ δyab ∀y ∈ C, {a, b} ⊂ A,

2(1− gyab) + zbeyb − zaeya ≥ δyab ∀y ∈ C, {a, b} ⊂ A,

zaeCa + za
∑
i∈C

xieia = 1 ∀a ∈ A,

xi ∈ {0, 1} ∀i ∈ C,

gyab ∈ {0, 1} ∀y ∈ C, {a, b} ⊂ A,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,

za ∈ R ∀a ∈ A
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D.5 Additional experiment details

D.5.1 Simple example of poor performance for Greedy

As we saw in experimental data, Greedy can perform poorly even in small instances

of Agreement. Below we provide an MNL instance with n = m = k = 2

for which the error of the greedy solution is approximately 1. With only two

individuals, 0 ≤ D(Z) ≤ 2, so an error of 1 is very large.

In the bad instance for greedy, A = {a, b}, C = {x, y}, C = {p, q}, and the

utilities are as follows.
ua(x) = 8

ua(y) = 2

ua(p) = 10

ua(q) = 0

ub(x) = 8

ub(y) = 8

ub(p) = 0

ub(q) = 15

In this instance of Agreement, the greedy solution is D(∅) ≈ 0.9951 (includ-

ing either p or q alone increases disagreement), while the optimal solution is

D({p, q}) ≈ 0.0009.

D.5.2 All-pairs agreement results for MIBLP

Figure D.3 shows the comparison in performance between Algorithm 1 and the

MIBLP approach for the all-pairs Agreement and Disagreement experiment.

The methods perform nearly identically on both Allstate and Yoochoose.

The MIBLP approach performs marginally better in some cases of Yoochoose

Agreement. As noted in the paper, the MIBLP heuristic is considerably faster
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(12x and 240x on Yoochoose and Allstate, respectively), but provides no a

priori performance guarantee and cannot be applied to CDM or NL. Nonetheless,

we can see that it performs very competitively and would be a good approach to

use in practice for MNL Agreement and Disagreement.
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Figure D.3: MIBLP vs. Algorithm 1 performance box plots when applied to all
2-item choice sets in Allstate and Yoochoose under MNL. Each point is the
difference in D(Z) when MIBLP and Algorithm 1 are run on a choice set, and Xs
mark means.
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Figure D.4: Results of the agreement experiment with 500 choice sets sampled
uniformly from each dataset. Compare with Figure 5.2 in the main text. Again,
Algorithm 1 has better mean performance in all cases. The larger values of ε result
in slightly worse performance on the margins than in Figure 5.2, but also fewer
sets computed.

D.5.3 Choice sets sampled from data

We repeated the all-pairs agreement experiment with 500 choice sets of size up to

5 sampled uniformly from each dataset, allowing us to evaluate the performance of

Algorithm 1 on realistic choice sets. We limited the size of sampled choice sets since

the CDM version of Algorithm 1 scales poorly with |C| (see Appendix D.3.3). For

this version of the experiment, we fixed larger values of ε (2 for MNL, 500 for CDM)

to handle larger choice sets and to keep running time down. Again, Algorithm 1

has better mean performance in every case (Figure D.4), showing that it performs
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well on real choice sets.

D.6 A note on ethical considerations

Influencing the preferences of decision-makers has the potential for malicious ap-

plications, so it is important to address the ethical context of this work.

Any problem with positive social applications (e.g., Agreement: encouraging

consensus, Promotion: promoting environmentally-friendly transportation op-

tions, Disagreement: increasing diversity of opinions) has the potential to be

used for ill. This should not prevent us from seeking methods to acheive these

positive ends, but we should certainly be cognizant of the possibility of unintended

applications. In a different vein, understanding when a group is susceptible to

undesired interventions (or detecting such interventions) makes problems like Dis-

agreement worth studying from an adversarial perspective. Along these lines,

our hardness results are encouraging since optimal malicious interventions are dif-

ficult.

Finally, we note that all of the theoretical problems we study presuppose access

to choice data from which preferences can be learned and the ability to influence

choice sets. Any entity which has both of these (such as an online retailer, a

government deciding transportation policy, etc.) already has significant power

to influence choosers. If such an entity had malicious intent, then near-optimal

Disagreement solutions would be the least of our concerns.

To summarize, these problems are worth studying because of (1) their purely

theoretical value in furthering the field of discrete choice, (2) their potential for
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positive applications, (3) insight into the potential for harmful manipulation by an

adversary, and (4) the minimal additional risk from undesired use of our methods.
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APPENDIX E

TECHNICAL DETAILS FOR CHAPTER 6: BALLOT LENGTH IN

INSTANT RUNOFF VOTING

[...] chaos is found in greatest abundance wherever order is

being sought. It always defeats order, because it is better

organized.

Terry Pratchett, Interesting Times, 1994

E.1 The IRV Algorithm

For each voter j, let π(ℓ)
j be their ballot after step ℓ of IRV, with π

(0)
j = πj. Let

π
(ℓ)
j (h) denote the candidate ranked in position h by this ballot, with lower indices

h corresponding to more preferred positions. A ballot π(ℓ)
j at step ℓ is said to be a

vote for candidate i if π(ℓ)
j (1) = i. See Algorithm 3 for a formal definition of the

IRV algorithm for determining a winner given a profile {π1, . . . , πn}.

Algorithm 3 Instant runoff voting.
1 Input: candidates 1, . . . , k, partial rankings πj over the candidates for each

voter j
2 π

(0)
j ← πj,∀j

3 C = {i ∈ {1, . . . , k} | ∃j : i ∈ πj} {Non-eliminated candidates}
4 ℓ← 0
5 while |C| > 1 do
6 B = {j | |π(ℓ)

j | > 0} {Non-exhausted ballots}

7 i∗ ← argmini
∑

j∈B 1
[
π
(ℓ)
j (1) = i

]
{Break ties as desired}

8 ℓ← ℓ+ 1
9 C ← C \ {i∗}

10 π
(ℓ)
j ← π

(ℓ−1)
j \ {i∗}, ∀j

11 return the winner, the last remaining candidate in C
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E.2 LP for full-ballot constructions

As an example of constructing elimination orders that result in k − 1 truncation

winners, consider k = 5. Label the candidates 1, 2, 3, 4, 5 in order of their full-ballot

IRV elimination. If we are to have 4 truncation winners, they must be 2, 3, 4, 5, and

they must win in that order at h = 1, 2, 3, 4. By construction, the elimination order

at h = 4 is 1, 2, 3, 4, 5. However, at h = 3, the elimination order must be 1, 2, 3, 5, 4,

since 4 wins. At h = 2, the elimination order can be 1, 2, 4, 5, 3 or 1, 2, 5, 4, 3. At

h = 1, it can be one of six options, corresponding to the permutations of 3, 4, 5:

1, {3, 4, 5}, 2. There are thus 12 possible elimination orders across ballot lengths

we to consider that could result in 4 truncation winners.

Formally, let xπ denote the number of ballots with the ranking π ∈ Sk over

the candidates. Fix an elimination order over all ballot lengths and let the (k −

1)× (k − 1) matrix E store the elimination orders over ballot lengths 1, . . . k − 1.

That is, Ehi is the index of the candidate eliminated at round i with ballot length

h. Let r(h, i) denote the set of remaining candidates at round i with ballot length

h that are not eliminated at round i. Let b(h, i, j) ⊂ Sk denote the set of ballot

types that would be assigned to candidate j at round i with ballot length h. Note

that b(h, i, j) and r(h, i) depend on the fixed elimination order. Let C ≥ 1 be the

elimination gap (the smallest number of votes by which eliminations are decided).

The linear program for finding k−1 truncation winner constructions, minimiz-

ing the number of ballots, is then:
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minimize
∑
π∈Sk

xπ

subject to xπ ≥ 0,

C +
∑

π∈b(h,i,Ehi)

xπ︸ ︷︷ ︸
# votes for Ehi

≤
∑

π∈b(h,i,j)

xπ︸ ︷︷ ︸
# votes for j

.

We have a constraint of the first type for all π ∈ Sk and constraints of the second

type for h = 1, . . . , k − 1; i = 1, . . . , k − 1; and j ∈ r(h, i). The second type

of constraint encodes each elimination that takes place during IRV at each ballot

length, ensuring that the eliminated candidate Ehi has fewer votes in that round

it is eliminated than each remaining candidate j ∈ r(h, i). We chose the objective

function to find profiles with few ballots. All constructions generated by running

the LP are stored in the code and data repository, which contains instructions for

viewing them.

E.3 Proofs

Proof of Theorem 14. Suppose we have a consequential-tie-free profile with k − 1

truncation winners. Then k− 1 of the candidates each have a unique ballot length

in 1, . . . , k− 1 at which they win. Label these candidates 1, . . . , k− 1 according to

their winning ballot length. The candidate not in those k − 1 winners, call them

candidate k, must have at least 1 fewer first-place vote than any other candidate

(otherwise one of the winners could be eliminated first after a tie-break, preventing

them from winning at their ballot length). Now consider the winner under ballot

length 1, namely candidate 1. In order for candidate 1 to be the unambiguous

plurality winner, they must have at least one more vote than every other candidate.
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Next, consider who is eliminated second. It has to be candidate 1: if any other

candidate i ̸= 1 can be eliminated second, then they will not be able to win at

their designated ballot length h > 1. In order for candidate 1 to be eliminated

second, they must be in unambiguous last place after candidate k’s ballots are

redistributed. This means at least 2 of those ballots need to go to each of candidates

2, . . . , k − 1 (who are currently trailing candidate 1 by 1 vote). Finally, if k > 3,

the candidate who wins at ballot length 2 (candidate 2) must be unambiguously

in the lead over 3, . . . , k − 1 after redistributing k’s ballots. Either they had more

initial ballots than 3, . . . , k − 1 (but this would require at least one more ballot

from candidate k to help those lower candidates overtake 1) or they got a single

extra ballot from candidate k. To summarize the constraints:

1. candidates 1, . . . , k−1 have at least one more first-place vote than candidate

k,

2. candidate 1 has at least one more first-place vote than any other candidate,

and

3. candidate k has enough first-place votes to redistribute at least two each to

2, . . . , k − 1 (plus at least one more if k > 3).

For k > 3, the total number of ballots ranking k first is thus at least 2(k − 2) + 1,

by constraint 3. Each of candidates 2, . . . , k − 1 must then have at least 2(k −

2) + 2 first-place ballots by constraint 1. Finally, candidate 1 must have at least

2(k− 2) + 3 first-place ballots by constraint 2. The minimum number of ballots is

thus 2(k − 2) + 1 + (k − 2)(2(k − 2) + 2) + 2(k − 2) + 3 = 2k2 − 2k.

For k = 3, constraint 3 only requires 2(k−2) = 2 first-place votes for candidate

3. Candidates 2 and 1 must then have 3 and 4 first-place votes by constraints 1
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and 2, for a total of 2 + 3 + 4 = 9 = k2.

Proof of Theorem 15. First, if we have a sequence with wh ≤ h for some h, then

this means the winner at ballot length h is eliminated hth or sooner under ballot

lengths ≥ h. This is impossible, since they would be eliminated before they win

at length h.

Now suppose we have some valid sequence w1, . . . , wk−1 such that wh ∈ {h +

1, . . . , k} for h ∈ [k− 1]. First, assign 2(k− 2)+1 ballots to each candidate listing

them first. Give candidate w1 an extra 2 ballots and the other candidates (except

candidate 1) an extra 1 ballot each. This is a total of 2k(k− 2)+ k+(k− 2)+2 =

2k2 − 2k ballots. We now fill out the ballots initially assigned to each candidate,

using Si to denote the set of ballots ranking i first.

Except for i = 1, all ballots in Si rank candidates 1, . . . , i − 1 in positions

2, . . . , i. For all i, two ballots in Si rank ℓ in position i+1 for each ℓ = i+2, . . . , k

except wi. If wi ̸= i + 1, one ballot in Si ranks wi in position i + 1. Finally, one

extra ballot in Si ranks wi+1 in position i+ 1. This requires at most 2(k − 2) + 1

ballots, which is covered by the ≥ 2(k− 2) + 1 ballots in Si. All ballots in Si then

terminate after their last specified entry. Notice that when i is eliminated, the

effect of their redistributed votes is to put the new winner wi+1 in the lead and

the new loser i+ 1 in last, assuming the last winner wi was in the lead by a single

vote after i is eliminated.

We now show that if ballots are truncated to length h < k, then candidate

wh wins under IRV. First, if we truncate ballots to length 1, candidate w1 wins:

they have 2 more first place votes than candidate 1 and 1 more than every other
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candidate. Thus, candidate 1 will be eliminated (with no redistribution due to

the length-1 ballots), followed by the others in some order based on tie-breaking,

making candidate 1 win.

Now suppose we truncate to length h (2 ≤ h < k). Candidate 1 is eliminated

first and their second place votes cause candidates 3, . . . , k to overtake candidate

2, with candidate w2 taking the lead by 1 vote. If h = 2, then all remaining ballots

only have one candidate listed (since the second place votes for ballots assigned to

candidate ℓ > 1 are all for candidate 1, who is eliminated). Thus candidate w2 wins

after eliminating candidate 2 and then 3, . . . , k \w2 in some order. For h > 2, we’ll

prove inductively that for 2 ≤ ℓ < h, the ℓth candidate eliminated is candidate ℓ,

which causes candidate wℓ+1 to take the lead by one vote and candidate ℓ+1 drop

to last place by one vote.

Base case (ℓ = 2): As we saw, the 2nd candidate eliminated is candidate 2.

Since h > 2, ballots assigned to candidate 2 are not yet exhausted: two go to each

of candidates 4, . . . , k (except w2); w2 gets one if w2 ̸= 3 and zero otherwise; and

w3 gets one extra ballot. Since candidate w2 was only in the lead by one vote, this

causes the new leader to be candidate w3 and candidate 3 to drop to last place, as

claimed.

Inductive case (2 < ℓ < h): by inductive hypothesis, candidates 2, . . . , ℓ−1 have

been eliminated (plus candidate 1, the first to go), candidate wℓ is currently in the

lead, and candidate ℓ is in last place. Thus, candidate ℓ is the ℓth to be eliminated.

By construction, the candidates ranked in positions 2, . . . , ℓ on the ballots initially

assigned to ℓ (namely, candidates 1, . . . , ℓ− 1) have been eliminated. Additionally,

all ballots that were redistributed to ℓ are now exhausted. Since ℓ < h, there

are still remaining places on the truncated ballot. Ballots currently assigned to
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ℓ are distributed as follows: two go to each of ℓ + 1, . . . , k (except wℓ); wℓ gets

one if wℓ ̸= ℓ + 1 and zero otherwise; and wℓ+1 gets one extra ballot. This causes

candidate wℓ+1 to take the lead by one vote and candidate ℓ to drop to last place

behind ℓ+ 2, . . . , k − 1, as claimed.

Once candidate wh is in the lead, candidates 1, . . . , h−1 have been eliminated,

and candidate h is in last place, all the ballots only list the candidate to which

they are currently assigned (since the candidates ranked up to position h on their

ballots have been eliminated). Thus, h will be eliminated, followed by h+1, . . . , k

(except wh) in some order, making the winner candidate wh, as desired.

Proof of Theorem 18. Call candidates 1, . . . , κ the winners. Each winner i > 1 has

i − 1 filler candidates f i1, . . . , f ii−1 associated with it. The single-peaked axis has

winners in the order 1, . . . , κ, with i’s fillers between i and i− 1. That is, the full

axis is 1, f 2
1 , 2, f

3
1 , f

3
2 , 3, f

4
1 , f

4
2 , f

4
3 , 4, . . . , f

κ
κ−1, κ. We will fill out ballots so that i

wins at ballot length i, while maintaining single-peakedness.

Every winner has κ+1 ballots listing them first and winner 1 has an additional

single ballot. These ballots then terminate. Each candidate’s first filler f i1 has i

ballots that list candidates f i1, . . . , f ii−1, i in positions 1, . . . , i and then terminate.

All other fillers have zero ballots listing them first.

Consider what happens at ballot length h ≤ κ. If h = 1, candidate 1 wins by

one vote. For 1 < h ≤ κ, all fillers with zero ballots are eliminated first in some

order. Then, the first fillers are eliminated in the order f 1
1 , f

2
1 , . . . , f

κ
1 . Only fillers

f i1 with i ≤ h are able to reallocate votes, since ballots for listing f j1 (j > h) first

are exhausted after f j1 ’s elimination. The first-place vote counts after all fillers are

eliminated are thus κ+ 2 for winner 1, κ+ 1+ i for winners 2, . . . , h and κ+ 1 for
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winners h + 1, . . . , κ. With no more reallocations taking place, candidate h wins.

For h > κ, candidate κ still wins. This construction therefore results in κ distinct

truncation winners.

The total number of candidates in this construction is κ +
∑κ

i=2(i − 1) =

κ(κ+ 1)/2. The total number of voters is κ(κ+ 1) + 1+
∑κ

i=2 i = 3κ(κ+ 1)/2, as

claimed.

Proof of Theorem 19. Let x1 > x2 > · · · > xk−1 > xk be the first place vote counts

sorted in strictly descending order and index candidates in this order. Note that

the inequalities must be strict so that eliminations at h = 1 have no ties. As in

the proof of Theorem 14, candidate 1 must be overtaken by candidates 2, . . . , k−1

when candidate k redistributes votes (h ≥ 2). In order to make candidate 2

overtake candidate 1 after k is eliminated, k must redistribute at least two ballots

to candidate 2. Similarly, candidate k must redistribute at least i ballots to each

candidate i = 2, . . . , k − 1 for them to overtake candidate i. This requires at least∑k−1
i=2 i = Tk−1−1 ballots listing k first, where Tk = k(k+1)/2 is the kth triangular

number.

Candidate k− 1 thus needs at least Tk−1− 1+ 1 ballots listing them first since

xk−1 > xk. Similarly, candidate i needs at least Tk−1 − 1 + k − i ballots listing

them first. Adding up these lower bounds yields the desired lower bound:
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k∑
i=1

(Tk−1 − 1 + k − i) = k(Tk−1 − 1) +
k∑
i=1

(k − i)

= k(Tk−1 − 1) + Tk−1

= (k + 1)(Tk−1)− k

= (k + 1)(k − 1)k/2− k

= (k3 − 3k)/2.

Proof of Theorem 20. The argument is almost the same as in the proof of Theo-

rem 19, except that when candidate 1 is overtaken by candidates 2, . . . , k − 1, the

overtaking candidates cannot be tied afterwards. As before, candidate k needs to

distribute at least k−1 ballots to candidate k−1 to make them overtake candidate

1. But now, they cannot merely redistribute k − 2 to candidate k − 2, since this

could cause a tie with candidate k−1. In order to make all of 2, . . . , k−1 overtake

candidate 1 and not emerge in a tie, the lowest possible totals 2, . . . , k − 1 could

have after reallocation are x1+1, x1+2, . . . , x1+ k− 2, where x1 is the first-round

vote total of candidate 1. Thus, the number of votes candidate k must reallocate

is at least
∑k−2

i=1 (x1 + i)−
∑k−2

i=1 (x1 − i), where the second sum is an upper bound

on the number of votes candidates 2, . . . , k − 1 have in round 1, given that they

are all behind candidate 1 and not tied. This allows us to calculate the minimum

number of ballots listing k first:

k−2∑
i=1

(x1 + i)−
k−2∑
i=1

(x1 − i) = 2
k−2∑
i=1

i

= (k − 2)(k − 1)
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Candidate k− 1 thus needs at least (k− 2)(k− 1) + 1 ballots listing them first

since xk−1 > xk. Similarly, candidate i needs at least (k− 2)(k− 1) + k− i ballots

listing them first. Adding up these lower bounds yields the desired lower bound:

k∑
i=1

((k − 2)(k − 1) + k − i)

= k(k − 2)(k − 1) +
k∑
i=1

(k − i)

= k(k − 2)(k − 1) + k(k − 1)/2

= (2k3 − 5k2 + 3k)/2.

