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Recommend posts in Microsoft Teams 
to improve information flow in a 
company’s communication network, 
while maintaining relevance. 

Our goal:



Problem setting: Microsoft Teams
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Modeling information spread in an organization
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Temporal communication network



Interacting with posts influences the communication network
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Motivation: remote work reduced cross-team communication
(Yang et al, Nature Human Behavior 2022)



Can we improve cross-cluster information flow 
by recommending posts?
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Information latency
(Kossinets, Kleinberg, Watts, KDD ’08)

How do we measure information flow?
Total information
(Tomlinson et al., KDD ’23)

How recently could v have 
heard about u?

What fraction of u’s state is 
known by v?

IL(G, t) = ∑
u,v∈V

t − max
P∈𝒫t(u,v)

d(P)

departure time of path P

temporal paths from u to v 
arriving no later than t

TI(G, t) = ∑
u,v∈V

TI(u, v, t)

TI(u, u, t) = 1

TI(u, v, t) = min{1, λTI(u, v, t − 1) + ∑
(z,v,d,a,w)∈Et

wλt−dTI(u, z, t − 1,d)}

decayed prior knowledge

edges into v at t that departed 
at d with weight w

information transmitted along edge



Theory: optimizing temporal network objectives

In-edges Out-edges

Myopic

Non-Myopic

Edge addition problems: 
Add best k edges into/out of u to maximize IL/TI now/in the future

NP-hard* Easy! Greedy is optimal

NP-hard* NP-hard*

* Greedy is  approximation! (Objectives are submodular)(1 − 1/e)



Temporal Information and Engagement Recommender (TIER)

Rank posts by: 
np

maxq∈C nq
+ α

rp

maxq∈C rq

Network score (TI): 
 np = TI(G + (author(p), u, time(p), t, w), t) − TI(G, t)

Recommending to u at time t, candidate posts C

Relevance score: 
 from any traditional recommenderrp

how much would interacting with 
a post improve cross-cluster 
information? (Greedy, myopic)

Track TI/IL matrix over time 
(efficient algorithm)



Data: Microsoft internal communication

• ~ 180,000 users (full-time Microsoft employees)


• 1 month of communication (March 2022)


• Microsoft Teams, Outlook, and SharePoint


• Posts, chats, emails, file sharing


• ~ 100M edges (u, v, d, a)


• clusters from org chart (or clustering alg)


• offline evaluation: simulate user actions on recommendations



More relevant 
recommendations

Better information flow

LightGBM 
(relevance only)

TIER

Information flow onlyRandom

Cross-cluster first

(Ke et al., NeurIPS ’17)



More relevant 
recommendations

Better information flow

TIER

Information flow onlyRandom

Cross-cluster first

LightGBM 
(relevance only)

(Ke et al., NeurIPS ’17)



Total information Information latency
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ABSTRACT
Workplace communication software such as Microsoft Teams, Slack,
and Google Workspace have become integral to workplace collabo-
ration, especially due to the rise of remote work. By making it easier
to access relevant or useful information, recommender systems for
these platforms have the potential to improve e�cient cross-team
information �ow through a company’s communication network.
While there has been some recent work on recommendation ap-
proaches that optimize network objectives, these have focused on
static graphs. In this work, we focus on optimizing information
�ow, which is highly temporal and presents a number of novel
algorithmic challenges. To overcome these, we develop tractable
measures of temporal information �ow and design e�cient online
recommendation algorithms that jointly optimize for relevance and
cross-team information �ow. We demonstrate the potential for im-
pact of these approaches on a rich multi-modal dataset capturing
one month of communication between 180k Microsoft employees
through email, chats and posts on Microsoft Teams, and �le shar-
ing on SharePoint. We design an o�ine model-based evaluation
pipeline to estimate the e�ects of recommendations on the tempo-
ral communication network. We show that our recommendation
algorithms can signi�cantly improve cross-team information �ow
with only a small decrease in traditional relevance metrics.

CCS CONCEPTS
• Information systems ! Social recommendation; Recom-
mender systems; • Theory of computation! Social networks.
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recommender systems, workplace communication, temporal net-
works, information �ow
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1 INTRODUCTION
Social communication software such as Microsoft Teams, Slack, and
GoogleWorkspace has become a vital component of workplace com-
munication in the last decade, enabling remote collaboration and
knowledge transfer between workers [2, 43, 49]. These platforms
have become evenmore important with the increase in remote work
due to the COVID-19 pandemic [53]. However, the large quantity of
electronic communication can be overwhelming for workers [44].
Recommender systems are a key tool for managing information
overload, helping users �lter out irrelevant content [55]. In the con-
text of workplace communication software, recommender systems
provide an opportunity not only to help users �nd relevant informa-
tion, but also to shape the structure of a company’s communication
network. By bringing information from di�erent parts of a com-
pany to a worker’s attention, recommender systems can help ideas
and resources spread more quickly and e�ciently. Traditionally,
recommender systems have been entirely relevance-driven—other
objectives have only recently begun to be explored [1]. There has
been some work on recommender systems with network objectives
(e.g., [17, 42, 47]), but the full potential of these systems has not been
realized, especially in the context of workplace communication.

We model multi-platform workplace communication as a tempo-
ral network and consider how recommendations on one communi-
cation platform can increase global information �ow. In particular,
we focus on the e�cient spread of information between teams in
a company rather than between all individuals, as within-team
communication is likely to already be strong—although the same
principles apply to individual-level information �ow. We consider
recommendations in a post-based conversation platform like Mi-
crosoft Teams or Slack, where users make posts within channels,
which are usually centered around a topic, team, or project. Posts
in a channel are only visible to the channel’s members, who can in-
teract with the post (e.g., replying). Our goal is to recommend posts
from channels a user belongs to in a way that increases the speed
and quantity of cross-team information �ow, without increasing
the communication burden on individuals. This can be achieved by
e�ciently taking advantage of indirect communication: if � tells
⌫ something, ⌫ can then relay it to ⇠ . Additionally, it is important
that recommended posts still be relevant to users, or they might
become dissatis�ed with the system’s recommendations. As such,
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