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Fig. 2. Visual depiction of the proof of Theorem 1. IRV eliminates candidates until a final candidate x remains in the exclusion zone [1/6, 5/6]. At this point, x gets more than
1/3 of the votes and cannot be eliminated next (regardless of where they are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated until x wins.

A corollary of Theorem 1 is that if candidates are dis-271

tributed uniformly at random (for instance, if voters indepen-272

dently and identically decide whether to run for o�ce), then273

IRV elects extreme candidates with probability going to 0 as274

the number of candidates grows, since the probability of having275

no moderate candidates in [1/6, 5/6] is (1/3)k. In the language276

defined earlier, IRV thus has a probabilistic moderating e�ect277

in the simplest case with uniform voters and candidates.278

Corollary 1. (Probabilistic moderation for uniform IRV.)

Let Rk be the position of the IRV winner with k candidates

distributed uniformly at random and uniform voters.

lim
kæŒ

Pr(Rk /œ [1/6, 5/6]) = 0.

In contrast to IRV, where the presence of candidates with279

moderate positions (namely, inside [1/6, 5/6]) precludes ex-280

treme candidates from winning, we now show that no such fact281

is true for plurality (excluding the extreme points 0 and 1).282

In other words, plurality voting does not have a combinatorial283

moderating e�ect with uniform voters. Later, we generalize284

this result to non-uniform voter distributions. The idea be-285

hind the proof is relatively straightforward: given a set of286

candidates, keep adding candidates to reduce the vote count287

of everyone except the desired winner.288

Theorem 2. (No combinatorial moderation for uniform plu-289

rality.) Suppose voters are uniformly distributed over [0, 1].290

Given any set of Ÿ Ø 1 distinct candidate positions x1, . . . , xŸ291

with x1 /œ {0, 1}, there exists a configuration of k Ø Ÿ candi-292

dates (including x1, . . . , xŸ) such that the candidate at x1 wins293

under plurality.294

Proof. We show how to add candidates to the initial set295

x1, . . . , xŸ so that x1 becomes the plurality winner (as long as296

x1 /œ {0, 1}). First, add candidates at x0 = 0 and xŸ+1 = 1297

to guarantee that x1 is between two candidates. Let x¸ be298

the candidate to the left of x1 and let xr be the candidate to299

the right of x1. Let v¸ = (x1 ≠ x¸)/2 be the number of votes300

x1 gets on its left and let vr = (xr ≠ x1)/2 be the number301

of votes x1 gets on its right. Add new candidates spaced by302
1
2 min{v¸, vr} in the intervals [0, x¸] and [xr, 1]. This causes303

every candidate in the intervals [0, x¸) and (xr, 1] to have304

strictly less than 1
2 min{v¸, vr} votes (whether they are part305

of the original Ÿ or new). Additionally, x¸ and xr have at306

most 1
2 min{v¸, vr} + max{v¸, vr} votes. Meanwhile, x1 has307

v¸ + vr votes, so x1 is the plurality winner in the new configu-308

ration.309

In addition, we prove that plurality with uniform voters310

and candidates has strictly positive probability of electing311

candidates in every subinterval of [0, 1], including subintervals312

near the endpoints, as the number of candidates grows. In313

other words, plurality does not have a probabilistic moderating314

e�ect: it does not preclude extreme candidates from winning315

(in some candidate configuration) when the voter distribution316

is uniform and there are many moderate candidates to choose 317

from. The proof is significantly more lengthy and can be found 318

in the SI Appendix, but we describe the approach below. Note 319

that this result implies plurality also has no combinatorial 320

moderation, but Theorem 2 is considerably easier to prove. 321

Theorem 3. (No probabilistic moderation for uniform plu-

rality.) Let Pk be the position of the plurality winner with k

candidates distributed uniformly at random and uniform voters.

For any [¸, r] ™ (0, 1) with ” = r ≠ ¸ > 0,

lim
kæŒ

Pr(Pk œ [¸, r]) Ø 1 ≠ e
”/(e2 log ”)

2e
.