Proof of Theorem 21. The construction follows the same idea as in Theorem 15,

but we no longer have the luxury of maintaining the tie for second place among all

candidates who are not about to win or about to be eliminated. Instead, we will

maintain gaps of a single vote between candidates, as in our lower bound proof.

However, the order of candidates matters. Given a winner sequence w1, . . . , wk−1,

define its f -sequence as follows. Let f1, . . . , fℓ be the ℓ ≤ k − 1 distinct trun-

cation winners in the sequence w1, . . . , wk−1 ordered by their first appearance in

this sequence. Fill the remainder of the sequence fℓ+1, . . . , fk in reverse order

of full-ballot elimination (i.e., fk = 1), skipping candidates already in f1, . . . , fℓ.

For example, the w-sequence 4, 3, 4, 5 for k = 5 would result in the f -sequence

4, 3, 5, 2, 1 (recall that candidates are labeled in order of their full-ballot IRV elimi-

nation). Assign ballots to each candidate so that their first place vote counts result

in the f -sequence, with candidate candidate fj receiving (k − 2)(k − 1) + k − j

ballots listing them first. Call the first part of the f -sequence the winner prefix
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and the second part the loser suffix. We will maintain the following invariant:

before step ℓ ≤ h of IRV, the order of the remaining candidates ℓ, ℓ + 1, . . . , k by

vote count is the f -sequence of wℓ, wℓ+1, . . . , wk−1.

As before, let Si denote the set of ballots listing i first. Except for i = 1, all

ballots in Si rank candidates 1, . . . , i− 1 in positions 2, . . . , i. Next, we will fill in

position i+ 1 for each Si to maintain the f -sequence invariant.

Case (1) If wi = wi+1, all ballots in Si terminate after position i.

Case (2) If wi = i+ 1, k − i ballots in Si list each of candidates i+ 2, . . . , k in

position i+ 1. This requires up to (k − 2)(k − 1) ballots.

Case (3) If wi next wins at ballot length ℓ > i+1, then we need to insert wi into

this position in the winner prefix. Consider the sequence of winners wi+1, . . . , wℓ−1.

Let wj be the last candidate in this sequence to make their first appearance. We

will reallocate votes so that wi is one vote behind wj. Let c be the size of the vote

gap between wj and wi before step i of IRV. For instance, c = 1 if wj = wi+1.

For each candidate starting at wi+1 and going down the order of candidates by

decreasing vote count before step i of IRV to wj, c + 1 ballots in Si list that

candidate in position i + 1. For each candidate starting after wj in vote count

order and going down to i+ 1, c ballots in Si list that candidate in position i+ 1.

This requires at most (k − 3)(k − 1) < (k − 2)(k − 1) ballots, an upper bound

achieved if wj has only one more vote than i+ 1 and i = 1.

Case (4) If wi does not appear again in the sequence wi+1, . . . , wk−1, then we

will insert it into its correct position in the loser suffix. Consider the sequence

of subsequent losers i + 1, . . . , k and remove candidates that win at truncations

lengths i+1, . . . , k− 1. Let j be the largest-indexed candidate in this pared-down
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sequence whose index is smaller than wi (at least one such candidate exists since

i + 1 is eliminated before wi and can’t win at ballot lengths > i). We will insert

wi into the loser sequence so that they have one more vote than j. Let c be the

size of the vote gap between wi and j before step i of IRV. Consider the order of

candidates by vote count before step i of IRV. For each candidate with more votes

than j (excluding wi), c ballots in Si list that candidate in position i+1. For each

candidate with fewer votes than j (including j but excluding i), c− 1 ballots in Si

list that candidate in position i + 1. After reallocation, wi will then be one vote

ahead of j and one vote behind the next candidate above them. This requires at

most (k− 3)(k− 1) < (k− 2)(k− 1) ballots, an upper bound achieved if j = i+ 1

and i = 1.

All ballots terminate after their last specified entry. We now prove that the

truncation winner sequence of this profile is w1, . . . , wk−1. We’ll prove inductively

that the f -sequence invariant is maintained by construction.

Base case (ℓ = 1): By construction, the first place vote counts are exactly the

f -sequence of w1, . . . , wk−1.

Inductive case (ℓ ≥ 2): By inductive hypothesis, we have that after step ℓ−1 <

h, the candidates ℓ − 1, . . . , k were in their f -sequence order by decreasing vote

count. We also know ℓ− 1 must have been in last place, since they are eliminated

(ℓ− 1)st. Consider what occurs when ℓ− 1 is eliminated. We will mirror the four

cases of the construction. (1) If wℓ−1 = wℓ, position ℓ−1 is empty and their ballots

are all exhausted, leaving the order as is. The order of the candidates by vote

count remains the f -sequence of the remaining candidates. (2) If wℓ−1 = ℓ, then

all candidates between wℓ−1 and ℓ− 1 overtake wℓ. The new order of candidates is

again the f -sequence of the remaining candidates, since the winner prefix remains
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the same starting from wℓ and ℓ moves into last place. (3) If wℓ−1 wins again at

some h > ℓ− 1 , then our construction places it in the winner prefix exactly where

it belongs: in order of first subsequent win. The loser suffix remains unchanged,

leaving the correct f -sequence. (4) If wℓ−1 does not win again at h > ℓ − 1, then

our construction inserts it into the loser suffix where it belongs: just before the

highest-indexed non-subsequent-winner with a lower index than wℓ−1. Here, the

winner prefix in unaffected, leaving the correct f -sequence.

By construction, as soon as a ballot is reallocated, it becomes exhausted. Ad-

ditionally, just before step h of IRV, all remaining truncated ballots are exhausted.

Thus the order remains the same as trailing candidates are eliminated and wh wins,

since they were in the lead at the front of the f -sequence before step h.

Finally, this construction uses the number of ballots claimed:

k∑
i=1

[(k − 2)(k − 1) + k − j]

= k(k − 2)(k − 1) + k2 −
k∑
i=1

j

= k(k − 2)(k − 1) + k2 − k(k + 1)/2

= (2k3 − 5k2 + 3k)/2.

Proof of Theorem 22. We’ll construct a set of ballots such that candidate h wins

at truncation h = 1, . . . , k− 1. Call the last candidate (the first one eliminated) k.

Let x = (2k − 4)(k − 2). Construct x+ 2(k − 1) ballots ranking 1 first and x+ 2i

ballots ranking candidates i = 2, . . . , k − 2 first. Construct x + 3 ballots ranking
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candidate k−1 first and x ranking candidate k first. Thus, the order of candidates

from most to least first-place votes is 1, k − 2, k − 3, k − 4, . . . , 3, 2, k − 1, k and

the total number of ballots is Θ(k3). We now fill in the ballots for each of the

candidates.

Candidate k: Make 2k−4 of the ballots ranking k first rank each of 2, . . . , k−1

second. These ballots then terminate. This requires (2k−4)(k−2) ballots of k−2

types.

Candidate k − 1: 2k of the ballots ranking k−1 first rank candidates 2, . . . , k−2

in positions 2, . . . , k− 2, then terminate. The remaining ballots ranking k− 1 first

have length 1. Candidate k − 1 thus uses only two ballot types.

Candidates i = 1, . . . , k − 2: Two of the ballots ranking i first rank candidates

k, 1, 2, . . . , i−1, k−1 in positions 2, . . . , i+2, then terminate—note that candidate

1’s ballots of this form are (1, k, k− 1). The remaining ballots ranking i first have

length 1. Candidate i thus uses only two ballot types.

Notice that the construction uses O(k2) ballots ranking each candidate first, for

a total of O(k3) ballots. These are split among k−2+2+2(k−2) = 3k−2 = Θ(k)

types. We now show that truncating ballots at length h < k results in candidate

h winning under IRV.

If h = 1, candidate 1 wins since they have the most first-place votes.

If h = 2, the first candidate eliminated is candidate k. Their second-place votes

cause candidates 2, . . . , k − 1 to overtake candidate 1, who is eliminated second.

However, candidate 1’s ballots of the form (1, k, k − 1)—truncated to (1, k)—are

now exhausted, so no reallocation occurs. This causes candidate k − 1 to be
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eliminated third, and their 2k ballots ranking candidate 2 second cause candidate

2 to take the lead. The eliminations then proceed in the order 3, . . . , k−2, with no

reallocation since those candidates’ ballots are all exhausted. Candidate 2 wins.

For h > 2, we’ll show inductively that for ℓ = 2, . . . , h− 1 (h ≤ k − 1), the ℓth

candidate eliminated is candidate ℓ− 1, which causes candidate k− 1 to jump one

vote ahead of candidate ℓ, who falls into last place.

Base case (ℓ = 2): The first two eliminations proceed as they did for h = 2.

However, when candidate 1 is eliminated, their two ballots ranking k − 1 third go

to candidate k − 1, since h > 2. Before this reallocation, candidate k − 1 was in

second-to-last place with x+3+2k− 4 = x+2k− 1, one vote behind candidate 2,

who had x + 4 + 2k − 4 = x + 2k votes. The reallocation of candidate 1’s ballots

causes candidate k − 1 to jump one vote ahead of candidate 2, who falls into last

place.

Inductive case (ℓ > 2): By inductive hypothesis, candidate ℓ− 2 was last elim-

inated, which caused candidate ℓ − 1 to drop into last place, one vote behind

candidate k − 1. Thus, candidate ℓ − 1 is eliminated next. The next unelimi-

nated candidate listed on their two ballots of length > 1 is k− 1, since candidates

k, 1, . . . ℓ−2 have all been eliminated by inductive hypothesis and the cases above.

When candidate ℓ − 1 is eliminated, those two ballots cause candidate k − 1 to

jump one vote ahead of candidate ℓ, who has x + 2ℓ votes. Since candidate was

one vote ahead of candidate ℓ − 1 (who had x + 2(ℓ − 1) votes) and then gained

two more, candidate k − 1 is therefore one vote ahead of candidate ℓ after the ℓth

elimination and redistribution.

We can now show that for 2 < h < k, candidate h wins when the ballot length is
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h. Consider such a ballot length h. By the inductive argument above, the (h−1)th

candidate eliminated is candidate h− 2, which causes candidate h− 1 to fall into

last place, one vote behind candidate k − 1. Notice that when candidate h− 1 is

eliminated, they do not reallocate any votes to candidate k − 1, since candidate

k−1 appears at position h+1 on their two nontrivial ballots. Thus candidate k−1

is eliminated after candidate h − 1 (note that if h = k − 1, candidate k − 1 wins

after h− 1 = k − 2 is eliminated). The 2k nontrivial ballots assigned to k − 1 are

then redistributed to candidate h, since they are the lowest-indexed non-eliminated

candidate and they appear at position h on candidate k − 1’s nontrivial ballots.

These 2k ballots are enough to put candidate h in first place. The eliminations

then proceed in the order h + 1, h + 2, . . . , k − 2, with no reallocation since those

candidates’ ballots only include candidates indexed lower than them (except k and

k − 1, who have been eliminated). Candidate h then wins.

Proof of Corollary 3. Perform the same constructions as in the proofs of Theo-

rems 15 and 21, but with κ instead of k. Then add in another κ candidates with

zero first place votes, which are always immediately eliminated (for the tie-free

construction, these candidates need 0, . . . , κ − 1 first-place votes to avoid a tie,

resulting in the extra κ(κ− 1)/2 ballots). Use them to fill in all the partial ballots

generated by the construction up to position κ. Then fill in all ballots with the

remaining candidates arbitrarily. Up to h = κ, the construction performs exactly

as before, since all of the filler candidates are eliminated first regardless of ballot

length, allowing the ballots to act as if they were partially filled out. No guarantees

are made about the behavior under ballot lengths h = κ+ 1, . . . , 2κ.
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Proof of Corollary 4. If we can make ballots as short as κ−c, then we can perform

the same construction as above, but using c fewer fillers. Shortening ballots to κ−c

ensures that ballots will become exhausted when needed, while using fewer than

κ−c fillers. Those unused fillers are now additional candidates who could be made

to win at longer ballot lengths, up to κ + c − 1. As before, we need to give the

fillers 0, . . . , k − c − 1 first-place votes to avoid ties in the tie-free construction,

resulting in the extra (κ− c)(κ− c− 1)/2 ballots.

E.4 Additional figures

Figure E.1 shows two real-world IRV sample ballots with h = 3 and h = 15.

Table E.1 provides summary statistics of the PrefLib datasets we used, while

Figure E.2 visualizes the distributions of k, h, and n in this data.

In Figure E.3, we show the versions of the heatmaps in Figure 6.2 with partial

rather than full preferences. For general preferences, we shorted each of the 1000

voters preferences to a length uniform over 1, . . . , k. For 1-Euclidean voters, we

uniformly shorted the preferences of each of the
(
k
2

)
+ 1 voter types.

E.5 Experiment details

Experiments were run on a server with 144 Intel Xeon Gold 6254 CPUs and 1.5TB

RAM running Ubuntu 20.04.4 LTS (Focal Fossa). All libraries used are docu-

mented in the code README, as well as detailed instructions for reproducing all

experiments.
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Figure E.1: Sample mayoral election ballots from Minneapolis, MN (left) and
Portland, ME (right). Minneapolis ballots allow voters to rank up to three of the
candidates, while Portland ballots allow voters to rank all of the candidates.

Table E.1: Dataset summary.

PrefLib id Election locale # Elecs. k h # Ballots

apa Am. Psych. Assn. 12 5 5 13318–20239
aspen Aspen, CO 2 5–11 4–9 2468–2520
berkley Berkeley, CA 1 4 3 4171
burlington Burlington, VT 2 6 5 8974–9756
debian Debian Project 8 4–9 4–9 143–504
ers Anon. orgs. 87 3–29 3–29 9–3419
glasgow Glasgow, Scotland 21 8–13 8–13 5199–12744
irish Dublin, Ireland 3 9–14 9–14 29988–64081
minneapolis Minneapolis, MN 2 7–9 3 32086–36655
oakland Oakland, CA 7 4–11 3 11235–143860
pierce Pierce County, WA 4 4–7 3 39974–298438
sf San Francisco, CA 14 4–25 3 17675–193854
sl San Leandro, CA 3 4–7 3 22360–25316
takomapark Takoma Park, WA 1 4 4 202
uklabor UK Labour Party 1 5 5 266
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Figure E.2: Distributions of candidate counts, ballot lengths, and voter counts in
the PrefLib election datasets.
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Figure E.3: Probability that truncated ballots produce the full IRV winner for
general profiles (left) and 1-Euclidean profiles (right), with candidate counts k =
2, . . . , 40 and ballot lengths h = 1, . . . , k − 1 with partial preferences (each voter’s
preferences are shorted uniformly at random). The results are qualitatively the
same as in Figure 6.2.
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APPENDIX F

TECHNICAL DETAILS FOR CHAPTER 7: THE MODERATING

EFFECT OF INSTANT RUNOFF VOTING

Question 31. Whether, if three distinct points lie on a line,

one of them must lie between the other two?

Objection 1. A point has no extent; i.e., no length, breadth,

or thickness. That which has no length obviously cannot lie,

sit, or stand. Hence, a point cannot lie on a line.

Carl E. Linderholm, Mathematics Made Difficult, 1972

F.1 Quotes about IRV moderation

In this section, we include some quotes indicating that moderating effects of IRV

are an often-invoked argument in policy debates, suggesting the existence of a folk

theory which we formalize in this work. Recall that IRV is commonly referred to

as ranked-choice voting in United States.

F.2 Additional proofs

Since Theorem 25 relies on Lemma 3, we first prove Lemma 3.

Proof of Lemma 3. For notational simplicity, define n = k+1 to be the number of

gaps between candidates (including the leftmost and rightmost gaps bounded by

0 and 1) and let S1, . . . , Sn be the sizes of the gaps. Additionally, let X1, . . . , Xn
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be i.i.d. exponential random variables with mean 1 and let Tn =
∑n

i=1Xi be their

sum. We then have Si = Xi/Tn (Holst, 1980) and Tn is independent of each Si

(the Si are not independent, however). Since voters are uniform, the vote shares

are S1 + S2/2 for the leftmost candidate and (Si + Si+1)/2 for the ith candidate

for i = 2, . . . , n − 2. For the rightmost candidate, we introduce an alternative

indexing to avoid a subscript dependent on n. Let Sr and Sr′ be the rightmost and

second-rightmost gaps, respectively, so that the rightmost candidate’s vote share

is Sr′/2 + Sr (ditto for Xr and X ′r). We then have

S1 + S2/2 =
1

Tn
(X1 +X2/2),

(Si + Si+1)/2 =
1

Tn
(Xi +Xi+1)/2,

Sr′/2 + Sr =
1

Tn
(Xr′/2 +Xr).

Consider the asymptotic CDF of the leftmost candidate’s vote share scaled by

n ≥ 1:

lim
n→∞

Pr(n(S1 + S2/2) ≤ z) = lim
n→∞

Pr

(
n

Tn
(X1 +X2/2) ≤ z

)
= lim

n→∞
Pr

(
X1 +X2/2 ≤

Tn
n
z

)
.

Since it is the sum of n independent exponential RVs with mean 1, Tn has a

Gamma(n, 1) distribution (Holst, 1980), so it has variance n and expectation n.

Thus, Var(Tn/n) = 1/n2Var(Tn) = 1/n. Since Var(Tn/n) → 0 as n → ∞ and

E[Tn/n] = 1, we have limn→∞ Tn/n = 1. This can also be seen using the Law of

Large Numbers, since
∑

iXi/n converges in probability to E[Xi] = 1. Thus,

lim
n→∞

Pr

(
X1 +X2/2 ≤

Tn
n
z

)
= Pr (X1 +X2/2 ≤ z) .
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Similarly for middle candidates:

lim
n→∞

Pr(n(Si + Si+1)/2 ≤ z) = lim
n→∞

Pr

(
n

Tn
(Xi +Xi+1)/2 ≤ z

)
= lim

n→∞
Pr

(
(Xi +Xi+1)/2 ≤

Tn
n
z

)
= Pr ((Xi +Xi+1)/2 ≤ z) .

Likewise, for the rightmost candidate,

lim
n→∞

Pr(n(Sr′/2 + Sr) ≤ z) = lim
n→∞

Pr

(
n

Tn
(Xr′/2 +Xr) ≤ z

)
= lim

n→∞
Pr

(
Xr′/2 +Xr ≤

Tn
n
z

)
= Pr (Xr′/2 +Xr ≤ z) .

Thus, the asymptotic distributions of n times the vote shares equal the distribu-

tions of the corresponding sums of exponentials RVs. This is the same idea used in

proving the asymptotic distribution of the maximum gap size (Holst, 1980). Now

consider the distribution of the maximum vote share. Let Vk be the maximum vote

share with k ≥ 3 candidates (and therefore n = k+1 gaps between candidates) and

let Mk be the maximum corresponding exponential RV sum. As above, by LLN,

limn→∞ Pr(nVk ≤ z) = Pr(Mk ≤ z). Let Ln = X1 + X2/2, Ci = (Xi + Xi+1)/2,

and Rn = Xn−1/2 +Xn.

Pr(Mk ≤ z) = Pr(Ln ≤ z, C2 ≤ z, . . . , Cn−2,≤ z,Rn ≤ z)

= Pr(Ln ≤ z) Pr(Rn ≤ z | Ln ≤ z, C2 ≤ z, . . . , Cn−2 ≤ z)

·
n−2∏
i=2

Pr(Ci ≤ z | Ln ≤ z, . . . , Ci−1 ≤ z).

