

0

Backgroun

The Moderating Effect of Instant Runoff Voting Kiran Tomlinson, Johan Ugander, and Jon Kleinberg

Does IRV elect more moderates than plurality?

IRV

Plurality

voters vote for their favorite; most votes wins

1-Euclidean preferences

voters and candidates in [0, 1], voters rank candidates by distance

Moderate voters *IRV* C, *plurality* C

Uniform voters *IRV* C, *plurality* D

eliminate candidate with fewest

first-place votes, last left wins

Moderate, extreme

close to 1/2, close to 0 or 1

Polarized voters *IRV* A, *plurality* D

Definitions

Voter distribution CDF F, PDF fCandidate count k

Exclusion zone

Interval $I \subset [0,1]$ such that the winner must be in I(if at least one candidate is in *I*)

Combinatorial moderating effect

if *I* is an exclusion zone for all *k*

Probabilistic moderating effect 🖌

if Pr(winner is in *I*) \rightarrow 1 as $k \rightarrow \infty$ when we draw candidates from F

Plurality winner polytopes, **k** =

Plurality, k = 32.5 2.0 1.5 · صّ_{1.0} 0.5 IRV, *k* = 3 2.0 1.5 ^{ايز} - 0.1 De 0.5 0.6 0.8 1.0 0.0 0.2 0.4

implies

Propositions 1 & 2. Exact winner distributions for plurality and IRV with uniform voters and candidates for k = 3. (Cross-sectional area of winner polytopes, piecewise quadratic.)

imulations

5

Uniform voters

Theorem 1. [1/6, 5/6] is an exclusion zone of IRV for all *k*, and the smallest one for all $k \geq 3$.

Theorem 2. No combinatorial moderation for plurality (i.e., no exclusion zones).

Theorem 3. No probabilistic moderation for plurality; winner distribution \rightarrow uniform as $k \rightarrow \infty$.

Theorem 4. Symmetric voters with CDF *F*. [c, 1 - c] is an exclusion zone of IRV if for all $x \in [c, 1/2]$, F([x + 1 - c]/2) - F([x + c]/2) > 1/3.

	Voters	IRV exclusion zone
Theorem 5.	<i>Moderate</i> (<i>f</i> inc. on [0, 1/2])	$[F^{-1}(1/6), F^{-1}(5/6)]$
Theorem 6.	<i>Polarized</i> (<i>f</i> dec. on [0, 1/2], <i>F</i> (1/4) < 1/3)	$[F^{-1}(1/3) - 1/4, 5/4 - F^{-1}(1/3)]$
Theorem 7.	<i>Hyper-polarized</i> (<i>f</i> dec. on [0, 1/2], <i>F</i> (1/4) > 1/3)	$[0, 2F^{-1}(1/3)] \cup [1 - 2F^{-1}(1/3), 1]$

Theorem 8. No combinatorial moderation for plurality for any F.

Non-uniform voters