The idea behind the proof of Theorem 3 is to find a lower 322

bound on the probability that the highest vote share of any 323

candidate in [¸, r] exceeds the highest vote share of any candi- 324

date outside [¸, r]. Conditioned on the number of candidates 325

that lie inside [¸, r], these vote shares converge to independent 326

distributions as k æ Œ (although they are dependent for any 327

fixed k). Intuitively, we can then consider two independent 328

plurality elections, one with ”k candidates on an interval of 329

size ” and one with (1 ≠ ”)k candidates on an interval of size 330

(1 ≠ ”). We prove a lower bound on the probability that the 331

first election has a winning vote share higher than x and that 332

the second election has a winning vote share lower than x (for 333

a carefully chosen x). 334

A key step is therefore deriving the asymptotic distribution 335

of the winning plurality vote share. This vote share distribu- 336

tion may be useful for other asymptotic analyses of plurality 337

voting, so we describe it here. The winning plurality vote share 338

is closely related to a category of probabilistic problems known 339

as stick-breaking problems, which focus on the properties of a 340

stick of length 1 broken into n pieces uniformly at random (29). 341

Setting n = k + 1, these stick pieces can be viewed as the gaps 342

between candidates (equivalently, candidates are the break- 343

points of the stick). A classic result in stick-breaking is that 344

the biggest piece Bn will have size almost exactly log n/n as 345

n grows large (29, 30) and that nBn ≠ log n converges to a 346

Gumbel(1, 0) distribution as n æ Œ. The plurality vote set- 347

ting is slightly di�erent, since candidates get votes from half of 348

the gap to their left plus half of the gap to their right (except 349

the left- and rightmost candidates, who get the full gap on one 350

side). We show that as the number of candidates grows large, 351

the winning vote count Vk with k = n ≠ 1 candidates is almost 352

exactly (log n+log log n)/2n and that nVk≠(log n+log log n)/2 353

also converges to Gumbel(1, 0) as k æ Œ. Intuitively, the 354

largest pair of adjacent gaps have size log n/n and log log n/n, 355

and the candidate between these gaps gets votes from half of 356

each gap (more correctly, the total size of the largest pair of 357

adjacent gaps is (log n + log log n)/n). This is formalized in 358

the following lemma used to prove Theorem 3. 359

Lemma 1. Let Vk be the winning plurality vote share with

k candidates distributed uniformly at random over [0, 1] and
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a.k.a. ranked-choice voting (+ AV, STV, Hare, …)

Winner!



Who uses IRV?





[Under IRV,] civility is substantially improved. 
Needing to reach out to more voters leads 
candidates to reduce personal attacks and 
govern more inclusively. 

Howard Dean. How to move beyond the two-party system. NY Times, 10/8/2016 

The ranked-choice system […] is biased towards 
extreme candidates and away from moderate ones.  

Nathan Atkinson and Scott Ganz. The flaw in ranked-choice voting: rewarding extremists. The Hill, 10/30/2022 

Common debate: does IRV benefit moderates?
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(Horowitz, Comparative Political Studies 2006) 
(Horowitz, Public Choice 2007)

(Fraenkel & Grofman, Public Choice 2004) 
(Mitchell, Electoral Studies 2014) 
(Reilly, Nationalism and Ethnic Politics 2018)

case studies simulation

case studies

(Grofman & Feld, Electoral Studies 2004) 
(Dellis, Gauthier-Belzile, & Oak, JITE 2017)

some limited theory
(Chamberlin and Cohen, APSR 1978) 
(Merrill, AJPS 1984) 
(McGann, Grofman, & Koetzle, Public Choice 2002)

Common debate: does IRV benefit moderates?



Does IRV provably favor 
moderates compared to plurality?