Then, using the facts that each Xi is independent (and thus Ci is independent of

Cj for j > i+ 1 and j < i− 1) and that each Ci is identically distributed, we can
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simplify the conditioning:

Pr(Mk ≤ z)

= Pr(Ln ≤ z) Pr(C2 ≤ z | Ln ≤ z) Pr(Rn ≤ z | Cn−2 ≤ z)
n−2∏
i=3

Pr(Ci ≤ z | Ci−1 ≤ z)

= Pr(Ln ≤ z) Pr(C2 ≤ z | Ln ≤ z) Pr(Rn ≤ z | Cn−2 ≤ z) Pr(Ci ≤ z | Ci−1 ≤ z)n−4.

We now only have four different probabilities to compute.

1. Pr(Ln ≤ z) = Pr(X1 +X2/2 ≤ z). Note that X1 ∼ Exp(1), X2/2 ∼ Exp(2),

and X1 and X2/2 are independent. Thus:

Pr(X1 +X2/2 ≤ z) =

∫ z

0

e−t
(∫ z−t

0

2e−2sds

)
dt

= 1− e−2z − 2e−z.

2.

Pr(C2 ≤ z | Ln ≤ z) =
Pr((X2 +X3)/2 ≤ z,X1 +X2/2 ≤ z)

Pr(X1 +X2/2 ≤ z)
.

We already know the denominator from the previous calculation. As before,

X2/2 and X3/2 are independent and Exp(2) distributed. To have (X2 +

X3)/2 ≤ z and X1 +X2/2 ≤ z, we first need X1 ≤ z, then X2/2 ≤ z −X1,

and finally X3/2 ≤ z −X2/2. Thus:

Pr((X2 +X3)/2 ≤ z,X1 +X2/2 ≤ z) =

∫ z

0

e−t
(∫ z−t

0

2e−2s
[∫ z−s

0

2e−2r dr

]
ds

)
dt

= 1− 2e−3z + 3e−2z − 2e−z − 2e−2zz.

So,

Pr(C2 ≤ z | Ln ≤ z) =
1− 2e−3z + 3e−2z − 2e−z − 2e−2zz

1− e−2z − 2e−z

= 1 + 2e−z − 2(z + ez − 4)

ez(ez − 2)− 1
.
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3.

Pr(Ci ≤ z | Ci−1 ≤ z) =
Pr((Xi +Xi+1)/2 ≤ z, (Xi−1 +Xi)/2 ≤ z)

Pr((Xi−1 +Xi)/2 ≤ z)
.

First, consider the denominator:

Pr((Xi−1 +Xi)/2 ≤ z) =

∫ z

0

2e−2t
(∫ z−t

0

2e−2s ds

)
dt

= 1− e−2z(1 + 2z).

Now, the numerator. First, we’ll requireXi−1/2 ≤ z, thenXi/2 ≤ z−Xi−1/2,

then Xi+1/2 ≤ z −Xi/2:

Pr((Xi +Xi+1)/2 ≤ z, (Xi−1 +Xi)/2 ≤ z)

=

∫ z

0

2e−2t
(∫ z−t

0

2e−2s
[∫ z−s

0

2e−2r dr

]
ds

)
dt

= 1− e−4z − 4e−2zz.

Thus,

Pr(Ci ≤ z | Ci−1 ≤ z) =
1− e−4z − 4e−2zz

1− e−2z(1 + 2z)
.

4.

Pr(Rn ≤ z | Cn−2 ≤ z) =
Pr(Xn−1/2 +Xn ≤ z, (Xn−2 +Xn−1)/2 ≤ z)

Pr((Xn−2 +Xn−1)/2 ≤ z)

We already know the denominator from the previous step. We also know the

numerator, by symmetry with the numerator in step 2. Thus:

Pr(Rn ≤ z | Cn−2 ≤ z) =
1− 2e−3z + 3e−2z − 2e−z − 2e−2zz

1− e−2z(1 + 2z)
.

292



Putting the four pieces together and simplifying:

Pr(Mk ≤ z) =
(
1− e−2z − 2e−z

)(1− 2e−3z + 3e−2z − 2e−z − 2e−2zz

1− e−2z(1 + 2z)

)
·
(
1 + 2e−z − 2(z + ez − 4)

ez(ez − 2)− 1

)(
1− e−4z − 4e−2zz

1− e−2z(1 + 2z)

)n−4
=
e−4z(−2 + ez(3 + ez(−2 + ez)− 2z))2

−1 + e2z − 2z

(
1− e−4z − 4e−2zz

1− e−2z(1 + 2z)

)n−4
.

(∗)

We want to take the limit of (∗) as n → ∞. We’ll focus on the second part first,

since the limit of a product is the product of the limits (as we will see, both limits

are well-defined). Define

ℓ(z) = lim
n→∞

(
1− e−4z − 4e−2zz

1− e−2z(1 + 2z)

)n−4
.

Take the log to handle the exponent:

log ℓ(z) = lim
n→∞

(n− 4) log

(
1− e−4z − 4e−2zz

1− e−2z(1 + 2z)

)
= lim

n→∞
[(n− 4) log

(
1− e−4z − 4e−2zz

)
− (n− 4) log

(
1− e−2z(1 + 2z)

)
].

Now we’ll split the limit into its two terms and plug in (log n+ log log n+x)/2
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for z in ℓ(z). The first term:

lim
n→∞

(n− 4) log
(
1− e−4(logn+log logn+x)/2 − 4e−2(logn+log logn+x)/2(log n+ log log n+ x)/2

)
= lim

n→∞
(n− 4) log

(
1− e−2xn−2 log−2 n− 2e−xn−1 log−1 n(log n+ log log n+ x)

)
(simplify)

= lim
n→∞

log
(
1− e−2xn−2 log−2 n− 2e−xn−1 log−1 n(log n+ log log n+ x)

)
(n− 4)−1

(rearrange)

= lim
n→∞

−(n− 4)2
d

dn
log
(
1− e−2xn−2 log−2 n− 2e−xn−1 log−1 n(log n+ log log n+ x)

)
(l’Hôpital’s rule)

= lim
n→∞

−(n− 4)2
2exn log n(log n+ 1)(log n+ log log n+ x− 1) + 2 log n+ 2

exn2 log2 n(exn log n− 2 log n− 2 log log n− 2x)− n log n

(take derivative)

= lim
n→∞

−2exn3 log3 n−O(n3 log2 n)

e2xn3 log3 n−O(n2 log3 n)
(isolate highest order terms)

= −2e−x.

Plugging (log n + log log n + x)/2 into the second term and following the same

strategy as above:

lim
n→∞

(n− 4) log
(
1− e−2((logn+log logn+x)/2)(1 + 2((log n+ log log n+ x)/2))

)
= lim

n→∞
−(n− 4)2

d

dn
log
(
1− e−xn−1 log−1 n(1 + log n+ log log n+ x)

)
= lim

n→∞
(n− 4)2

(log n+ 1)(log n+ log log n+ x)

n log n (−exn log n+ log n+ log log n+ x+ 1)

= lim
n→∞

n2 log2 n+O(n2 log n log log n)

−exn2 log2 n+O(n log2 n)

= −e−x,

where splitting the limit is allowed because both limits are finite. Thus,

log ℓ((log n+ log log n+ x)/2) = −2e−x − (−e−x)

= −e−x.
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We then have ℓ((log n+ log log n+ x)/2) = e−e
−x . Going back to the first part of

(∗) (recall that we are plugging in z = (log n+ log log n+ x)/2),

lim
n→∞

e−4z(−2 + ez(3 + ez(−2 + ez)− 2z))2

−1 + e2z − 2z
= lim

z→∞

e−4z(−2 + ez(3 + ez(−2 + ez)− 2z))2

−1 + e2z − 2z

= lim
z→∞

e2z −O(ez)
e2z −O(z)

= 1.

Combining these findings gives us the limits of (∗) as n → ∞, again plugging

in z = (log n+ log log n+ x)/2 and using the results above,

lim
n→∞

Pr

(
Mk ≤

log n+ log log n+ x

2

)
= e−e

−x
.

As we saw at the beginning of the proof, to convert from the max sum of expo-

nential RVs to the max plurality vote share (in the limit), we simply multiply by

n. We can additionally convert back to k + 1 = n to prove the claim:

e−e
−x

= lim
n→∞

Pr

(
Mk ≤

log n+ log log n+ x

2

)
= lim

n→∞
Pr

(
nVk ≤

log n+ log log n+ x

2

)
= lim

k→∞
Pr

(
Vk ≤

log(k + 1) + log log(k + 1) + x

2(k + 1)

)
.

Since e−e−x → 1 and e−e
x → 0 as x → ∞, we immediately have the following

corollary of Lemma 3.

Corollary 13. Let n = k + 1. For any function g(n) with limk→∞ g(n) =∞,

lim
k→∞

Pr

(
log n+ log log n− g(n)

2n
≤ Vk ≤

log n+ log log n+ g(k)

2n

)
= 1.
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Intuitively, Corollary 13 states that the asymptotic winning plurality vote share

is almost exactly log(k+1)+log log(k+1)
2(k+1)

with probability 1. We now provide a useful

lemma before proving Theorem 25.

Lemma 11. Let At and Bt be events with limt→∞ Pr(At) = 1 and limt→∞ Pr(Bt) =

β > 0. Then limt→∞ Pr(At | Bt) = 1.

Proof. Using the Law of Total Probability and some basic probability facts,

Pr(At | Bt) =
Pr(At ∩Bt)

Pr(Bt)

=
Pr(Bt)− Pr(At ∩Bt)

Pr(Bt)

≥ 1− Pr(At)

Pr(Bt)

Thus,

lim
t→∞

Pr(At | Bt) ≥ lim
t→∞

1− Pr(At)

Pr(Bt)

= 1− 0

β

= 1.

We then have limt→∞ Pr(At | Bt) = 1.

Finally, we can prove Theorem 25.

Proof of Theorem 25. Consider a plurality election with k candidates on the circle

with circumference 1, with points on the circle mapped to the interval [0, 1) (we’ll

say the point on the circle corresponding to the endpoints of the interval maps to

0). Let Ck be the position of the plurality winner on the circle with candidates
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positioned uniformly at random. By rotational symmetry, Ck is uniform over the

interval [0, 1). Consider a particular configuration of k candidates on the circle.

When we break the circle to make it the unit interval, we only change the vote

shares of the candidates closest to 0 and 1 (call them xℓ and xr, respectively). Let

xℓ′ be the second-closest candidate to 0 and let xr′ be the second-closest candidate

to 1.

Consider Pr(xℓ′ < y) = 1− Pr(xℓ′ ≥ y). The event xℓ′ ≥ y can be partitioned

into two cases: either xℓ < y or xℓ ≥ y. Thus,

Pr(xℓ′ ≥ y) = Pr(xℓ′ ≥ y, xℓ < y) + Pr(xℓ′ ≥ y, xℓ ≥ y)

= Pr(xℓ < y) Pr(xℓ′ ≥ y | xℓ < y) + (1− y)k

= (1− (1− y)k)(1− y)k−1 + (1− y)k.

Now, pick y = log k
4k

. We then have:

lim
k→∞

Pr

(
xℓ′ <

log k

4k

)
= lim

k→∞

[
1− Pr

(
xℓ′ ≥

log k

4k

)]
= lim

k→∞

[
1−

(
1−

(
1− log k

4k

)k)(
1− log k

4k

)k−1
−
(
1− log k

4k

)k]

Note that limk→∞(1−log k/(4k))k = 0, since limk→∞(1−x/k)k = e−x. We also have

limk→∞(1− log k/(4k))k−1 = 0, since (1− log k/(4k))k−1 = (1− log k/(4k))k/(1−

log k/(4k)) and limk→∞(1− log k/(4k)) = 1. This means

lim
k→∞

Pr

(
xℓ′ <

log k

4k

)
= lim

k→∞

[
1−

(
1−

(
1− log k

4k

)k)(
1− log k

4k

)k−1
−
(
1− log k

4k

)k]

= 1− (1− 0) · 0− 0

= 1. (F.1)

Symmetrically, we also have limk→∞ Pr
(
xr′ > 1− log k

4k

)
= 1. We can therefore

bound the asymptotic vote shares of xℓ and xr on both the circle and the unit
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interval. Neither can get more votes (in either setting) than the distance between

xℓ′ and xr′ on the circle; i.e., b = xℓ′ +1−xr′ is an upper bound on the vote shares

of xℓ and xr on both the circle and the unit interval. We can use the above facts

to find an asymptotic bound on b. First, consider the probability that both xr′ and

xℓ′ are close to the boundaries:

lim
k→∞

Pr

(
xr′ > 1− log k

4k
, xℓ′ <

log k

4k

)
= lim

k→∞
Pr

(
xℓ′ <

log k

4k

)
· lim
k→∞

Pr

(
xr′ > 1− log k

4k
| xℓ′ <

log k

4k

)
= lim

k→∞
Pr

(
xr′ > 1− log k

4k
| xℓ′ <

log k

4k

)
(by Equation (F.1))

= 1. (by Lemma 11)

If xr′ > 1− log k
4k

, then 1−xr′ < log k
4k

. Thus, if both xr′ > 1− log k
4k

and xℓ′ < log k
4k

, we

then have b = xℓ′ +1−xr′ < log k
2k

. Therefore limk→∞ Pr(b < log k
2k

) = 1. That is, the

asymptotic vote share of the leftmost and rightmost candidates are both less than
log k
2k

with probability 1. Meanwhile, we know from Lemma 3 that the asymptotic

winning vote share on the unit interval is larger than log k
2k

with probability 1; i.e.,

with probability 1, neither xℓ nor xr is the winner (on either the circle or unit

interval). Since no other vote shares change when we go between the unit interval

and the circle, the winner on the unit interval is the same as the winner on the

circle with probability 1 as k →∞. Thus, limk→∞ Pr(Pk ≤ x) = limk→∞ Pr(Ck ≤

x) = x.

Proof of Theorem 27. Begin the same way as in the proof of Theorem 26, mini-

mizing x’s vote shares with candidates at c− ϵ and 1− c+ ϵ. We thus have

v(x) = F

(
x+ 1− c+ ϵ

2

)
− F

(
c− ϵ+ x

2

)
.
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If f is monotonic and non-decreasing over [0, 1/2], then x has the smallest vote

share when x = c. At this edge of the interval, x’s vote share is at least

v(x) ≥ F

(
c+ 1− c+ ϵ

2

)
− F

(
c− ϵ+ c

2

)
= F

(
1 + ϵ

2

)
− F

(
c− ϵ

2

)
> F (1/2)− F (c) (F increasing)

= 1/2− F (c) . (symmetry of f)

Suppose c ≤ F−1(1/6). Then:

1/2− F (c) ≥ 1/2− F (F−1(1/6))

= 1/2− 1/6

= 1/3.

Thus x cannot be eliminated next. The IRV winner must therefore be in [c, 1− c]

by the same argument as in Theorem 23.

Proof of Theorem 28. As in Theorem 26, minimize x’s vote shares with candidates

at c − ϵ and 1 − c + ϵ. If f is monotonic and non-increasing over [0, 1/2], then x

has the smallest vote share when x = 1/2:

v(x) ≥ F

(
x+ 1− c+ ϵ

2

)
− F

(
c− ϵ+ x

2

)
= F

(
3

4
− c− ϵ

2

)
− F

(
1

4
+
c− ϵ
2

)
= 2

[
F (1/2)− F

(
1/4 +

c− ϵ
2

)]
(symmetry of f)

= 1− 2F

(
1/4 +

c− ϵ
2

)
. (symmetry of f)
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Suppose c ≤ 2(F−1(1/3)− 1/4). Then we have:

1− 2F

(
1/4 +

c− ϵ
2

)
≥ 1− 2F

(
1/4 +

2(F−1(1/3)− 1/4)− ϵ
2

)
= 1− 2F

(
F−1(1/3)− ϵ

2

)
> 1− 2F

(
F−1(1/3)

)
(F increasing)

= 1− 2/3

= 1/3.

As before, x cannot be eliminated next and some candidate in [c, 1− c] must win

under IRV.

Proof of Theorem 29. Suppose there is exactly one candidate ℓ ∈ [0, c] and at least

one candidate each in (c, 1 − c) and [c, 1] (if there are no candidates in (c, 1 − c),

the claim is vacuously true). The smallest vote share ℓ could have occurs when

ℓ = 0 and there is a candidate at c+ ϵ. In this case, ℓ’s vote share is

F

(
c+ ϵ

2

)
> F (c/2) .

If c ≥ 2F−1(1/3), then

F (c/2) ≥ F
(
2F−1(1/3)/2

)
= 1/3.

Thus, ℓ cannot be eliminated next. By a symmetric argument, the last candidate

r in [1 − c, 1] is guaranteed more than a third of the vote. As long we we begin

with at least one candidate in [0, c] and at least one candidate in [1 − c, 1], once

there is only one candidate remaining in each of these intervals, they will survive

elimination until all candidates in (c, 1− c) are eliminated. At this point, the IRV

winner is guaranteed to be in [0, c] or [1− c, 1].
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Proof of Theorem 30. First, if x1 = 0, consider a voter distribution with density

function f that increases monotonically over [0, 1]. Let r be the position of the

candidate immediately to the right of x1. The candidate at r must have a higher

vote share than x1, since they split the interval [0, r] and the right half of this

interval has more voter mass (as f is increasing). Thus, x1 cannot win under

plurality, regardless of how many additional candidates we add. A symmetric

argument shows that there are cases where a candidate at x1 = 1 cannot win

under plurality.

Now we show how to add candidates to the initial set x1, . . . , xκ so that x1

becomes the plurality winner if x1 /∈ {0, 1}. Since f is continuous and f(x1) > 0,

there must exist some δ > 0 such that |f(x1)− f(x1+ t)| < f(x1)/4 for t ∈ [−δ, δ].

This argument still holds if we make δ smaller, so we ensure than δ < min{x1, 1−

x1} (both are positive since x1 /∈ {0, 1}). Now add candidates ℓ = x1 − δ and

r = x1 + δ. Then the vote share ℓ gets on its right is less than 5
8
δf(x1):∫ (x1+ℓ)/2

ℓ

f(t)dt <

∫ (x1+x1−δ)/2

x1−δ
(f(x1) + f(x1)/4)dt

=
5

4
f(x1)(x1 − δ/2− x1 + δ)

=
5

8
δf(x1).

The same argument shows the vote share r gets on its left is less than 5
8
δf(x1).

Meanwhile, the vote share of x1 is more than 3
4
δf(x1):∫ (x1+r)/2

(x1+ℓ)/2

f(t)dt >

∫ (x1+x1+δ)/2

(x1+x1−δ)/2
(f(x1)− f(x1)/4)dt

=
3

4
f(x1)(x1 + δ/2− x1 + δ/2)

=
3

4
δf(x1).

Thus x1 has a higher vote share than ℓ gets on its right and than r gets on its

left. Now, we repeatedly add candidates to the left of ℓ adjacent to the candidates
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with the maximum vote shares in [0, ℓ]. We can make the maximum vote share

in [0, ℓ] arbitrarily small (except ℓ’s) by adding enough candidates in this way—in

particular, we can make it smaller than v(x1). We can also make ℓ’s total vote

share smaller than v(x1), since the vote share ℓ gets on its right is strictly smaller

than v(x1). Doing the same in [r, 1] then ensures x1 is the plurality winner.

F.3 Derivations of fP3
and fR3

In this section, we derive the probability density functions of the position of the

plurality and IRV winners for 1-Euclidean profiles with k = 3 uniformly placed

candidates and continuous uniform voters. We then compute the variances of

these distributions. The calculations for plurality are in Appendix F.3.1 and the

calculations for IRV are in Appendix F.3.2. First, we provide an overview of our

approach.

Let X1, . . . , Xk ∼ Unif(0, 1) be the random positions of the k candidates and

let W ∈ {X1, . . . , Xk} be the position of the winner. Let X(i) denote the ith order

statistic of X1, . . . , Xk.

The density of the winner’s position at a point w, denoted f(w), is k times

the probability that a particular candidate at w is the winner (times the density

of that candidate’s position at w, which is 1). We sum over the possible order

statistics of the winner to compute f(w):
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f(w) = k Pr(w wins)

= k
k∑
i=1

Pr(w wins, w = X(i))

What is the probability that a candidate at position w with order statistic i

wins? Say the winner is candidate 1. We can choose which i− 1 candidates are to

their left. The remaining k − i candidates are to their right. Then, we integrate

over the positions of the other candidates where the candidate at w wins.

Pr(w wins, w = X(i))

=

(
k

i− 1

)∫ xi

0

· · ·
∫ w

0︸ ︷︷ ︸
i−1

∫ 1

xi

· · ·
∫ 1

w︸ ︷︷ ︸
k−1

1[w wins given positions x2, . . . , xk]dxk . . . dx2

We can also note that the win probability (and therefore the winner density)

is symmetric about 0.5: f(w) = 1 − f(w). We therefore only need to consider

w ∈ [0, 0.5].

F.3.1 1d plurality winner distribution, k = 3

We’ll compute Pr(w wins, w = X(i)) for i = 1, 2, 3 and w ∈ [0, 0.5]. That is, we’ll

compute the win probability of a candidate at a point w in the cases where they are

the leftmost, the middle, and the rightmost of the three candidates. In all cases,

we’ll call the winner candidate 1 and the losers candidates 2 and 3, at positions x2

and x3.
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1. w = X(1). Consider the order w < x2 < x3 (we’ll multiply by 2 later to

account for the ordering w < x3 < x2). For w to beat x2, we need:

w + (x2 − w)/2 > (x2 − w)/2 + (x3 − x2)/2

⇔ w > (x3 − x2)/2

⇔ 2w > x3 − x2

⇔ x3 < 2w + x2 (F.2)

For w to beat x3, we need

w + (x2 − w)/2 > 1− x3 + (x3 − x2)/2

⇔ 2w + x2 − w > 2− 2x3 + x3 − x2

⇔ w + x2 > 2− x3 − x2

⇔ x3 > 2− 2x2 − w (F.3)

For both (F.2) and (F.3) to be feasible, w and x2 cannot both be too small.

The inequalities match at

2w + x2 = 2− 2x2 − w

⇔ 3w + 3x2 = 2

⇔ w + x2 = 2/3.

We therefore need w+x2 > 2/3 to satisfy both (F.2) and (F.3). We summa-

rize the constraints on w and x2 in the following plot, where the gray region

contains points where w can win (given w < x2 < x3).
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w

x
2

x2 = w
x2 = 2/3− w

The lower bound on x3 for w to win is the minimum of x2 and 2− 2x2 − w,

while the upper bound is the maximum of 1 and 2w+x2. We’ll plot the lines

where these bounds change, namely x2 = 2− 2x2−w ⇔ x2 = 2/3−w/3 and

1 = 2w + x2 ⇔ x2 = 1− 2w, and label the regions over which we can easily

integrate:
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1
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C

D
E F G

w

x
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(a) x2 = w
(b) x2 = 2/3− w
(c) x2 = 1− 2w
(d) x2 = 2/3− w/3

Above line (c), the upper bound for x3 is 1; below (c), it’s 2w + x2. Above

line (d), the lower bound for x3 is x2; below, it’s 2− 2x2 − w. Lines (c) and

(d) intersect at w = 1/5, while lines (a), (b), and (c) intersect at w = 1/3.
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With this information in hand, we can compute the integral describing the

win probability of w by summing the integrals for regions A–G and multi-

plying by 2 to account for the ordering w < x3 < x2:

A :

∫ 1−2w

2/3−w/3

∫ 2w+x2

x2

dx3 dx2 = 2w/3− 10w2/3

B :

∫ 1

1−2w

∫ 1

x2

dx3 dx2 = 2w2

C :

∫ 1

2/3−w/3

∫ 1

x2

dx3 dx2 = 1/18 + w/9 + w2/18

D :

∫ 2/3−w/3

2/3−w

∫ 2w+x2

2−2x2−w
dx3 dx2 = 2w2/3

E :

∫ 1−2w

2/3−w

∫ 2w+x2

2−2x2−w
dx3 dx2 = 1/6− w + 3w2/2

F :

∫ 2/3−w/3

1−2w

∫ 1

2−2x2−w
dx3 dx2 = −2/9 + 14w/9− 20w2/9

G :

∫ 2/3−w/3

w

∫ 1

2−2x2−w
dx3 dx2 = −2/9 + 14w/9− 20w2/9

For w ∈ [0, 1/5], the win probability is 2(2w/3 − 10w2/3 + 2w2 + 2w2/3) =

4w/3− 4w2/3.

For w ∈ [1/5, 1/3], the win probability is 2(1/6−w+3w2/2+−2/9+14w/9−

20w2/9 + 1/18 + w/9 + w2/18) = 4w/3− 4w2/3.

Finally, for w ∈ [1/3, 1/2], the win probability is 2(−2/9+14w/9−20w2/9+

1/18 + w/9 + w2/18) = −1/3 + 10w/3− 13w2/3.

To summarize, the win probability is:

Pr(w wins, w = X(1)) =


4w/3− 4w2/3, w ∈ [0, 1/3]

−1/3 + 10w/3− 13w2/3, w ∈ [1/3, 1/2]

(F.4)

Visualizing this:
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4w/3− 4w2/3

−1/3 + 10w/3− 13w2/3

2. w = X(2). Consider the ordering x2 < w < x3 (we’ll multiply by 2 later to

account for x3 < w < x2). For w to beat x2, we need:

(w − x2)/2 + (x3 − w)/2 > x2 + (w − x2)/2

⇔ (x3 − w)/2 > x2

⇔ x3 > 2x2 + w (F.5)

In order for this to be feasible, we need 2x2 + w < 1⇔ x2 < (1− w)/2. For

w to beat x3, we need:

(w − x2)/2 + (x3 − w)/2 > 1− x3 + (x3 − w)/2

⇔ (w − x2)/2 > 1− x3

⇔ x3 > 1− (w − x2)/2 (F.6)
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These bounds are equal if

2x2 + w = 1− (w − x2)/2

⇔ 4x2 + 2w = 2− w + x2

⇔ 3x2 + 3w = 2

⇔ x2 = 2/3− w

Again, we can split the w–x2 plane using this line to make integration easy.

Note that the lines x2 = 2/3− w and the line x2 = w intersect at 1/3.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

A B

C

w

x
2

(a) x2 = w
(b) x2 = (1− w)/2
(c) x2 = 2/3− w

Above line (c), the constraint x3 > 2x2 + w dominates. Below line (c),

x3 > 1− (w − x2)/2 dominates. Integrating in the regions A–C:

A :

∫ w

0

∫ 1

1−(w−x2)/2
dx3 dx2 = w2/4

B :

∫ 2/3−w

0

∫ 1

1−(w−x2)/2
dx3 dx2 = −1/9 + 2w/3− 3w2/4

C :

∫ (1−w)/2

2/3−w

∫ 1

2x2+w

dx3 dx2 = 1/36− w/6 + w2/4
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Recall that we need to multiply by 2 to account for the ordering x3 < w < x2.

For w ∈ [0, 1/3], the win probability is 2(w2/4) = w2/2.

For w ∈ [1/3, 1/2], the win probability is 2(−1/9 + 2w/3 − 3w2/4 + 1/36 −

w/6 + w2/4) = −1/6 + w − w2.

To summarize:

Pr(w wins, w = X(2)) =


w2/2, w ∈ [0, 1/3]

−1/6 + w − w2, w ∈ [1/3, 1/2]

(F.7)

Visualizing this:
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3. w = X(3). This means x2 < w and x3 < w. Since w ≤ 0.5, w always wins.

We also have Pr(x2 < w) = w and Pr(x3 < w) = w . Thus, Pr(w wins, w =

X(3) | w ∈ [0, 0.5]) = w2.

Adding the three cases, we arrive at Pr(w wins). For w ∈ [0, 1/3], the sum

is 4w/3 − 4w2/3 + w2/2 + w2 = 4w/3 + w2/6. For w ∈ [1/3, 1/2], the sum is

−1/3+10w/3−13w2/3−1/6+w−w2+w2 = −1/2+13w/3−13w2/3. Summarizing

and plotting:
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Pr(w wins) =


4w/3 + w2/6, w ∈ [0, 1/3]

−1/2 + 13w/3− 13w2/3, w ∈ [1/3, 1/2]

(F.8)
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Scaling by 3, the variance of P3 is then:

6

[∫ 1/3

0

(w − 1/2)2(4w/3 + w2/6) dw +

∫ 1/2

1/3

(w − 1/2)2(−1/2 + 13w/3− 13w2/3) dw

]

= 23/540 ≈ 0.043

F.3.2 1d IRV winner distribution, k = 3

We’ll perform the same type of analysis, but for IRV instead of plurality. In

addition to breaking down cases by the order statistic of the winner, we’ll also

consider the IRV elimination order.

1. w = X(1). Consider the order w < x2 < x3 (we’ll multiply by 2 later to

account for the ordering w < x3 < x2).
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(a) Candidate 2 is eliminated first. Since 2 has a smaller vote share than

the winner,

(x2 − w)/2 + (x3 − x2)/2 < w + (x2 − w)/2

⇔ (x3 − x2)/2 < w

⇔ x3 < 2w + x2 (F.9)

Since 2 has a smaller vote share than 3,

(x2 − w)/2 + (x3 − x2)/2 < 1− x3 + (x3 − x2)/2

⇔ (x2 − w)/2 < 1− x3

⇔ x3 < 1− (x2 − w)/2. (F.10)

For this constraint to be feasible, we need

x2 < 1− (x2 − w)/2

⇔ 2x2 < 2− x2 + w

⇔ x2 < 2/3 + w/3

The constraints are equal if

2w + x2 = 1− (x2 − w)/2

⇔ 4w + 2x2 = 2− x2 + w

⇔ 3w + 3x2 = 2

⇔ x2 = 2/3− w

Once 2 is eliminated, whoever is closer to 1/2 is the winner. Thus, for

w to win, we need x3 > 1− w. This constraint equals constraint F.9 if

2w + x2 = 1− w

⇔ x2 = 1− 3w
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If w is too small (i.e., left of the line x2 = 1 − 3w), then we cannot

satisfy both x3 > 1− w and x3 < 2w + x2. The constraint x3 > 1− w

equals constraint F.10 if

1− (x2 − w)/2 = 1− w

⇔ 2− x2 + w = 2− 2w

⇔ x2 = 3w

Again, if we are to the left of this line, we cannot satisfy both x3 > 1−w

and x3 < 1−(x2−w)/2. Finally, the lower bound on x3 is the maximum

of 1 − w and x2. Above the line x2 = 1 − w, the lower bound x2

dominates; below, 1− w dominates.
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(a) x2 = w
(b) x2 = 2/3 + w/3
(c) x2 = 2/3− w
(d) x2 = 1− 3w
(e) x2 = 3w
(f) x2 = 1− w

Below line (c), constraint (F.9) dominates; above line (c), constraint

(F.10) dominates. Below line (f), the lower bound on x3 is 1−w; above

line (f), the lower bound is x2. Lines (c), (d), (e) intersect at w = 1/6;

lines (b), (e), (f) intersect at w = 1/4; lines (a) and (d) intersect at

w = 1/4; lines (a) and (c) intersect at w = 1/3.
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Integrating for each region and multiplying by 2 to account for the order

w < x3 < x2:

A :

∫ 2/3−w

1−3w

∫ 2w+x2

1−w
dx3 dx2 = 1/18− 2w/3 + 2w2

B :

∫ 2/3−w

w

∫ 2w+x2

1−w
dx3 dx2 = −4/9 + 10w/3− 6w2

C :

∫ 3w

2/3−w

∫ 1−(x2−w)/2

1−w
dx3 dx2 = 1/9− 4w/3 + 4w2

D :

∫ 1−w

2/3−w

∫ 1−(x2−w)/2

1−w
dx3 dx2 = −5/36 + 2w/3

E :

∫ 1−w

w

∫ 1−(x2−w)/2

1−w
dx3 dx2 = −1/4 + 2w − 3w2

F :

∫ 2/3+w/3

1−w

∫ 1−(x2−w)/2

x2

dx3 dx2 = 1/12− 2w/3 + 4w2/3

For w ∈ [1/6, 1/4], the win probability is 2(1/18− 2w/3 + 2w2 + 1/9−

4w/3 + 4w2) = 1/3− 4w + 12w2.

For w ∈ [1/4, 1/3], the win probability is 2(−4/9+10w/3−6w2−5/36+

2w/3 + 1/12− 2w/3 + 4w2/3) = −1 + 20w/3− 28w2/3.

For w ∈ [1/3, 1/2], the win probability is 2(−1/4 + 2w − 3w2 + 1/12−

2w/3 + 4w2/3) = −1/3 + 8w/3− 10w2/3.

Summarizing and visualizing:

Pr(w wins, w = X(1), X(2) elim 1st)

=


1/3− 4w + 12w2, w ∈ [1/6, 1/4]

−1 + 20w/3− 28w2/3, w ∈ [1/4, 1/3]

−1/3 + 8w/3− 10w2/3, w ∈ [1/3, 1/2]
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(b) Candidate 3 is eliminated first. Since candidate 3 has a smaller vote

share than candidate 2:

(x3 − x2)/2 + 1− x3 < (x3 − x2)/2 + (x2 − w)/2

⇔ 1− x3 < (x2 − w)/2

⇔ x3 > 1− (x2 − w)/2

Since candidate 3 has a smaller vote share than the winner:

(x3 − x2)/2 + 1− x3 < w + (x2 − w)/2

⇔ x3 − x2 + 2− 2x3 < 2w + x2 − w

⇔ − x3 + 2 < w + 2x2

⇔ x3 > 2− w − 2x2

For this to be feasible, we need:

2− w − 2x2 < 1

⇔ 1− w < 2x2

⇔ x2 > (1− w)/2
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The constraints x3 > 1 − (x2 − w)/2 and x3 > 2 − w − 2x2 are equal

when:

1− (x2 − w)/2 = 2− w − 2x2

⇔ 2− x2 + w = 4− 2w − 4x2

⇔ 3x2 = 2− 3w

⇔ x2 = 2/3− w

Above the line x2 = 2/3 − w, the constraint x3 > 1 − (x2 − w)/2

dominates; below, x3 > 2− w − 2x2 dominates.

In order for w to win, it must be closer to the center than x2. This

requires that x2 > 1 − w (since w < 0.5 and w < x2). Thus, we never

need to worry about the constraint x3 < 2 − w − 2x2 (since the line

x2 = 1 − w is above the line 2/3 − w). The lower bound on x3 is thus

the maximum of x2 and 1− (x2 − w)/2. These are equal if

x2 = 1− (x2 − w)/2

⇔ 2x2 = 2− x2 + w

⇔ 3x2 = 2 + w

⇔ x2 = 2/3 + w/3

Above the line x2 = 2/3+w/3, the lower bound on x3 is x2; below, it’s

1− (x2 − w)/2.
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(a) x2 = w
(b) x2 = (1− w)/2
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(d) x2 = 1− w
(e) x2 = 2/3 + w/3

Lines (d) and (e) intersect at w = 1/4. Integrating over the regions:

A :

∫ 1

1−w

∫ 1

x2

dx3 dx2 = w2/2 (F.11)

B :

∫ 1

2/3+w/3

∫ 1

x2

dx3 dx2 = 1/18− w/9 + w2/18 (F.12)

C :

∫ 2/3+w/3

1−w

∫ 1

1−(x2−w)/2
dx3 dx2 = −5/36 + 7w/9− 8w2/9 (F.13)

Multiplying by 2 to account for the ordering w < x3 < x2:

For w ∈ [0, 1/4], the win probability is 2(w2/2) = w2.

For w ∈ [1/4, 1/2], the win probability is 2(1/18−w/9+w2/18−5/36+

7w/9− 8w2/9) = −1/6 + 4w/3− 5w2/3.

Pr(w wins, w = X(1), X(3) elim 1st) =


w2, w ∈ [0, 1/4]

−1/6 + 4w/3− 5w2/3, w ∈ [1/4, 1/2]

(F.14)

Plotting:
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w2

−1/6 + 4w/3− 5w2/3

2. w = X(2). Consider the order x2 < w < x3 (we’ll multiply by 2 later to

account for x3 < w < x2).

(a) Candidate 2 is eliminated first. Since candidate 2 has a smaller vote

share than the winner,

x2 + (w − x2)/2 < (x3 − w)/2 + (w − x2)/2

⇔ x2 < (x3 − w)/2

⇔ 2x2 < x3 − w

⇔ x3 > 2x2 + w.

For this to be feasible, we need

2x2 + w < 1

⇔ x2 < (1− w)/2.
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Since candidate 2 has a smaller vote share than candidate 3,

x2 + (w − x2)/2 < 1− x3 + (x3 − w)/2

⇔ 2x2 + w − x2 < 2− 2x3 + x3 − w

⇔ x2 + 2w < 2− x3

⇔ x3 < 2− x2 − 2w.

For this to be feasible, we need

2− x2 − 2w > w

⇔ x2 < 2− 3w.

Since w ≤ 0.5, this is always satisfied. The upper bound on x3 is the

minimum of 1 and 2− x2 − 2w. There are equal if

1 = 2− x2 − 2w

⇔ x2 = 1− 2w.

To the left of the line x2 = 1− 2w, the upper bound on x3 is 1; to the

right, it’s 2− x2 − 2w.

The upper and lower bounds on x3 are equal when

2x2 + w = 2− x2 − 2w

⇔ 3x2 = 2− 3w

⇔ x2 = 2/3− w.

For both constrains to be feasible, we need to be to the left of the line

x2 = 2/3− w. In order for w to win, it needs to be closer to the center

than candidate 3. That is, we need x3 > 1− w. This equals the upper
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bound constraint on x3 if

1− w = 2− x2 − 2w

⇔ x2 = 1− w

Since we already need to be left of the line 2/3 − w, we don’t need to

worry about being to the left of 1 − w. Finally, the two lower bounds

on x3 are equal if

1− w = 2x2 + w

⇔ x2 = 1/2− w.

To the left of the line x2 = 1/2−w, the lower bound on x3 is 1−w; to

the right, the lower bound is 2x2 + w.
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(a) x2 = w
(b) x2 = (1− w)/2
(c) x2 = 2/3− w
(d) x2 = 1/2− w
(e) x2 = 1− 2w

Lines (a) and (d) intersect at w = 1/4; lines (a) and (c) intersect at

w = 1/3. Integrating over the regions:
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A :

∫ w

0

∫ 1

1−w
dx3 dx2 = w2

B :

∫ 1/2−w

0

∫ 1

1−w
dx3 dx2 = w/2− w2

C :

∫ w

1/2−w

∫ 1

2x2+w

dx3 dx2 = −1/4 + 3w/2− 2w2

D :

∫ 1−2w

1/2−w

∫ 1

2x2+w

dx3 dx2 = −1/4 + 3w/2− 2w2

E :

∫ 2/3−w

1−2w

∫ 2−x2−2w

2x2+w

dx3 dx2 = 1/6− w + 3w2/2

We now sum and multiply by 2 to account for the ordering x3 < w < x2.