1-Euclidean preference model
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.
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the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270

Tomlinson et al. PNAS | April 15, 2023 | vol. XXX | no. XX | 3



1-Euclidean preference model
• [0, 1]: left-right ideology

• Candidates are at points

0 0.2 0.4 0.6 0.8 1

A B C D

0 0.2 0.4 0.6 0.8 1

A B C D

0 0.2 0.4 0.6 0.8 1

A B C D

Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218
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Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191
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We can specify the IRV rule using these vote shares v(xi).193
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nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199
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That is, IRV exhibits an exclusion zone in the middle of the204
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and 1 are then too far away to “squeeze out” the last remaining210
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extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214
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Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.
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have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225
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remaining candidates > 5/6 and therefore has a majority. 231
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than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268
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candidate at 1/h, who gets more than 1/h votes and wins. 270
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Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184
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rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256
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Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225
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[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261
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we present generalizations of this result for non-uniform voter214

distributions.215
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will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Formalizing a moderating effect
Definition 
A voting system has a combinatorial moderating effect 
if there is an interval  s.t. a candidate from  
always wins (when present).


We call  an exclusion zone of the voting system.
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Starting simple: uniform voters
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182
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the distribution F itself: that is, under the plurality voting185
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probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199
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voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.
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have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226
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have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230
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with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234
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< 1/6 or > 5/6, in which case x will win as argued above. 236
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reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Theorem 1 (Combinatorial moderation for IRV)  
For any , [1/6, 5/6] is an exclusion zone of IRV with uniform voters.


No smaller interval has this property. 

k ≥ 3

IRV has a moderating effect!



Theorem 1 (Combinatorial moderation for IRV)  
For any , [1/6, 5/6] is an exclusion zone of IRV with uniform voters.


No smaller interval has this property. 

k ≥ 3
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Fig. 2. Visual depiction of the proof of Theorem 1. IRV eliminates candidates until a final candidate x remains in the exclusion zone [1/6, 5/6]. At this point, x gets more than
1/3 of the votes and cannot be eliminated next (regardless of where they are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated until x wins.

A corollary of Theorem 1 is that if candidates are dis-271

tributed uniformly at random (for instance, if voters indepen-272

dently and identically decide whether to run for o�ce), then273

IRV elects extreme candidates with probability going to 0 as274

the number of candidates grows, since the probability of having275

no moderate candidates in [1/6, 5/6] is (1/3)k. In the language276

defined earlier, IRV thus has a probabilistic moderating e�ect277

in the simplest case with uniform voters and candidates.278

Corollary 1. (Probabilistic moderation for uniform IRV.)

Let Rk be the position of the IRV winner with k candidates

distributed uniformly at random and uniform voters.

lim
kæŒ

Pr(Rk /œ [1/6, 5/6]) = 0.

In contrast to IRV, where the presence of candidates with279

moderate positions (namely, inside [1/6, 5/6]) precludes ex-280

treme candidates from winning, we now show that no such fact281

is true for plurality (excluding the extreme points 0 and 1).282

In other words, plurality voting does not have a combinatorial283

moderating e�ect with uniform voters. Later, we generalize284

this result to non-uniform voter distributions. The idea be-285

hind the proof is relatively straightforward: given a set of286

candidates, keep adding candidates to reduce the vote count287

of everyone except the desired winner.288

Theorem 2. (No combinatorial moderation for uniform plu-289

rality.) Suppose voters are uniformly distributed over [0, 1].290

Given any set of Ÿ Ø 1 distinct candidate positions x1, . . . , xŸ291

with x1 /œ {0, 1}, there exists a configuration of k Ø Ÿ candi-292

dates (including x1, . . . , xŸ) such that the candidate at x1 wins293

under plurality.294

Proof. We show how to add candidates to the initial set295

x1, . . . , xŸ so that x1 becomes the plurality winner (as long as296

x1 /œ {0, 1}). First, add candidates at x0 = 0 and xŸ+1 = 1297

to guarantee that x1 is between two candidates. Let x¸ be298

the candidate to the left of x1 and let xr be the candidate to299

the right of x1. Let v¸ = (x1 ≠ x¸)/2 be the number of votes300

x1 gets on its left and let vr = (xr ≠ x1)/2 be the number301

of votes x1 gets on its right. Add new candidates spaced by302
1
2 min{v¸, vr} in the intervals [0, x¸] and [xr, 1]. This causes303

every candidate in the intervals [0, x¸) and (xr, 1] to have304

strictly less than 1
2 min{v¸, vr} votes (whether they are part305

of the original Ÿ or new). Additionally, x¸ and xr have at306

most 1
2 min{v¸, vr} + max{v¸, vr} votes. Meanwhile, x1 has307

v¸ + vr votes, so x1 is the plurality winner in the new configu-308

ration.309

In addition, we prove that plurality with uniform voters310

and candidates has strictly positive probability of electing311

candidates in every subinterval of [0, 1], including subintervals312

near the endpoints, as the number of candidates grows. In313

other words, plurality does not have a probabilistic moderating314

e�ect: it does not preclude extreme candidates from winning315

(in some candidate configuration) when the voter distribution316

is uniform and there are many moderate candidates to choose 317

from. The proof is significantly more lengthy and can be found 318

in the SI Appendix, but we describe the approach below. Note 319

that this result implies plurality also has no combinatorial 320

moderation, but Theorem 2 is considerably easier to prove. 321

Theorem 3. (No probabilistic moderation for uniform plu-

rality.) Let Pk be the position of the plurality winner with k

candidates distributed uniformly at random and uniform voters.

For any [¸, r] ™ (0, 1) with ” = r ≠ ¸ > 0,

lim
kæŒ

Pr(Pk œ [¸, r]) Ø 1 ≠ e
”/(e2 log ”)

2e
.

The idea behind the proof of Theorem 3 is to find a lower 322

bound on the probability that the highest vote share of any 323

candidate in [¸, r] exceeds the highest vote share of any candi- 324

date outside [¸, r]. Conditioned on the number of candidates 325

that lie inside [¸, r], these vote shares converge to independent 326

distributions as k æ Œ (although they are dependent for any 327

fixed k). Intuitively, we can then consider two independent 328

plurality elections, one with ”k candidates on an interval of 329

size ” and one with (1 ≠ ”)k candidates on an interval of size 330

(1 ≠ ”). We prove a lower bound on the probability that the 331

first election has a winning vote share higher than x and that 332

the second election has a winning vote share lower than x (for 333

a carefully chosen x). 334

A key step is therefore deriving the asymptotic distribution 335

of the winning plurality vote share. This vote share distribu- 336

tion may be useful for other asymptotic analyses of plurality 337

voting, so we describe it here. The winning plurality vote share 338

is closely related to a category of probabilistic problems known 339

as stick-breaking problems, which focus on the properties of a 340

stick of length 1 broken into n pieces uniformly at random (29). 341

Setting n = k + 1, these stick pieces can be viewed as the gaps 342

between candidates (equivalently, candidates are the break- 343

points of the stick). A classic result in stick-breaking is that 344

the biggest piece Bn will have size almost exactly log n/n as 345

n grows large (29, 30) and that nBn ≠ log n converges to a 346

Gumbel(1, 0) distribution as n æ Œ. The plurality vote set- 347

ting is slightly di�erent, since candidates get votes from half of 348

the gap to their left plus half of the gap to their right (except 349

the left- and rightmost candidates, who get the full gap on one 350

side). We show that as the number of candidates grows large, 351

the winning vote count Vk with k = n ≠ 1 candidates is almost 352

exactly (log n+log log n)/2n and that nVk≠(log n+log log n)/2 353

also converges to Gumbel(1, 0) as k æ Œ. Intuitively, the 354

largest pair of adjacent gaps have size log n/n and log log n/n, 355

and the candidate between these gaps gets votes from half of 356

each gap (more correctly, the total size of the largest pair of 357

adjacent gaps is (log n + log log n)/n). This is formalized in 358

the following lemma used to prove Theorem 3. 359

Lemma 1. Let Vk be the winning plurality vote share with

k candidates distributed uniformly at random over [0, 1] and
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Plurality allows extreme winners

Theorem 2 (No combinatorial moderation for plurality, uniform voters)  
Given any distinct candidate positions  (with ), we can add 
more candidates to make  the plurality winner.

x1, …, xk x1 ∉ {0,1}
x1



No probabilistic moderation for plurality

Theorem 3 (No probabilistic moderation for plurality, uniform voters)  
Let  be the position of the plurality winner with  candidates distributed 
uniformly. As , .