For x ∈ [0, 1/4], the win probability is 2w2.

For x ∈ [1/4, 1/3], the win probability is 2(w/2 − w2 − 1/4 + 3w/2 −

2w2) = −1/2 + 4w − 6w2.

For x ∈ [1/3, 1/2], the win probability is 2(w/2 − w2 − 1/4 + 3w/2 −

2w2 + 1/6− w + 3w2/2) = −1/6 + 2w − 3w2.

Summarizing and visualizing:

Pr(w wins, w = X(2), X(1) elim 1st) =


2w2, w ∈ [0, 1/4]

−1/2 + 4w − 6w2, w ∈ [1/4, 1/3]

−1/6 + 2w − 3w2, w ∈ [1/3, 1/2]

(F.15)
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(b) Candidate 3 is eliminated first. Since candidate 3 has a smaller vote

share than the winner,

1− x3 + (x3 − w)/2 < (x3 − w)/2 + (w − x2)/2

⇔ 1− x3 < (w − x2)/2

⇔ x3 > 1− (w − x2)/2

This is feasible if

1− (w − x2)/2 < 1

⇔ − w + x2 < 0

⇔ x2 < w,

which is always true. Since candidate 3 has a smaller vote share than

candidate 2,

1− x3 + (x3 − w)/2 < x2 + (w − x2)/2

⇔ 2− 2x3 + x3 − w < 2x2 + w − x2

⇔ 2− x3 < x2 + 2w

⇔ x3 > 2− x2 − 2w
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This is feasible if

2− x2 − 2w < 1

⇔ x2 > 1− 2w.

The two lower bounds on x3 are equal if

1− (w − x2)/2 = 2− x2 − 2w

⇔ 2− w + x2 = 4− 2x2 − 4w

⇔ 3x2 = 2− 3w

⇔ x2 = 2/3− w

Above the line 2/3−w, the lower bound on x3 is 1− (w− x2)/2; below

the line, it’s 2− x2 − 2w. As long as candidate 3 is eliminated first, w

wins since it’s closer to the center than x2.
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(a) x2 = w
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Lines (a), (b), and (c) all intersect at w = 1/3. Integrating over the two

regions and multiplying by 2 to account for the ordering x3 < w < x2:
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A :

∫ 2/3−w

1−2w

∫ 1

2−x2−2w
dx3 dx2 = 1/18− w/3 + w2/2

B :

∫ w

2/3−w

∫ 1

1−(w−x2)/2
dx3 dx2 = 1/9− 2w/3 + w2

For w ∈ [1/3, 1/2], the win probability is 2(1/18−w/3 +w2/2 + 1/9−

2w/3 + w2) = 1/3− 2w + 3w2. Thus:

Pr(w wins, w = X(2), X(3) elim 1st) = 1/3−2w+3w2, w ∈ [1/3, 1/2]

(F.16)

3. w = X(3). If both x2 < w and x3 < w, then w wins by IRV. Thus,

Pr(w wins, w = X(3)) = w2 for w ∈ [0, 0.5].

We can finally sum over the three cases to arrive at Pr(w wins).

For w ∈ [0, 1/6], the sum is w2 + 2w2 + w2 = 4w2.

For w ∈ [1/6, 1/4], the sum is w2+2w2+w2+1/3−4w+12w2 = 1/3−4w+16w2.

For w ∈ [1/4, 1/3], the sum is w2 − 1/2 + 4w − 6w2 − 1/6 + 4w/3 − 5w2/3 −

1 + 20w/3− 28w2/3 = −5/3 + 12w − 16w2.

For w ∈ [1/3, 1/2], the sum is w2 + 1/3− 2w + 3w2 − 1/6 + 2w − 3w2 − 1/6 +

4w/3− 5w2/3− 1/3 + 8w/3− 10w2/3 = −1/3 + 4w − 4w2.

Summarizing and plotting:
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Pr(w wins) =



4w2, w ∈ [0, 1/6]

1/3− 4w + 16w2, w ∈ [1/6, 1/4]

−5/3 + 12w − 16w2, w ∈ [1/4, 1/3]

−1/3 + 4w − 4w2, w ∈ [1/3, 1/2]

(F.17)
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To get the winner position distribution fR3 , we scale by three. The variance of

fR3 is thus:

6

[∫ 1/6

0

(w − 1/2)2(4w2) dw +

∫ 1/4

1/6

(w − 1/2)2(1/3− 4w + 16w2) dw

+

∫ 1/3

1/4

(w − 1/2)2(−5/3 + 12w − 16w2) dw +

∫ 1/2

1/3

(w − 1/2)2(−1/3 + 4w − 4w2) dw

]

= 25/864 ≈ 0.029

(F.18)
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Table F.1: Quotes for and against a moderating effect of IRV

[Under ranked-choice voting,] voters can support their favorites while still voting
effectively against their least favorite. Having more competition encourages better
dialogue on issues. Civility is substantially improved. Needing to reach out to more
voters leads candidates to reduce personal attacks and govern more inclusively.
—Howard Dean, former Governor of Vermont (Dean, 2016)

We need an electoral system that breaks the current stranglehold of the two-party
monopoly, one that would allow voters to choose between a much more nuanced range
of positions than “extreme” versus “moderate,” would allow third-party candidates to
run without being spoilers and would encourage more civil campaigning and political
discourse. The solution is to adopt ranked-choice voting for all state and federal
elections [....] We need [...] reforms that will allow the American people to reassert
our power over a party system that is badly broken and compel candidates to appeal
to a far broader swathe of us than a narrow “base.”
—Anne-Marie Slaughter, CEO of New America (Slaughter, 2019)

Quite to the contrary, [ranked-choice voting] may give life to more strident candi-
dates, hoping to siphon first-place ballots from extreme voters who will give second
preference to whichever major party is closest to them. This could result in more
comity between the major-party candidates, as fringier competitors blot the airwaves
with attacks. Or it might produce strategic coalitions sniping at each other, leaving
us effectively back where we started.
—Simon Waxman, former managing editor at Boston Review (Waxman, 2016)

However, ranked-choice voting makes it more difficult to elect moderate candidates
when the electorate is polarized. For example, in a three-person race, the moderate
candidate may be preferred to each of the more extreme candidates by a majority of
voters. However, voters with far-left and far-right views will rank the candidate in
second place rather than in first place. Since ranked-choice voting counts only the
number of first-choice votes (among the remaining candidates), the moderate can-
didate would be eliminated in the first round, leaving one of the extreme candidates
to be declared the winner. [...] The ranked-choice system that is being used around
the country to conduct elections with more than two candidates is biased towards
extreme candidates and away from moderate ones.
—Nathan Atkinson, Assistant Professor at University of Wisconsin Law School, and
Scott C. Ganz, Associate Teaching Professor at Georgetown University) (Atkinson
and Ganz, 2022)
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F.4 Additional figures

Figure F.1: Plurality vs. IRV winner positions in 100,000 simulation trials for
increasing candidate count k (with uniform voters and candidates). Blue points
are trials where the IRV winner was more moderate than the plurality winner,
while red points are trials where the plurality winner was more moderate. Green
points are trials where the winners were identical. Numbers in each quadrant
show the proportion of trials falling in that region (the top right number is the
proportion of same-winner trials). Notice that cases where the IRV winner is more
extreme only appear beginning at k = 5, in accordance with Theorem 31. Note
the probabilistic moderating effect of IRV compared to plurality: IRV does not
elect extreme candidates as k grows large, but plurality does.

Figure F.2: Plurality winner regions for k = 3 with uniform voters and candidates.
Colored polyhedra show the regions where a candidate at position x1 is the plurality
winner against candidates at x2 and x3. Regions are only shown for x1 ≤ 0.5, since
the other half of is symmetric. The color of a region corresponds to the order
statistic of the winner. Blue: winner is the leftmost, red: winner is in the middle,
yellow: winner is the rightmost. The left view has the plane of the page at x1 = 0,
looking towards increasing x1. The right view has the plane of the page at x2 = 0,
with x1 increasing from left to right.
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Figure F.3: IRV winner regions for k = 3 with uniform voters and candidates. See
Figure F.2 for details about the visualization.
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APPENDIX G

TECHNICAL DETAILS FOR CHAPTER 8: REPLICATING

ELECTORAL SUCCESS

“What ho!” I said.

“What ho!” said Motty.

“What ho! What ho!”

“What ho! What ho! What ho!”

After that it seemed rather difficult to go on with the conversation.

P. G. Wodehouse, My Man Jeeves, 1919

(Bertie Wooster, an expert in applied bounded rationality.)

G.1 Additional plots
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Figure G.1: Replicator dynamics runs just as in Figure 8.3, but without enhanced
symmetry. For k > 6, the behavior of the Monte Carlo trials becomes inconsistent
without enhanced symmetry, particularly without ϵ-uniform noise. See Figure 8.3
for more details.
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Figure G.2: Replicator dynamics runs with enhanced symmetry just as in Fig-
ure 8.3, but showing only a single trial instead of aggregating 50 runs. With
enhanced symmetry, the behavior is very consistent across runs.
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Figure G.3: Replicator dynamics runs just as in Figure G.1 (no enhanced symme-
try), but showing only a single trial instead of aggregating 50 runs to highlight the
inconsistent behavior for k = 6 and 7 without enhanced symmetry.
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Figure G.4: Replicator dynamics runs with only 50 elections per generation, with-
out enhanced symmetry. Each plot shows 50 trials. The top row has no noise,
while the bottom row uses 0.01-uniform noise. Even with a small sample size, our
main finding holds.
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Figure G.5: Replicator dynamics runs just as in Figure 8.4, but without enhanced
symmetry. As with smaller values of k, the behavior becomes more chaotic without
enhanced symmetry.
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Figure G.6: Replicator dynamics with initial candidate distribution
Uniform(1/4, 3/4). These plots show 50 trials with 100,000 elections per
generation, no noise, and without enhanced symmetry. The dynamics are very
well-behaved with (1/4, 3/4) support, removing the need for enhanced symmetry;
compare to Figure G.1.
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G.1.1 Additional variant plots
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Figure G.7: PDFs of different voter distributions used in Figure 8.7.
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Figure G.8: Replicator dynamics with m = 3 generations of memory, no enhanced
symmetry, and 50 trials per plot. There is no qualitative difference between m = 3
and m = 2 (compare to Figure 8.7).
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Figure G.9: Single trials of the replicator dynamics with perturbation noise and
100,000 elections per generation. The first two rows use σ2 = 0.001, the middle two
use σ2 = 0.005, and the bottom two use σ2 = 0.01. Perturbation noise combined
with Monte-Carlo asymmetries can result in complex and unpredictable branching
with higher k.
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Figure G.10: Heatmap showing the position of the candidate distribution mode at
t = 100 when elections have a mixture of k = 3, 4, and 5 candidates each (only
modes ≤ 1/2 are shown). These simulations use 100,000 elections per generation,
with k split between 3, 4, and 5 in different proportions at each point. The fraction
of elections with 3 candidates varies along the x axis, while the fraction with 4
candidates varies along the y axis. Any remaining elections have k = 5. For
instance, the lower left corner has all 100,000 elections use k = 5, while the point
(1/3, 1/3) has an even mix of candidate counts. When either the k = 3 or k = 4
fraction is high enough (but especially k = 3), the distribution converges to the
center, with the mode at 1/2. However, with enough k = 5 elections, two clusters
emerge, and more k = 5 elections pushes them farther apart.
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Figure G.11: Replicator dynamics with top-h copying where h = 3, no enhanced
symmetry, 50 trials per plot, and 100,000 elections per generation.
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G.2 Additional proofs

G.2.1 Proofs from Section 8.2

Theorem 34. Let F0 ∈ F . For all x < 1/2 and t > 0,

F3,t(x) ≤ 3/4 · F3,t−1(x) + F3,t−1(x)
3. (8.3)

This can be written as a looser closed form

F3,t(x) ≤ F0(x) ·
[
3/4 + F0(x)

2
]t
. (8.4)

Proof. Let x < 1/2 and define p = F3,t−1(x). Consider the following cases for the

positions of the three candidates X1,t, X2,t, and X3,t. Call candidates in (x, 1− x)

inner.

1. All three candidates in [0, 1/2) (and the symmetric case). First suppose all

three are in [0, 1/2) (the other side is symmetric). If there is at least one

inner candidate (w.p. 1/23 − p3), then the winner is inner. Accounting for

symmetry, an inner candidate wins in this case w.p. 2(1/23−p3) = 1/4−2p3.

2. Two candidates in (x, 1/2) and one in (1/2, 1−x) (and the symmetric case).

Since all candidates are inner, an inner candidate wins. Accounting for sym-

metry, an inner candidate wins in this case w.p. 2 [3(1/2− p)3] = 6(1/2−p)3.

3. Two candidates in [0, x) and one in (1/2, 1 − x) (and the symmetric case).

The candidate in (1/2, 1− x) wins with vote share at least 1/2. Accounting

for symmetry, an inner candidate wins in this case w.p. 2 [3p2(1/2− p)] =

6p2(1/2− p).
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4. One candidate in [0, x), one in (x, 1/2), and one in (1/2, 1− x). Label them

1, 2, and 3, respectively. Candidate 3 gets vote share 1 − (X3 + X2)/2 =

[(1−X3) + (1−X2)] /2, while candidate 1 gets vote share (X1+X2)/2. Since

X3 < 1 − x, 1 − X3 > X1; and since X2 < 1/2, 1 − X2 > X2. Thus

candidate 3 has higher vote share than candidate 1 and an inner candidate

wins. Accounting for symmetry, an inner candidate wins in this case w.p.

2 [3 · 2p(1/2− p)2] = 12p(1/2− p)2.

Adding up these cases yields a lower bound on the probability that an inner can-

didate wins:

Pr(x < Plurality(X1,t, X2,t, X3,t) < 1− x)

≥ 1/4− 2p3 + 6(1/2− p)3 + 6p2(1/2− p) + 12p(1/2− p)2

= 1− 3/2 · p− 2p3.

By symmetry, this yields the claimed upper bound on the probability a candidate

in [0, x] wins:

F3,t(x) = Pr(Plurality(X1,t, X2,t, X3,t) ≤ x)

= (1− Pr(x < Plurality(X1,t, X2,t, X3,t) < 1− x))/2

≤
[
1− (1− 3/2 · p− 2p3)

]
/2

= 3/4 · p+ p3

= 3/4 · F3,t−1(x) + F3,t−1(x)
3.

We now show the closed form bound by induction on t. We’ll simultaneously

show that F3,t(x) ≤ F0(x). For the base case t = 0, we have F3,t(x) ≤ F0(x). Now
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for t > 0, suppose the claims hold for t− 1. Using the bound above, we know that

F3,t(x) ≤ 3/4 · F3,t−1(x) + F3,t−1(x)
3

= F3,t−1(x) ·
[
3/4 + F3,t−1(x)

2
]

≤ F3,t−1(x) ·
[
3/4 + F0(x)

2
]

(by IH)

≤ F0(x) ·
[
3/4 + F0(x)

2
]t−1 · [3/4 + F0(x)

2
]

(by IH)

= F0(x) ·
[
3/4 + F0(x)

2
]t

This is the main claim we wanted to show. We can now also show the sup-

porting fact that F3,t(x) ≤ F0(x). For x < 1/2, F0(x) ≤ 1/2 by symmetry.

Thus 3/4 + F0(x)
2 ≤ 3/4 + 1/22 = 1, so by the inequality above, F3,t(x) ≤

F0(x) · [3/4 + F0(x)
2]
t ≤ F0(x) · 1t.

Lemma 4. Let F0 ∈ F . For all x ∈ (1/3, 1/2) and t ≥ 0, F4,t(x) ≤ F4,0(x).

Proof. Let x ∈ (1/3, 1/2) and p = F4,t−1(x). We’ll find a lower bound on the

probability an inner candidate in (x, 1− x) wins. Consider the following cases for

candidate positions in a k = 4 plurality election:

1. All four candidates in [0, 1/2) (and the symmetric case). An inner candidate

wins if at least one candidate is inner. Accounting for symmetry, an inner

candidate wins in this case w.p. 2(1/24 − p4) = 1/8− 2p4.

2. Three candidates in [0, 1/2) and one in (1/2, 1 − x) (and the symmetric

case). The candidate on the right has a higher vote share than any outer

candidate on the left (as in Theorem 34 Case 4), so an inner candidate

wins. Accounting for symmetry, an inner candidate wins in this case w.p.

2(4 · 1/23 · (1/2− p)) = 1/2− p.

3. Two candidates in (x, 1/2) and two in (1/2, 1− x). All candidates are inner,

so an inner candidate wins. This occurs w.p.
(
4
2

)
· (1/2− p)4 = 6(1/2− p)4.
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4. Two candidates in [0, x) and two in (1/2, 1 − x) (and the symmetric case).

Since x > 1/3, the rightmost candidate gets vote share greater than 1/3.

Meanwhile, the leftmost candidate gets vote share less than 1/3. The second-

leftmost candidate gets vote share less than (2/3)/2 = 1/3 (the candidates

flanking it are closer together than 0 and 1 − x < 2/3). Thus an inner

candidate wins. Accounting for symmetry, an inner candidate wins in this

case w.p. 2
(
4
2

)
p2(1/2− p)2 = 12p2(1/2− p)2

5. Two candidates in (x, 1/2), one in (1/2, 1−x), and one in (1−x, 1] (and the

symmetric case). Label the candidates 1–4 in left–right order. By symmetry,

candidate 3 is farther from 1/2 than candidate 2 with probability 2/3: all 3! =

6 orderings of distance from 1/2 between candidates 1–3 are equiprobable

and only the 2 where candidate 3 is closest to 1/2 fail this property. In this

scenario, candidate 4 has vote share 1−(X3+X4)/2 = ((1−X3)+(1−X4))/2

and candidate 1 has vote share (X1 +X2)/2. Since 1−X3 < X2 (candidate

2 is closer to the center than 3) and 1 − X4 < X2 (since X2 > x and

X4 > 1− x), candidate 1 has a larger vote share than candidate 4, the only

outer candidate. Thus an inner candidate wins. Accounting for symmetry, an

inner candidate wins in this case w.p. 2 ·4 ·3 ·2/3 ·p(1/2−p)3 = 16p(1/2−p)3

Combining all five cases gives a lower bound on the probability that an inner

candidate wins:

Pr(x < Plurality(X1,t, X2,t, X3,t, X4,t) < 1− x)

≥ 1/8− 2p4 + 1/2− p+ 6(1/2− p)4 + 12p2(1/2− p)2 + 16p(1/2− p)3

= 1− 2p

= 1− 2 · F4,t−1(x).
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By symmetry, this means

F4,t(x) = Pr(Plurality(X1,t, X2,t, X3,t, X4,t) ≤ x)

= [1− Pr(x < Plurality(X1,t, X2,t, X3,t, X4,t) < 1− x)] /2

≤ [1− (1− 2 · F4,t−1(x))] /2

= F4,t−1(x).

The claim then follows by induction on t.

Theorem 35. Let F0 ∈ F . For all x ∈ (1/3, 1/2) and t ≥ 0,

F4,t(x) ≤ F0(x) ·
[
1− 4(1/2− F0(x/3 + 1/3))3

]t
. (8.5)

Proof. Let x ∈ (1/3, 1/2) and p = F4,t−1(x). By the argument in the proof of

Lemma 4, an inner candidate wins with probability at least 1 − 2p. We can

strengthen this bound using Lemma 4 and one more case omitted from that analysis

(which can’t easily be used there): three candidates in (x/3+1/3, 1/2) and one in

(1− x, 1] (and the symmetric case). Note that x/3 + 1/3 = x + 2/3 · (1/2− x) is

the point two-thirds of the way from x to 1/2. The leftmost candidate gets vote

share more than x/3 + 1/3. Meanwhile, the lone outer candidate gets vote share

less than x+ (1− x− (x/3+ 1/3))/2 = x/3+ 1/3, so an inner candidate wins. By

Lemma 4, we know F4,t−1(x/3 + 1/3) ≤ F4,0(x/3 + 1/3). Thus, a candidate is in

(x/3+ 1/3, 1/2) with probability 1/2−F4,t−1(x/3+ 1/3) ≥ 1/2−F4,0(x/3+ 1/3).

Therefore, accounting for symmetry, an inner candidate wins in this case w.p. at

least 2 · 4 · (1/2− F4,0(x/3 + 1/3))3 · p = 8p(1/2− F4,0(x/3 + 1/3))3.

Combining this new case with the cases from the proof of Lemma 4, an inner

candidate wins w.p. at least 1 − 2p + 8p(1/2 − F4,0(x/3 + 1/3))3. By symmetry,
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this means

F4,t(x) ≤
[
1− (1− 2p+ 8p(1/2− F4,0(x/3 + 1/3))3)

]
/2

=
[
2p− 8p(1/2− F4,0(x/3 + 1/3))3

]
/2

= p
[
1− 4(1/2− F4,0(x/3 + 1/3))3

]
= F4,t−1(x) ·

[
1− 4(1/2− F4,0(x/3 + 1/3))3

]
.

The claim then follows by induction on t.

Theorem 36. Let F0 ∈ F . For any k ≥ 5, there exists some x < 1/2 such that

limt→∞ Fk,t(x) ̸= 0. That is, the candidate distribution does not converge to a point

mass at 1/2.

Proof. Suppose Fk,t−1(1/4) ≤ α for some small α. Let x ∈ (1/4, 1/2) and

Fk,t−1(x) = p, so Fk,t−1(x) − Fk,t−1(1/4) ≥ p − α. We’ll lower bound the prob-

ability that the winner is is an outer candidate outside of (x, 1 − x), focusing

mainly on cases where all candidates are in (1/4, 3/4) so we can apply Lemma 5.

If all candidates are in [0, 1/2), then an outer candidate only wins if all candi-

dates are left of x, which occurs w.p. pk. Accounting for the symmetric case gives

an outer candidate win probability of 2pk when all candidates are on the same side.

Now suppose there is at least one candidate on each side. If the left- and rightmost

candidates are in (1/4, x) and (1 − x, 3/4), respectively, then an outer candidate

wins by Lemma 5. We can find the probability this occurs as the probability that

all candidates are in (1/4, 3/4) minus the probability that all candidates are in

(1/4, 1− x] or in [x, 3/4)—since this means there is at least one candidate each in

(1− x, 3/4) and (1/4, x). Since Fk,t−1(1/4) ≤ α, the following is a lower bound on

the probability the leftmost candidate is at X1,t ∈ (1/4, x) and the rightmost is at
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Xk,t ∈ (x− 1, 3/4):

Pr(X1,t ∈ (1/4, x), Xk,t ∈ (x− 1, 3/4))

≥ (1− 2α)k︸ ︷︷ ︸
all in (1/4, 3/4)

−
[
(1− α− p)k︸ ︷︷ ︸
all in (1/4, 1− x]

+(1− α− p)k︸ ︷︷ ︸
all in [x, 3/4)

− (1− 2p)k︸ ︷︷ ︸
all in [x, 1− x]

]
(by inclusion–exclusion)

= (1− 2α)k − 2(1− α− p)k + (1− 2p)k.

Combining this with the case where all candidates are on the same side (and then

dividing by 2 to account for symmetry) yields a lower bound on Fk,t(x):

Fk,t(x) ≥
[
2pk + (1− 2α)k − 2(1− α− p)k + (1− 2p)k

]
/2

= pk + (1− 2α)k/2− (1− α− p)k + (1− 2p)k/2. (G.1)

We can now use this bound to prove non-convergence. Suppose for a con-

tradiction that limt→∞ Fk,t(x) = 0 for all x < 1/2. Then there exists some t∗

such that Fk,t(1/4) ≤ α =
[
1− (499/512)1/k

]
/2 for all t > t∗. But now consider

x∗ = F−1k,t∗(1/4) < 1/2. Since Fk,t(1/4) ≤ α for all t > t∗, we can use the fact above

to show inductively that Fk,t(x∗) ≥ 1/4 for all t ≥ t∗. For the base case t = t∗,

the claim is vacuously true: Fk,t∗(x∗) = 1/4 ≥ 1/4. Now suppose for t > t∗ that

Fk,t−1(x
∗) ≥ 1/4. Then z = F−1k,t−1(1/4) ≤ x∗. From (G.1), we then have:

Fk,t(z) ≥ 1/4k + (1− 2α)k/2− (1− α− 1/4)k + (1− 2/4)k/2

> (1− 2α)k/2− (3/4− α)k (throw away terms)

≥ (1− 2α)k/2− (3/4)5 (since k ≥ 5, α > 0)

=
(
1− 2

[
1− (499/512)1/k

]
/2
)k
/2− (3/4)5 (plug in α)

= 499/1024− 243/1024

= 1/4.

340



By the monotonicity of the CDF, Fk,t(x∗) > 1/4, since z ≤ x∗. By induction,

Fk,t(x
∗) ≥ 1/4 for all t ≥ t∗ This contradicts that limt→∞ Fk,t(x) = 0 for all

x < 1/2.

G.2.2 Proofs from Section 8.3

Our proofs with ϵ-uniform noise make extensive use of the following lemma, which

allows us to translate the convergence of an iterated map bounding a sequence into

an eventual bound on the sequence.

Lemma 12. Consider an iterated map xt = f(xt−1) where f : [0, 1/2) → [0, 1/2)

is non-decreasing. Suppose limt→∞ xt = c for all x0 ∈ I ⊆ [0, 1/2).

1. If yt ≤ f(yt−1) for all t > 0, then lim supt→∞ yt ≤ c for all y0 ∈ I.

2. If yt ≥ f(yt−1) for all t > 0, then lim inft→∞ yt ≥ c for all y0 ∈ I.

Proof. Let y0 ∈ I and define x0 = y0. Suppose yt ≤ f(yt−1) for all t > 0. We’ll

show yt ≤ xt by induction. The base case t = 0 holds by the definition of x0.

Suppose for t > 0 that yt−1 ≤ xt−1. Then yt ≤ f(yt−1) ≤ f(xt−1) = xt (since

f is non-decreasing), so yt ≤ xt for all t by induction. Thus, lim supt→∞ yt ≤

lim supt→∞ xt = limt→∞ xt = c. The second claim with yt ≥ f(yt−1) follows from

the exact same argument with each ≤ replaced by ≥ and lim sup replaced by

lim inf.

Lemma 6. For all initial p ∈ [0, 1/2], ϵ ∈ (0, 1), and x ∈ [0, 1/2), the quadratic

iterated map p′ = 2p2(1 − ϵ)2 + 4pxϵ(1 − ϵ) + 2x2ϵ2 converges to the fixed point

p∗ =
1−4xϵ(1−ϵ)−

√
1−8ϵx(1−ϵ)

4(1−ϵ)2 ≤ ϵ.
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Proof. We begin by looking for the fixed points of the map:

2p2(1− ϵ)2 + 4pxϵ(1− ϵ) + 2x2ϵ2 = p

⇔ 2(1− ϵ)2p2 + (4xϵ(1− ϵ)− 1)p+ 2x2ϵ2 = 0.

Applying the quadratic formula and simplifying yields the two fixed points:

p∗1 =
1− 4xϵ(1− ϵ)−

√
1− 8ϵx(1− ϵ)

4(1− ϵ)2

p∗2 =
1− 4xϵ(1− ϵ) +

√
1− 8ϵx(1− ϵ)

4(1− ϵ)2
.

We’ll show that p∗1 is stable and that p∗1 ≤ ϵ while p∗2 is unstable and p∗2 > 1/2. To

see that p∗1 ≤ ϵ, consider ϵ− p∗1 :

ϵ−
1− 4xϵ(1− ϵ)−

√
1− 8ϵx(1− ϵ)

4(1− ϵ)2
=

4(1− ϵ)2ϵ− 1 + 4xϵ(1− ϵ) +
√

1− 8ϵx(1− ϵ)
4(1− ϵ)2

.

(G.2)

It suffices to show the numerator is non-negative. Taking its derivative with respect

to x shows the numerator is decreasing in x:

∂

∂x

[
4(1− ϵ)2ϵ− 1 + 4xϵ(1− ϵ) + (1− 8ϵx(1− ϵ))1/2

]
= 4ϵ(1− ϵ)− 4ϵ(1− ϵ)

(1− 8ϵx(1− ϵ))1/2

< 4ϵ(1− ϵ)− 4ϵ(1− ϵ)

= 0.

Thus, it suffices to show the function is non-negative when x = 1/2. For x = 1/2,

4(1− ϵ)2ϵ− 1 + 4xϵ(1− ϵ) +
√

1− 8ϵx(1− ϵ)

= 4(1− ϵ)2ϵ− 1 + 2ϵ(1− ϵ) +
√

1− 4ϵ(1− ϵ)

= 4ϵ3 − 10ϵ2 + 6ϵ− 1 +
√

(1− 2ϵ)2

= 4ϵ3 − 10ϵ2 + 6ϵ− 1 + |1− 2ϵ|.
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Consider the cases ϵ ≤ 1/2 and ϵ > 1/2. If ϵ ≤ 1/2,

4ϵ3 − 10ϵ2 + 6ϵ− 1 + |1− 2ϵ| = 4ϵ3 − 10ϵ2 + 4ϵ

= 2ϵ(2− ϵ)(1− 2ϵ)

≥ 0. (since ϵ ≤ 1/2)

If ϵ > 1/2,

4ϵ3 − 10ϵ2 + 6ϵ− 1 + |1− 2ϵ| = 4ϵ3 − 10ϵ2 + 8ϵ− 2

= 2(1− ϵ)2(2ϵ− 1)

≥ 0 (since ϵ > 1/2)

Therefore the numerator in (G.2) is non-negative, so p∗1 ≤ ϵ. To show p∗1 is stable,

consider the derivative of the iterated map in (8.8):

∂

∂p

[
2p2(1− ϵ)2 + 4pxϵ(1− ϵ) + 2x2ϵ2

]
= 4(1− ϵ)2p+ 4xϵ(1− ϵ). (G.3)

Plugging in p∗1:

4(1− ϵ)2p∗1 + 4xϵ(1− ϵ) = 4(1− ϵ)2
1− 4xϵ(1− ϵ)−

√
1− 8ϵx(1− ϵ)

4(1− ϵ)2
+ 4xϵ(1− ϵ)

= 1−
√

1− 8ϵx(1− ϵ)

< 1−
√

1− 4ϵ(1− ϵ) (x < 1/2)

≤ 1. (ϵ(1− ϵ) ≤ 1/4)

Thus the derivative of the iterated map at p∗1 has magnitude strictly less than 1,

so p∗1 is a stable fixed point.
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Now, consider the other fixed point p∗2:

p∗2 =
1− 4xϵ(1− ϵ) +

√
1− 8ϵx(1− ϵ)

4(1− ϵ)2

>
1− 2ϵ(1− ϵ) +

√
1− 4ϵ(1− ϵ)

4(1− ϵ)2
(x < 1/2)

=
1− 2ϵ(1− ϵ) +

√
(1− 2ϵ)2

4(1− ϵ)2

=
1− 2ϵ(1− ϵ) + |1− 2ϵ|

4(1− ϵ)2
.

If ϵ ≤ 1/2,

p∗2 >
1− 2ϵ(1− ϵ) + 1− 2ϵ

4(1− ϵ)2

=
2(1− ϵ)2

4(1− ϵ)2

= 1/2.

If ϵ > 1/2,

p∗2 >
1− 2ϵ(1− ϵ)− 1 + 2ϵ

4(1− ϵ)2

=
2ϵ2

4(1− ϵ)2

>
2(1/2)2

4(1− 1/2)2

= 1/2.

In either case, p∗2 > 1/2. Additionally, plugging p∗2 into the derivative (G.3) yields

1 +
√

1− 8xϵ(1− ϵ) > 1 (for x < 1/2), showing p∗2 is unstable. Thus, for p ∈

[0, 1/2], the quadratic map converges to the stable fixed point p∗1 ≤ ϵ.

Lemma 13. For any ϵ ∈ (0, 1/3), the cubic iterated map given by

p′ = 3/4 · [ϵ/2 + (1− ϵ)p] + [ϵ/2 + (1− ϵ)p]3

converges to p∗ ≤ 1.5ϵ for all initial p ∈ [0, 1/2). Moreover, the map is non-

decreasing in p on [0, 1/2).
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Proof. The fixed points of this map can be found using the cubic formula (equiv-

alently, we used Mathematica):

p∗1 =
1

4

√
1 + 15ϵ

(1− ϵ)3
− 1 + 2ϵ

4(1− ϵ)

p∗2 = −
1

4

√
1 + 15ϵ

(1− ϵ)3
− 1 + 2ϵ

4(1− ϵ)

p∗3 =
1

2
.

We can ignore the negative fixed point p∗2, since p can never be negative. We’ll

show that for ϵ < 1/3, p∗1 ∈ [0, 1.5ϵ], p∗1 is stable, and the cubic map converges to

p∗1 for p ∈ [0, 1/2). To begin with, we’ll show p∗1 ≥ 0:

p∗1 =
1

4

√
1 + 15ϵ

(1− ϵ)3
− 1 + 2ϵ

4(1− ϵ)

=
(1 + 15ϵ)1/2

4(1− ϵ)3/2
− (1 + 2ϵ)(1− ϵ)1/2

4(1− ϵ)3/2

=
(1 + 15ϵ)1/2 − ((1 + 2ϵ)2)1/2(1− ϵ)1/2

4(1− ϵ)3/2

=
(1 + 15ϵ)1/2 − ((1 + 2ϵ)2(1− ϵ))1/2

4(1− ϵ)3/2

=
(1 + 15ϵ)1/2 − (1 + 3ϵ− 4ϵ3)1/2

4(1− ϵ)3/2

≥ 0. (since 1 + 15ϵ > 1 + 3ϵ− 4ϵ3)

Now we’ll show that p∗1 ≤ 1.5ϵ. To do this, we’ll show 1.5ϵ− p∗1 ≥ 0:

1.5ϵ− p∗1 = 1.5ϵ− (1 + 15ϵ)1/2 − (1 + 3ϵ− 4ϵ3)1/2

4(1− ϵ)3/2

=
6ϵ(1− ϵ)3/2

4(1− ϵ)3/2
− (1 + 15ϵ)1/2 − (1 + 3ϵ− 4ϵ3)1/2

4(1− ϵ)3/2

=
6ϵ(1− ϵ)3/2 − (1 + 15ϵ)1/2 + (1 + 3ϵ− 4ϵ3)1/2

4(1− ϵ)3/2
.
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It suffices to show the numerator is non-negative on [0, 1/3):

6ϵ(1− ϵ)3/2 − (1 + 15ϵ)1/2 + (1 + 3ϵ− 4ϵ3)1/2

= 6ϵ(1− ϵ)(1− ϵ)1/2 − (1 + 15ϵ)1/2 + (1 + 2ϵ)(1− ϵ)1/2

= (1− ϵ)1/2 [6ϵ(1− ϵ) + (1 + 2ϵ)]− (1 + 15ϵ)1/2

= (1− ϵ)1/2(1 + 8ϵ− 6ϵ2)− (1 + 15ϵ)1/2

=
[
(1− ϵ)(1 + 8ϵ− 6ϵ2)2

]1/2 − (1 + 15ϵ)1/2

= (1 + 15ϵ+ 36ϵ2 − 148ϵ3 + 132ϵ4 − 36ϵ5)1/2 − (1 + 15ϵ)1/2.

To show this is non-negative, it suffices to show 36ϵ2 − 148ϵ3 + 132ϵ4 − 36ϵ5 is

non-negative. Factoring yields

36ϵ2 − 148ϵ3 + 132ϵ4 − 36ϵ5 = 4ϵ2(1− 3ϵ)(9− 10ϵ+ 3ϵ2).

Finally, we can see this is non-negative for ϵ ∈ (0, 1/3), so p∗1 ≤ 1.5ϵ for ϵ ∈ (0, 1/3).

Now, to show p∗1 is a stable fixed point, we can take the derivative of the cubic

map at p∗2:

∂

∂p

(
3/4 · [ϵ/2 + (1− ϵ)p] + [ϵ/2 + (1− ϵ)p]3

)
=

∂

∂p

[
p3(1− ϵ)3 + 3

2
p2ϵ(1− ϵ)2 + 3

4
p(1− ϵ)

(
ϵ2 + 1

)
+

1

8
ϵ3 +

3

8
ϵ

]
= 3(1− ϵ)3p2 + 3ϵ(1− ϵ)2p+ 3

4
(1− ϵ)(1 + ϵ2) (G.4)
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Plugging in p∗1 and simplifying yields

3(1− ϵ)3
(
1

4

√
1 + 15ϵ

(1− ϵ)3
− 1 + 2ϵ

4(1− ϵ)

)2

+ 3ϵ(1− ϵ)2
(
1

4

√
1 + 15ϵ

(1− ϵ)3
− 1 + 2ϵ

4(1− ϵ)

)

+
3

4
(1− ϵ)(1 + ϵ2)

= 3(1− ϵ)3
(

1 + 15ϵ

16(1− ϵ)3
+

(1 + 2ϵ)2

16(1− ϵ)2
− 1 + 2ϵ

8(1− ϵ)

√
1 + 15ϵ

(1− ϵ)3

)
+

3

4
ϵ(1− ϵ)2

√
1 + 15ϵ

(1− ϵ)3

− 3

4
ϵ(1− ϵ)(1 + 2ϵ) + 3/4(1− ϵ)(1 + ϵ2)

=
3(1 + 15ϵ)

16
+

3(1− ϵ)(1 + 2ϵ)2

16
− 3(1− ϵ)2(1 + 2ϵ)

8

√
1 + 15ϵ

(1− ϵ)3
+

3

4
ϵ(1− ϵ)2

√
1 + 15ϵ

(1− ϵ)3

− 3

4
ϵ(1− ϵ)(1 + 2ϵ) + 3/4(1− ϵ)(1 + ϵ2)

=
3

16
(1 + 15ϵ) +

3

16
(1− ϵ)(1 + 2ϵ)2 + (1− ϵ)2

(
3

4
ϵ− 3

8
(1 + 2ϵ)

)√
1 + 15ϵ

(1− ϵ)3

− 3

4
ϵ(1− ϵ)(1 + 2ϵ) + 3/4(1− ϵ)(1 + ϵ2)

= −3

8
(1− ϵ)2

√
1 + 15ϵ

(1− ϵ)3
+

9

8
+

15

8
ϵ

= −3

8

√
(1 + 15ϵ)(1− ϵ) + 9

8
+

15

8
ϵ.

To see this is positive for ϵ < 1/3, note that 3
8

√
(1 + 15ϵ)(1− ϵ) < 3

8

√
(1 + 15/3) ≈

0.92 < 9/8. We can also show the derivative of the cubic map at p∗2 is less than 1.

To do this, we’ll show that 1 minus the derivative at p∗1 is positive:

1−
(
−3

8

√
(1 + 15ϵ)(1− ϵ) + 9

8
+

15

8
ϵ

)
=

3

8

√
(1 + 15ϵ)(1− ϵ)− 1

8
− 15

8
ϵ

=

√
9

64
(1 + 15ϵ)(1− ϵ)−

√(
1

8
+

15

8
ϵ

)2

.