Pk k
k → ∞ Pk →d Uniform(0,1)



No probabilistic moderation for plurality

Theorem 3 (No probabilistic moderation for plurality, uniform voters)  
Let  be the position of the plurality winner with  candidates distributed 
uniformly. As , .

Pk k
k → ∞ Pk →d Uniform(0,1)

Proof idea:


Connection to stick-breaking processes to find winning vote share

 + circle-cutting argument
D. A. Darling. On a class of problems related to the random division of an interval. The Annals of Mathematical Statistics, 1953. 
L. Holst. On the lengths of the pieces of a stick broken at random. Journal of Applied Probability, 1980.  

 



What about non-uniform voters?
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268
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the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182

voters, we do not explicitly sample the voters from F , but183

instead think of a continuum of voters who correspond to184

the distribution F itself: that is, under the plurality voting185

rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204

unit interval, where the presence of moderate candidates inside205

the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216

Under IRV with uniform voters over [0, 1] and any number of217

candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.

loss of generality that x Æ 1/2. The smallest vote share x could 224

have occurs when there are candidates at 1/6 ≠ ‘ and 5/6 + ‘. 225

In this case, x gets (x ≠ 1/6 + ‘)/2 + (5/6 + ‘ ≠ x)/2 = 1/3 + ‘ 226

votes. Meanwhile, the most votes any candidate < 1/6 could 227

have (when x is at 1/2) is 1/6≠‘+(1/2≠1/6+‘)/2 = 1/3≠‘/2. 228

Thus, every candidate < 1/6 will be eliminated before x. At 229

this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261
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In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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this point, x will win, since it is closer to 1/2 than any of 230

remaining candidates > 5/6 and therefore has a majority. 231

If there is more than one candidate in [1/6, 5/6] to begin 232

with, then as candidates are eliminated, at some point there 233

will only be one candidate x remaining in [1/6, 5/6]. Either x 234

will be the ultimate winner, or there will still be candidates 235

< 1/6 or > 5/6, in which case x will win as argued above. 236

Notice that the above argument still holds if we replace 237

1/6 and 5/6 with c and 1 ≠ c for any 0 < c Æ 1/6: it only 238

reduces the votes going towards candidates in [0, c). Thus, if 239

there is some candidate in [c, 1 ≠ c], then the IRV winner is in 240

[c, 1 ≠ c]. So, if there is no candidate in [1/6/, 5/6], then let c 241

be the distance between the most moderate candidate and its 242

closest edge. This candidate must be the IRV winner, since it 243

is the only candidate in [c, 1 ≠ c] (and c < 1/6). In this case, 244

the IRV winner is the most moderate candidate as claimed. 245

Finally, we show that no smaller interval satisfies the theo- 246

rem. To do so, we describe a construction that is parametrized 247

to handle any number of candidates k Ø 4. In the construc- 248

tion, there is one candidate at 1/2, two candidates at c and 249

1 ≠ c for c > 1/6, one candidate at 1 ≠ ‘, and all remaining 250

candidates in (1 ≠ ‘, 1]. First, all candidates right of 1 ≠ ‘ 251

will be eliminated. Then, the candidate at 1 ≠ ‘ will be 252

eliminated, since it has a smaller vote share than the three 253

candidates at c, 1/2, and 1 ≠ c (if we make ‘ much smaller 254

than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260

(c, 1 ≠ c). 261

262

In the language of our analysis, [1/6, 5/6] is then the small- 263

est possible exclusion zone of IRV under a uniform voter 264

distribution. See Figure 2 for a visual depiction of the argu- 265

ment. In contrast, plurality can elect extreme candidates over 266

moderates; for instance, consider placing k = 2h ≠ 1 candi- 267

dates at 1/h and i/2h for i = 3, . . . , h. With uniform voters, 268

every candidate gets at most 1/2h votes except the extreme 269

candidate at 1/h, who gets more than 1/h votes and wins. 270
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Fig. 1. Three example voter distributions in one dimension. Candidates A, B, C, D are positioned at 0.2, 0.3, 0.4, and 0.85. The black line shows the density function of the
voter distribution. Regions are colored according to the most preferred candidate of voters in that region. As an example, the preference ordering of a voter at 0.5 is C, B, A, D
(regardless of the voter distribution). Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example (left), C is both the plurality and IRV winner. In
the uniform voters example (center), D is the plurality winner and C is the IRV winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