By the monotonicity of square roots, it suffices to show that the following quadratic
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is positive:

9

64
(1 + 15ϵ)(1− ϵ)−

(
1

8
+

15

8
ϵ

)2

= −45ϵ2

8
+

3ϵ

2
+

1

8

=
1

8
(1− 3ϵ)(15ϵ+ 1).

which we can see is positive for ϵ ∈ (0, 1/3). Thus, the derivative of the cubic

map at p∗1 is positive but less than 1, so p∗1 is a stable fixed point. The fixed point

at 1/2 is unstable, in contrast: plugging p∗3 = 1/2 into the derivative (G.4) and

simplifying yields 3/2(1 − ϵ), which is larger than 1 for ϵ < 1/3. Thus the cubic

map converges to p∗1 for initial values in [0, 1/2).

Finally, to show the map is non-decreasing in p, notice that derivative Equa-

tion (G.4) is non-negative for p ≥ 0 and ϵ ∈ (0, 1].

Theorem 39. Let F0 ∈ F . For any ϵ ∈ (0, 1/3) and x ∈ [0, 1/2),

lim supt→∞ F
ϵ
3,t(x) ≤ 1.5ϵ.

Proof. Let x < 1/2 and define p = F ϵ
3,t−1(x). With ϵ-uniform noise, Pr(Xi,t ≤ x) =

ϵx+ (1− ϵ)p. The case analysis from Theorem 34 then proceeds exactly the same

way, so we can replace p by ϵx+(1− ϵ)p in the bound from Theorem 34 to get the

equivalent bound with ϵ-uniform noise:

F ϵ
3,t(x) ≤ 3/4 · [ϵx+ (1− ϵ)p] + [ϵx+ (1− ϵ)p]3. (G.5)

While it would be possible to work directly with the cubic map (G.5), its fixed

points are extremely messy. As such, we instead analyze the upper bound given

by x < 1/2 and then use Lemma 12:

F ϵ
3,t(x) < 3/4 · [ϵ/2 + (1− ϵ)p] + [ϵ/2 + (1− ϵ)p]3. (G.6)

If F0(x) < 1/2, then Lemma 13 states that the map (G.6) upper bounding F ϵ
3,t(x)

converges to p∗ ≤ 1.5ϵ. Thus, applying Lemma 12 gives lim supt→∞ F
ϵ
3,t(x) ≤ p∗ ≤
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1.5ϵ as claimed. If F0(x) = 1/2 (which is possible since we don’t require that F0 is

positive near 1/2), then applying (G.6),

F ϵ
3,1(x) < 3/4 · [ϵ/2 + (1− ϵ)/2] + [ϵ/2 + (1− ϵ)/2]3

= 3/4 · 1/2 + [1/2]3

= 1/2.

Thus F ϵ
3,1(x) < 1/2, so we can apply Lemmas 12 and 13 with initial p = F ϵ

3,1(x)

rather than F0(x).

Lemma 7. Let F0 ∈ F . With ϵ-uniform noise, for any ϵ ∈ (0, 1], x ∈ (1/3, 1/2),

and t > 0,

F ϵ
4,t(x) ≤ ϵx+ (1− ϵ)F ϵ

4,t−1(x).

Thus, F ϵ
4,t(x) ≤ max{x, F ϵ

4,0(x)}.

Proof. Let x ∈ (1/3, 1/2). Just as in Theorem 39, we can take the bound from

Lemma 4 and replace F ϵ
4,t−1(x) with ϵx+(1− ϵ)F ϵ

4,t−1(x) to get the claimed upper

bound with ϵ-uniform noise. The second part of the claim follows by induction after

noting F ϵ
4,1(x) ≤ ϵx+(1−ϵ)F ϵ

4,0(x) ≤ ϵmax{x, F ϵ
4,0(x)}+(1−ϵ)max{x, F ϵ

4,0(x)} =

max{x, F ϵ
4,0(x)}.

Theorem 40. Let F0 ∈ F . For any ϵ ∈ (0, 1] and x ∈ (1/3, 1/2), let β =

1/2− ϵ(x/3+1/3)− (1− ϵ)max{x/3+1/3, F0(x/3+1/3)}. Then β ∈ (0, 1/2] and

lim supt→∞ F
ϵ
4,t(x) ≤ 1

8β3 ϵ.

Proof. Let p = F ϵ
4,t−1(x). By Lemma 7 and symmetry, an inner candidate in

(x, 1− x) wins with probability at least 1− 2p(1− ϵ)− 2xϵ. We’ll strengthen this

bound in the same way as in Theorem 35, using the case with three candidates in
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(x/3 + 1/3, 1/2) and one in (1 − x, 1] (and the symmetric case). With ϵ-uniform

noise and accounting for symmetry, the probability this case occurs is

8[ϵx+ (1− ϵ)p][1/2− ϵ(x/3 + 1/3)− (1− ϵ)F ϵ
4,t−1(x/3 + 1/3)]3

≥ 8[ϵx+ (1− ϵ)p][1/2− ϵ(x/3 + 1/3)− (1− ϵ)max{x/3 + 1/3, F0(x/3 + 1/3)}]3

(by Lemma 7)

= 8[ϵx+ (1− ϵ)p]β3.

Then, adding this case to the cases implicitly used in Lemma 7 (see Lemma 4 for

the list of cases), we find

Pr(x < Plurality(Xϵ
1,t, X

ϵ
2,t, X

ϵ
3,t, X

ϵ
4,t) < 1− x)

≥ 1− 2p(1− ϵ)− 2xϵ+ 8[ϵx+ (1− ϵ)p]β3.

By symmetry,

F ϵ
4,t(x) =

[
1− Pr(x < Plurality(Xϵ

1,t, X
ϵ
2,t, X

ϵ
3,t, X

ϵ
4,t) < 1− x)

]
/2

≤ p(1− ϵ) + xϵ− 4[ϵx+ (1− ϵ)p]β3

= p(1− ϵ)(1− 4β3) + ϵx(1− 4β3). (G.7)

We’ll show that the iterated map (G.7) upper bounding F ϵ
4,t(x) converges to a fixed

point upper bounded by 1
8β
ϵ and then apply Lemma 12. First, we’ll find the fixed

point (unique, since this is a linear map):

p∗(1− ϵ)(1− 4β3) + ϵx(1− 4β3) = p∗

⇔ p∗[(1− ϵ)(1− 4β3)− 1] + ϵx(1− 4β3) = 0

⇔ p∗ =
ϵx(1− 4β3)

1− (1− ϵ)(1− 4β3)
. (G.8)

To show convergence to p∗, it suffices to show that the slope of the map is in (−1, 1)

(any such linear map converges to its unique fixed point, e.g., by the Banach fixed-
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point theorem). First, we can show β ∈ (0, 1/2]:

β = 1/2− ϵ(x/3 + 1/3)− (1− ϵ)max{x/3 + 1/3, F0(x/3 + 1/3)}

> 1/2− ϵ(1/2)− (1− ϵ)max{1/2, F0(x/3 + 1/3)} (since x < 1/2)

= 1/2− ϵ(1/2)− (1− ϵ)(1/2) (since F0(x/3 + 1/3) ≤ 1/2)

= 0.

Thus, the slope (1− ϵ)(1− 4β3) ∈ [0, 1), so the map (G.7) converges to p∗ for all

initial values p and is non-decreasing in p. Now we can upper bound p∗:

p∗ =
ϵx(1− 4β3)

1− (1− ϵ)(1− 4β3)

<
ϵ/2

1− (1− 4β3)
(ϵ ≥ 0, x < 1/2)

=
ϵ

8β3
.

Thus, by Lemma 12, lim supt→∞ F
ϵ
4,t(x) ≤ p∗ < 1

8β3 ϵ.

Theorem 41. Let F0 ∈ F . For k ≥ 5, the candidate distribution does not approx-

imately converge to the center under replicator dynamics with ϵ-uniform noise.

Proof. Suppose for a contradiction that the candidate distribution does approxi-

mately converge to the center. That is, suppose that for all c > 0 and x < 1/2,

there exists some ϵmax > 0 such that with ϵ-uniform noise, for any ϵ ∈ (0, ϵmax],

lim supt→∞ F
ϵ
k,t(x) < c. If lim supt→∞ F

ϵ
k,t(x) < c, then there is some t∗ such that

for all t ≥ t∗, F ϵ
k,t(x) ≤ c. In particular, let ϵ∗max and t∗ be the corresponding

values for x = 1/4. Then for any ϵ-uniform noise with ϵ ≤ ϵ∗max, F ϵ
k,t∗(1/4) ≤ c.

Additionally, consider the point z = (F ϵ
k,t∗)

−1(1/4). By our assumption, there is

some ϵ′max and t′ such that if ϵ < ϵ′max, then F ϵ
k,t(z) ≤ c for all t ≥ t′. We can make
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ϵ and c as small as needed, so we’ll pick:

c <
[
1− (125/128)1/k

]
/3 (G.9)

ϵ < min
{
ϵ∗max, ϵ

′
max,

[
1− (125/128)1/k

]
/3
}
. (G.10)

Note that
[
1− (125/128)1/k

]
/3 is largest at k = 5, when its value is approximately

0.0016. Also note that we must have t′ > t∗, since F ϵ
k,t∗(z) = 1/4 > c.

Now, we can apply the same argument as in Theorem 36, finding a lower

bound on F ϵ
4,t∗+1(x) (for x ∈ (1/4, 1/2)) given that only a c-fraction of the winners

in generation t∗ are left of 1/4 (note that this parameter was called α in the proof

of Theorem 36). Let p = F ϵ
k,t∗(x) with ϵ-uniform noise. For brevity, we will avoid

repeating the argument from Theorem 36 and instead substitute directly into the

resulting bound (G.1). Replacing p with Pr(Xϵ
i,t∗ ≤ x) = ϵx+ (1− ϵ)p and α with

Pr(Xϵ
i,t∗ ≤ 1/4) ≤ ϵ/4 + (1− ϵ)c in (G.1) then yields

F ϵ
4,t∗+1(x) ≥ [ϵx+ (1− ϵ)p]k + (1− 2[ϵ/4 + (1− ϵ)c])k/2

− (1− [ϵ/4 + (1− ϵ)c]− [ϵx+ (1− ϵ)p])k + (1− 2[ϵx+ (1− ϵ)p])k/2.

(G.11)

We will now derive a contradiction: that F ϵ
k,t(z) never goes below 1/4 as t

increases from t∗ to t′, when it should go below c. We know z > 1/4 by the mono-

tonicity of the CDF, since F ϵ
k,t∗(1/4) ≤ c. So, we can apply the lower bound (G.11)
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to z (where p = 1/4):

F ϵ
k,t∗+1(z) ≥ [ϵz + (1− ϵ)/4]k + (1− 2[ϵ/4 + (1− ϵ)c])k/2

− (1− [ϵ/4 + (1− ϵ)c]− [ϵz + (1− ϵ)/4])k + (1− 2[ϵz + (1− ϵ)/4])k/2

> (1− 2[ϵ/4 + (1− ϵ)c])k/2− (1− [ϵ/4 + (1− ϵ)c]− [ϵz + (1− ϵ)/4])k

= (1− ϵ/2− 2(1− ϵ)c)k/2− (1− [ϵ/4 + (1− ϵ)c]− [ϵz + (1− ϵ)/4])k

> (1− ϵ− 2c)k/2− (1− (1− ϵ)/4)k

≥ (1− ϵ− 2c)k/2− (3/4 + ϵ/4)5. (G.12)

Now consider each term in (G.12). By our upper bounds on c and ϵ,

(1− ϵ− 2c)k/2 >
(
1−

[
1− (125/128)1/k

]
/3− 2

[
1− (125/128)1/k

]
/3
)k
/2

=
(
1−

[
1− (125/128)1/k

])k
/2

= 125/256.

Meanwhile, ϵ is also small enough that (3/4+ ϵ/4)5 < 244
1024

(solving for ϵ reveals

we need ϵ < 0.0024, which we have ensured). This then means that (1 − ϵ −

2c)k/2− (3/4+ ϵ/4)5 > 125
256
− 244

1024
= 1/4. Following the above chain of inequalities,

this shows that F ϵ
k,t∗+1(z) > 1/4.

We will now show by induction that for all t > t∗, F ϵ
k,t(z) > 1/4, a contradiction

(since by our assumption, F ϵ
k,t′(z) ≤ c with t′ > t∗). We have just shown the base

case t = t∗ + 1 above. Then, suppose as an inductive hypothesis that F ϵ
k,t(z) ≥

1/4 for t > t∗. Define w = (F ϵ
k,t)
−1(1/4); by the inductive hypothesis, we know

w ≤ z. By the argument above, F ϵ
k,t+1(w) > 1/4 (the argument only requires

that F ϵ
k,t(1/4) ≤ c and w ∈ (1/4, 1/2), which are satisfied here). Thus, by the

monotonicity of the CDF, F ϵ
k,t+1(z) > 1/4. By induction, we then have F ϵ

k,t′(z) >

1/4, a contradiction.
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G.2.3 Proofs from Section 8.4

Before proving Theorem 42, we need a few supporting lemmas. We begin with a

result from the proof of Theorem 36, specialized to the case when all candidates

are in (1/4, 3/4).

Lemma 14. Suppose F0 ∈ F is supported on (1/4, 3/4). For k ≥ 5 and x ∈

(1/4, 1/2),

Fk,t(x) ≥ 1/2 + Fk,t−1(x)
k − (1− Fk,t−1(x))k + (1− 2Fk,t−1(x))

k/2.

Proof. We can use the same argument as in Theorem 36 to find a lower bound on

Fk,t(x), but now Fk,t−1(x) ≤ α = 0 since F0 (and therefore all subsequent Fk,t) is

supported only on (1/4, 3/4). Plugging α = 0 into (G.1) yields the claim, noting

p = Fk,t−1(x).

This gives us an iterated map which bounds Fk,t(x) from below. We can show

that this map converges to 1/2 in a large interval around 1/2, meaning that the

candidate distribution converges to one with no mass in this interval. We cannot

give an explicit form for the basin of attraction of this map since it depends on

a root of a polynomial of order k, but we can show the interval grows in k and

characterize it for k = 5.

Lemma 15. For all k ≥ 5, the iterated map given by p′ = 1/2 + pk − (1 − p)k +

(1 − 2p)k/2 converges to 1/2 for all initial p ∈ ([1 −
√
3/7]/2 = 0.172 . . . , 1/2].

Moreover, this map in non-decreasing in p on [0, 1/2).

Proof. First, we’ll show 1/2 is a stable fixed point of the map. Indeed, 1/2 +

(1/2)k − (1− 1/2)k + (1− 2(1/2))k/2 = 1/2 + 1/2k − 1/2k = 1/2. The stability of
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this fixed point is determined by the derivative

∂

∂p

(
1/2 + pk − (1− p)k + (1− 2p)k/2

)
= kpk−1 + k(1− p)k−1 − k(1− 2p)k−1.

(G.13)

At 1/2, the derivative is k(1/2)k−1 + k(1− 1/2)k−1− k(1− 1)k−1 = k(1/2)k−2. For

k ≥ 5, k(1/2)k−2 < 1, showing the fixed point is stable.

For k = 5, we can find the other fixed points of the map by factoring:

1/2 + p5 − (1− p)5 + (1− 2p)5/2 = p

⇔ 1/2 + p5 − (1− p)5 + (1− 2p)5/2− p = 0

⇔ p(1− p)(1− 2p)
(
−7p2 + 7p− 1

)
= 0.

⇔ p ∈
{
0, (1−

√
3/7)/2, 1/2, (1 +

√
3/7)/2, 1

}
= {0, 0.172 . . . , 0.5, 0.827 . . . , 1} .

Plugging in the k = 5 fixed point (1 −
√

3/7)/2 = 0.172 . . . to the deriva-

tive (G.13) yields ≈ 1.43, so this fixed point in unstable. Next, note that the

map monotonically increases in p for p ∈ (0, 1/2), since the derivative (G.13) is

positive (as 1 − p > 1 − 2p; similarly, the map is non-increasing on [0, 1/2), as

claimed). Thus, for k = 5, the map is larger than p but smaller than 1/2 for p

in ([1−
√

3/7]/2, 1/2) and initial values in this range converge to the stable fixed

point 1/2.

The final step is to show the map is increasing in k for p ∈ (0, 1/2), which means

that the basin of attraction only grows in k. To do this, consider the derivative of

the map with respect to k:

∂

∂k

(
1/2 + pk − (1− p)k + (1− 2p)k/2

)
=

1

2
(1− 2p)k log(1− 2p)− (1− p)k log(1− p) + pk log p.

We establish this is positive in the following lemma.
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Lemma 16. For all k ≥ 3 and 0 < p < 1/2,

1/2(1− 2p)k log(1− 2p)− (1− p)k log(1− p) + pk log p > 0.

Proof. We thank River Li1 for a key idea behind this analysis, based on the fol-

lowing integral trick:∫ 1

0

x− 1

1 + t(x− 1)
dt = log(1 + t(x− 1))

∣∣1
t=0

= log(1 + 1(x− 1))− log(1 + 0(x− 1))

= log x.

Now, apply this identity to the function in question for k = 3:

1/2(1− 2p)3 log(1− 2p)− (1− p)3 log(1− p) + p3 log p

= 1/2(1− 2p)3
∫ 1

0

−2p
1 + t(−2p)

dt − (1− p)3
∫ 1

0

−p
1 + t(−p)

dt + p3
∫ 1

0

p− 1

1 + t(p− 1)
dt

=

∫ 1

0

(
−p(1− 2p)3

1− 2pt
+
p(1− p)3

1− pt
− p3(1− p)

1 + pt− t

)
dt.

We’ll show that the integrand is positive for all t ∈ [0, 1], which implies the integral

is also positive. Converting to a common denominator,

− p(1− 2p)3

1− 2pt
+

p(1− p)3

1− pt
− p3(1− p)

1 + pt− t

=
−p(1− 2p)3(1− pt)(1 + pt− t) + p(1− p)3(1− 2pt)(1 + pt− t)− p3(1− p)(1− 2pt)(1− pt)

(1− 2pt)(1− pt)(1 + pt− t)
.

Since 0 < p < 1/2 and 0 ≤ t ≤ 1, the denominator is positive, so we just need to

show the numerator is positive. We can factor:

− p(1− 2p)3(1− pt)(1 + pt− t) + p(1− p)3(1− 2pt)(1 + pt− t)− p3(1− p)(1− 2pt)(1− pt)

= p2(1− 2p)(3− 4p− 4t+ 4pt+ p2t+ t2 + pt2 − 4p2t2 + 2p3t2)

= p2(1− 2p)
[
(1 + p− 4p2 + 2p3)t2 − (4− 4p− p2)t+ 3− 4p

]
.

1https://math.stackexchange.com/q/4789978

356

https://math.stackexchange.com/q/4789978


Again, since p2 and (1− 2p) are positive, we just need to show the right factor is

positive. Now, notice that 4− 4p− p2 > 0 (since p < 1/2), and t ≤ t2+1
2

, so

(1 + p− 4p2 + 2p3)t2 − (4− 4p− p2)t+ 3− 4p

≥ (1 + p− 4p2 + 2p3)t2 − (4− 4p− p2)t
2 + 1

2
+ 3− 4p

=
1

2

[
2− 4p+ p2 − (2− 6p+ 7p2 − 4p3)t2

]
Now, 2 − 6p + 7p2 − 4p3 is positive for p ∈ (0, 1/2). We can see this since its

derivative, −6 + 14p − 12p2 is negative (achieving a maximum of −23/12 at p =

7/12) and the polynomial has a zero at p = 1/2. Thus, we can shrink the function

by replacing t2 by 1:

1

2

[
2− 4p+ p2 − (2− 6p+ 7p2 − 4p3)t2

]
≥ 1

2

[
2− 4p+ p2 − (2− 6p+ 7p2 − 4p3)

]
= p(1− p)(1− 2p).

Finally, we see that this is positive for all p ∈ (0, 1), which implies that

1/2(1− 2p)3 log(1− 2p)− (1− p)3 log(1− p) + p3 log p > 0.

We can now use this as a base case k = 3 in an inductive argument. For the

inductive case (k ≥ 3), suppose

1/2(1− 2p)k log(1− 2p)− (1− p)k log(1− p) + pk log p > 0.

Note that the first and third terms are negative, while the middle term is positive

(because of the logs). So, let x = min{1/2(1− 2p)k log(1− 2p), pk log p}. We then
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have

1/2(1− 2p)k+1 log(1− 2p)− (1− p)k+1 log(1− p) + pk+1 log p

≥ (1− 2p)x− (1− p)k+1 log(1− p) + px

(replace both terms by their minimum)

= (1− p)x− (1− p)(1− p)k log(1− p)

≥ (1− p)1/2(1− 2p)k log(1− 2p)− (1− p)(1− p)k log(1− p) + (1− p)pk log p

= (1− p)
[
1/2(1− 2p)k log(1− 2p)− (1− p)k log(1− p) + pk log p

]
> 0. (by IH)

The claim then holds for all k ≥ 3 by induction.

Therefore, since the map only increases in k, the basin of attraction for the

stable fixed point at 1/2 can only grow as k increases from 5.

Theorem 42. Suppose F0 ∈ F is supported on (1/4, 3/4). Let ℓ = [1−
√

3/7]/2 =

0.172 . . . . For k ≥ 5 and x ∈ (F−10 (ℓ), 1/2), limt→∞ Fk,t(x) = 1/2.

Proof. Applying Lemma 12 to the bound from Lemma 14 and the convergence

and monotonicity from Lemma 15 gives lim inft→∞ Fk,t(x) ≥ 1/2. Meanwhile,

Fk,t(x) ≤ 1/2 for all t by symmetry, so lim supt→∞ Fk,t(x) ≤ 1/2. Therefore

limt→∞ Fk,t(x) = 1/2.

Theorem 43. Suppose F0 ∈ F is supported on (1/4, 3/4). For any k ≥ 2 and

t ≥ 0,

fk,t(1/2) = f0(1/2) ·
[
k(1/2)k−2

]t
. (8.9)

Proof. By Lemma 5, only the left- or rightmost candidate can win. Thus, if a

candidate at 1/2 is the winner, all other candidates must either be left of 1/2 or
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right of 1/2. Moreover, if all other candidates are on one side, then a candidate at

1/2 wins. Thus, a candidate at 1/2 wins if and only if all other candidates fall on the

left or the right. Note that multiple candidates are at 1/2 with probability 0, since

the candidate distribution is atomless. By symmetry, this occurs with probability

2 · (1/2)k−1 = (1/2)k−2. Therefore Pr(Plurality(1/2, X2,t, . . . , Xk,t)) = (1/2)k−2.

By Equation (8.2), we then have

fk,t(1/2) = k · fk,t−1(1/2) · Pr(Plurality(1/2, X2,t, . . . , Xk,t))

= k · fk,t−1(1/2) · (1/2)k−2.

We can now prove the claim by induction on t. For t = 0, indeed fk,0(1/2) =

fk,0(1/2) ·
[
k(1/2)k−2

]0. For t ≥ 1, applying the inductive hypothesis to the above

inequality yields

fk,t(1/2) = k · fk,t−1(1/2) · (1/2)k−2

= k · fk,0(1/2) ·
[
k(1/2)k−2

]t−1 · (1/2)k−2
= fk,0(1/2) ·

[
k(1/2)k−2

]t
.

G.2.4 Proofs from Section 8.7

Theorem 44. Suppose F0 places probability mass p at 1/2. For any k ≥ 2, there

is some p∗k < 1 such that if p > p∗k, the candidate distribution converges to a point

mass at 1/2 under the replicator dynamics with left–right tie-breaking. One of the

fixed points of pk + kpk−1(1− p) is such a p∗k.

Proof. Let p′ denote the mass at 1/2 in generation t + 1. If all k candidates

are at 1/2, then so is the winner. Similarly, if all but one candidate are at 1/2,
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then the lone deviant loses with vote share less than 1/2 (with left–right tie-

breaking). Thus, p′ ≥ pk + kpk−1(1 − p). For any k, this lower bound is larger

than p for p sufficiently close to 1. To see this, take the derivative at p = 1:

d
dp

[
pk + kpk−1(1− p)

]
= kpk−1 + k(k− 1)pk−2− k2pk−1, which is 0 at p = 1. Thus,

for any small enough ϵ, pk + kpk−1(1 − p) is larger than 1 − ϵ when evaluated at

1− ϵ. Thus, p will converge to 1 by the monotone convergence theorem.

Theorem 45. With k ≥ 4 and left–right tie-breaking, for any x ∈ (1/4, 1/2), the

strategy where each candidate picks uniformly at random between x and 1− x is a

SMSNE.

Proof. By symmetry, every candidate has a 1/k win probability if they all follow

this strategy. Suppose a deviant chooses a distribution that is supported on a point

besides x and 1− x. If they choose a point between x and 1− x, they lose unless

all other candidates pick the same side, which occurs w.p. 2(1/2)k−1 = 1/2k−2.

For k ≥ 4, this is at most 1/k (and strictly less for k > 4), so sampling points in

(x, 1−x) does not increase with probability. Alternatively, if the deviant samples a

point in [0, x) (or symmetrically, (1−x, 1)), they certainly lose unless no candidates

pick x, which occurs with probability 1/2k−1—smaller than 1/k for k ≥ 4. Thus

deviating to a point left of x only hurts. Combining the above findings, a deviant

does not benefit by sampling any point other than x or 1 − x. Finally, a deviant

does not benefit by changing the probability with which they sample either point

by symmetry of the other candidates’ choices. Since no deviation is beneficial, the

strategy is a Nash equilibrium.

Theorem 46. Suppose F0 places probability mass p at x and at 1−x, for 1/4 < x <

1/2. For any k ≥ 5, there exists some p∗k < 1/2 such that if p > p∗k, the candidate

distribution converges to point masses at x and 1−x under the replicator dynamics.
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In particular, one of the fixed points of (2p)k/2 + k(1 − 2p)((2p)k−1 − 2pk−1)/2 is

such a p∗k.

Proof. Let p′ denote the mass at x in generation t + 1. If all candidates are

at x or 1 − x (w.p. (2p)k), then a candidate at x wins with probability 1/2 by

symmetry. Alternatively, suppose all but one candidate are at x or 1 − x. The

probability that there is at least one candidate at both x and 1−x and a wildcard is

k(1−2p)((2p)k−1−2pk−1). In such a case, the wildcard loses if they are in the middle

(since they get vote share less than 1/4) and they lose if they are on the outside (to

the opposite outside candidate). Thus, p′ ≥ (2p)k/2+k(1−2p)((2p)k−1−2pk−1)/2.

For k ≥ 5, this is larger than p for p sufficiently close to 1/2. To see this, take the

derivative at p = 1/2: f ′(p) = d
dp

[
(2p)k/2 + k(1− 2p)((2p)k−1 − 2pk−1)/2

]
. We

then find f ′(1/2) = 22−kk, which is smaller than 1 for k ≥ 5. Thus, p will converge

to 1/2 by the monotone convergence theorem.

Theorem 48. The following are (some2 of the) PSNEs with uniform voters, com-

plete plurality maximizing candidates, and left–right tie-breaking:

1. Any k ≥ 2: all k candidates at 1/2.

2. Any k ≥ 4: for any x ∈ (1/4, 1/2), ⌊k/2⌋ candidates at x, ⌊k/2⌋ candidates

at 1− x, and the last candidate (if k is odd) at either x or 1− x.

3. Any k ≥ 5: ⌊(k−1)/2⌋ candidates at 1/4, ⌊(k−1)/2⌋ candidates at 3/4, one

candidate at 1/2, and the last candidate (if k is even) at either 1/4 or 3/4.

4. Even k: Cox’s equilibrium; two candidates at each of the points

1/k, 3/k, . . . , (k − 1)/k.
2In Appendix G.2.4, we show that for k ≤ 5, this list of PSNEs is exhaustive (Theorem 50);

for k > 6, there may be others.
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Proof. We show in each case than no deviation is beneficial.

1. If all k candidates are at 1/2, then the winner is chosen uniformly from the

leftmost and rightmost candidate at 1/2, who each get vote share 1/2. If

any one candidate moves to some point away from 1/2, they get vote share

strictly less than 1/2, while the middle candidate opposite them gets vote

share 1/2 and wins. Thus, no candidate can benefit by deviating.

2. Since k ≥ 4, both points x and 1 − x have at least two candidates. The

candidates who end up being the outermost at x and 1−x each get vote share

x, while the innermost candidates get vote share 1/2 − x, which is strictly

smaller since x > 1/4. Any candidate who moves towards the edge gets vote

share strictly less than x and loses to the other side. Any candidate who

moves into (x, 1−x) gets vote share 1/2−x and loses. Finally, no candidate

benefits by moving from x to 1 − x (or vice-versa), since they will always

be in a lottery to be the outermost which has at least as many candidates

as their original point (even if k is odd and a deviant moves from the more

populated point).

3. Since k ≥ 5, both points 1/4 and 3/4 have at least two candidates. There

is a three-way tie with vote share 1/4 between the leftmost candidate, the

rightmost candidate, and the one at 1/2—the inner candidates at 1/4 and 3/4

get vote share strictly less than 1/4. As in the previous case, every candidate

certainly loses if they move left of 1/4 or right of 3/4. The side candidates also

lose if they move into (1/4, 3/4). As before, there is no benefit to switching

from 1/4 to 3/4 or vice-versa. Finally, the candidate at 1/2 only shrinks their

win probability by moving to 1/4 or 3/4 (and worsens their margin against a

competitor by moving to any other point in (1/4, 3/4)). Thus, no candidate

benefits by deviating.
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4. Every candidate gets vote share 1/k and has a chance to win. If any candidate

moves, their partner will get vote share more than 1/k and the deviant will

still have vote share at most 1/k, so no one can deviate beneficially.

Lemma 17. Any PSNE with uniform voters, complete plurality mixmizing candi-

dates, and left–right tie-breaking must satisfy the following properties:

(a) Any point occupied by one candidate cannot be between another occupied point

and a boundary.

(b) Any point with at least three candidates must be adjacent to a boundary.

(c) Any point with two candidates not adjacent to a boundary must have the same

vote share on both sides.

(d) In any two-point equilibrium, the points must be equidistant from 1/2.

Proof. (a) Otherwise, the candidate can move away from the boundary to in-

crease their vote share and decrease an opponent’s vote share.

(b) Otherwise, one of the candidates could move distance ϵ either to the right or

left of the point to guarantee the maximum possible vote share (instead of

having probability < 1/3 of being on that side). This only decreases other

vote shares—except the new left- or rightmost candidate created, which only

has vote share ϵ/2 (note this requires at least three candidates; with only two,

moving increases the vote share of the partner). When adjacent to a bound-

ary, this doesn’t work—moving ϵ towards a boundary would decrease the

vote share achieved (even if it’s guaranteed), which could create a plurality

loss, as in Equilibria 2 and 3 from Theorem 48.
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(c) If not, then one of the candidates can move ϵ towards the side with higher

vote share to guarantee it. For small enough ϵ, the deviant will have higher

vote share than their former partner. This also decreases the vote share of the

bordering candidates the deviant moved towards. Thus, this either increases

the plurality win probability of the deviant or at least decreases the expected

margin against the winner.

(d) Suppose not, and call the points x and y. Assume without loss of generality

that x < y and x < 1−y. Let z = (y−x)/2 be the vote share inner candidates

get. If z ≥ y, then a candidate at x can move right by ϵ to improve their

winning chances, getting certain vote share z rather than a chance at it. If

z < 1 − y, then a candidate at y can move right by ϵ to guarantee a win.

Thus the points must be equidistant from 1/2.

Theorem 50. The following is a complete list of the PSNEs with uniform vot-

ers,complete plurality maximizing candidates, and left–right tie-breaking for small

k:

k = 2: (1/2, 1/2)

k = 3: (1/2, 1/2, 1/2)

k = 4:(a) (1/2, 1/2, 1/2, 1/2)

(b) (1/4, 1/4, 3/4, 3/4)

(c) (x, x, 1− x, 1− x), for any x ∈ (1/4, 1/2)

k = 5:(a) (1/2, 1/2, 1/2, 1/2, 1/2)

(b) (1/4, 1/4, 1/2, 3/4, 3/4)

(c) (x, x, 1− x, 1− x, 1− x), for any x ∈ (1/4, 1/2)
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(d) (x, x, x, 1− x, 1− x), for any x ∈ (1/4, 1/2).

Proof. We know by Theorem 48 that these are all Nash equilibria, so we only need

to show no other equilibria exist.

k = 2: If a candidate is at a point other than 1/2, then they can move to 1/2

and do strictly better (regardless of their opponent’s position), so no

other equilibrium is possible.

k = 3: We know no point with one candidate can be adjacent to a boundary in

equilibrium by Lemma 17. So all candidates must be at the same point.

If that point is anything other than 1/2, it would not be an equilibrium,

so (1/2, 1/2, 1/2) must be the unique equilibrium.

k = 4: There is no way to have a single-candidate point not adjacent to a bound-

ary, since no partition of 4 that includes a 1 has two numbers larger than

1 to flank the single-candidate point. Thus, any equilibrium either has

two points with two candidates each or one point with all four candi-

dates. The latter type of equilibrium must be at 1/2, so we only need

to characterize the two-point equilibria.

We know by Lemma 17 that in two-point equilibria, the points must be

equidistant from 1/2 and so can be written as x and 1−x. Now, we can

show that we must have x ∈ [1/4, 1/2). If x < 1/4, then a candidate at

x can move right by ϵ to guarantee the winning inner vote share rather

than a 1/2 chance at it. Thus, the only two point equilibria are those

claimed.

k = 5: A single-point equilibrium must be at 1/2.
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A two-point equilibrium cannot be a 1–4 split since the lone candidate

would be adjacent to a boundary, so any two-point equilibrium must be

a 2–3 split. By Lemma 17, the points must be equidistant from 1/2, so

call them x and 1− x. We cannot have x < 1/4, or else a candidate at

x would move right by ϵ to guarantee a winning vote share. Unlike for

k = 4, we also cannot have x = 1/4. If we did, consider the point with

3 candidates. One of them could move to 1/2 to guarantee vote share

1/4, which would be tied for the winning share, whereas they only had

a 2/3 chance of getting that vote share before. Thus the only two-point

equilibria are those claimed.

We cannot have four- or five-point equilibria, since we would then be

forced to place single-candidate points adjacent to the boundary. How-

ever, we can have a three-point equilibrium with a 2-1-2 split (a 3-1-1 is

impossible for the same boundary reason). So we only need to show that

the claimed 2-1-2 equilibrium is the only one. First, the lone candidate

must be at the midpoint of the two outer points to optimize its most

competitive margin. Next, we’ll show the outer points must be equidis-

tant from the boundaries. Suppose not: say the outer points are x and y

with x < 1−y. If the inner vote share at x ((y−x)/4) is smaller than x,

then a candidate at x has no chance of winning. But by moving to x− ϵ

for some small ϵ, they can guarantee the larger vote share and reduce

their expected losing margin. If the inner vote share at x is larger than

the outer vote share, then a candidate at x loses to the lone inner can-

didate; but again, they can move to x+ ϵ improve their expected losing

margin. The only remaining option is that the inner and outer shares at

x are equal (so the inner share is x and the middle candidate gets vote
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share 2x). In that case, consider subcases based on 1− y. If 1− y < 2x,

then the middle candidate always wins. Since 1 − y > x, a candidate

at y can move to y + ϵ to reduce their expected losing margin against

the middle candidate. If 1− y > 2x, then a candidate at y can move to

y + ϵ to guarantee a win rather than a 1/2 chance. If 1− y = 2x, then

a candidate at x can move to y, giving it a chance to enter the winning

lottery for vote share 2x (note that the candidate they leave behind at

x now also gets vote share 2x).

Now that we know the outer points are equidistant from the boundaries,

the middle candidate must then be at 1/2. We can now show that the

only possible outer points x and 1− x are given by x = 1/4. If x > 1/4,

then the middle candidate cannot win; but they could move to x to join

a lottery for the winning vote share. If x < 1/4, then a candidate at x

cannot win. If the inner vote share at x is larger than x, a candidate at

x can move to x+ ϵ to reduce their expected losing margin against the

middle candidate. Symmetrically, if x is larger than the inner vote share,

then a candidate at x can move to x− ϵ to reduce their expected losing

margin. Finally, consider the case where the inner and outer vote shares

are equal (x = 1/6). A candidate at x can move into (1/6, 1/2), keeping

the same vote share 1/6 while reducing the vote share of the winning

candidate at 1/2, thus improving their losing margin. Therefore, the

only three-point equilibrium is the one claimed with x = 1/4.

367



G.3 Formal definitions of variants

To handle non-uniform voter distributions, we define PluralityV (x1, . . . , xk) to be

the position of the plurality winner among x1, . . . , xk if the voter distribution is V .

Definition 8. Given an initial candidate distribution F0 and a candidate count k,

and a distribution of voters V , the replicator dynamics for candidate positioning

with voter distribution V are, for all t > 0,

Fk,t(x) = Pr(PluralityV (X1,t, . . . , Xk,t) ≤ x),

Xi,t ∼ Fk,t−1, ∀i = 1, . . . , k.

Definition 9. Given an initial candidate distribution F0, a candidate count k, and

m generations of memory, the replicator dynamics for candidate positioning with

m generations of memory are, for all t > 0,

Fk,t(x) = Pr(Plurality(X1,t, . . . , Xk,t) ≤ x),

Xi,t ∼


Fk,t−1 w.p. 1

m

...

Fk,t−m w.p. 1
m
.

Definition 10. Given an initial candidate distribution F0, a candidate count k,

and a variance σ2 ∈ [0, 1], the replicator dynamics for candidate positioning with

σ2-perturbation noise are, for all t > 0,

Fk,t(x) = Pr(Plurality(X1,t, . . . , Xk,t) ≤ x),

Xi,t ∼ min(1,max(0, Fk,t−1 +N (0, σ2))), ∀i = 1, . . . , k.

Definition 11. Given an initial candidate distribution F0, and candidate count

proportions p2, p3, . . . , pkmax , the replicator dynamics for candidate positioning with
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variable candidate counts are, for all t > 0,

Ft(x) =
kmax∑
k=2

pk · Pr(Plurality(X1,t, . . . , Xk,t) ≤ x),

Xi,t ∼ Ft−1.

Let F (i)
k,t denote the distribution of the i-th place candidate generation t with

k candidates per election, where i ≤ k. We define F (i)
k,0 = F0 for all k and all i,

although we typically write F0 since the initial distribution does not depend on k.

Under this notation F
(1)
k,t = Fk,t where Fk,t is the CDF of the winner distribution.

Then,

Definition 12. Given an initial candidate distribution F0, a candidate count k,

and h ≤ k, the replicator dynamics for candidate positioning with top-h copying

are, for all t > 0,

Fk,t(x) = Pr(Plurality(X1,t, . . . , Xk,t) ≤ x),

Xi,t ∼


F

(1)
k,t w.p. 1

h

...

F
(h)
k,t w.p. 1

h
.
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