Since we want to model the case of a large population of182
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instead think of a continuum of voters who correspond to184
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rule, the fraction of voters who vote for candidate xi is the186

probability mass of all voters who are closer to xi than to any187

other candidate (or, equivalently, it is the probability that a188

voter randomly chosen according F would be closer to xi than189

any other candidate). In this section, we focus on the case190

where F is uniform.‡ We use v(xi) to denote the vote share191

for candidate xi.192

We can specify the IRV rule using these vote shares v(xi).193

Under IRV, the candidate i with the smallest v(xi) is elimi-194

nated and vote counts are recomputed without candidate i.195

This repeats until only one candidate remains, who is declared196

the winner (equivalently, elimination can terminate when one197

candidate achieves a majority). In practice, voters submit a198

ranking over the candidates and their votes are “instantly”199

redistributed after each elimination.200

IRV’s moderating effect: A first result With uniform 1-Euclidean201

voters, we now show that IRV cannot elect extreme candidates202

over moderates—regardless of the distribution of candidates.203

That is, IRV exhibits an exclusion zone in the middle of the204
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the zone precludes outside extreme candidates from winning.206

The idea behind the proof is that as moderates get eliminated,207

the middle part of the interval becomes sparser, granting more208

votes to any remaining moderates. Extreme candidates near 0209

and 1 are then too far away to “squeeze out” the last remaining210

moderate. With uniform voters, the tipping point for extreme211

candidates being able to squeeze out moderates occurs when212

extreme candidates are at 1/6 and 5/6. Later in the paper,213

we present generalizations of this result for non-uniform voter214

distributions.215

Theorem 1. (Combinatorial moderation for uniform IRV.)216
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candidates k Ø 3, if there is a candidate in [1/6, 5/6], then218

the IRV winner is in [1/6, 5/6]. No smaller interval [c, 1 ≠ c],219

c > 1/6, has this property. If there are no candidates in220

[1/6, 5/6], then the IRV winner is the most moderate candidate.221

Proof. Suppose first there is only one candidate x œ [1/6, 5/6]222

and all other candidates are < 1/6 or > 5/6. Suppose without223

‡To provide another perspective on the uniform voter assumption, consider the following preference
assumption that also produces uniform 1-Euclidean preferences: voters are arbitrarily distributed,
but rank candidates according to how many voters are between them and each candidate. That is,
voters have 1-Euclidean preferences in the voter quantile space and are always uniformly distributed
over this space by definition. All of our uniform voter results hold in that setting as well, although
stated in terms of voter quantiles rather than absolute positions.
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than 1/2 ≠ c). At this point, the candidate at 1/2 has less 255

than 2(1/2 ≠ c)/2 = 1/2 ≠ c votes. Since c > 1/6, this is less 256

than 1/2 ≠ 1/6 = 1/3. Meanwhile, the candidates at c and 257

1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259

middle candidate is eliminated and the winner is outside of 260
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1 ≠ c have more than c + (1/2 ≠ c)/2 = 1/4 + c/2 votes. Since 258

c > 1/6, this is greater than 1/4 + 1/12 = 1/3. Thus the 259
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Beta-distributed voters



Plurality still elects arbitrarily extreme candidates

Theorem 8 (no combinatorial moderation for plurality)  
As long as the voter distribution is continuous and positive over , we can 
make an arbitrarily extreme candidate win by adding more candidates.

(0,1)



Plurality still elects arbitrarily extreme candidates

Theorem 8 (no combinatorial moderation for plurality)  
As long as the voter distribution is continuous and positive over , we can 
make an arbitrarily extreme candidate win by adding more candidates.

(0,1)

Open question: probabilistic moderation for plurality in general?



Moderation Takeaway:  
IRV provably has a moderating effect in a 

way plurality doesn’t 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