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Choices and context effects



Discrete choices are everywhere
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Best Western University Inn

& Expedia

Black Friday / Cyber Monday Deals Now

Free Shuttle Transportation, Grab & Go Breakfast, WiFi & Parking. Pet friendly, Outdoor

Pool, Fitness Center. Sanitizing Daily
Breakfast included

3.9/5 Good (999 reviews)

Quality Inn Ithaca - University Area
Ithaca

Black Friday / Cyber Monday Deals Now

Complimentary Breakfast. Free Airport Shuttle, WiFi & parking. Close to
Ithaca College & Cornell University. Pets welcome.

Breakfast included

3.6/5 Good (694 reviews)

$63

per night
$71 total
Includes taxes & fees

Member Price available

$59

per night
$66 total
Includes taxes & fees

KDD Chocolate Flavored Milk 180ML
(18 PACK)

6 FlL Oz (Pack of 18)
57

$27°° ($0.26/FL O2)
Save $2.00 with coupon

prime FREE Delivery Thu, Jun 24

KDD Banana Flavored Milk 180ML (18  KDD Original Milk 180ML (18 PACK)
PACK) 2

6.33 Fl Oz (Pack of 18)
31

$279° ($4.60/0unce)

prime FREE Delivery Thu, Jun 24
$2799 ($0.26/F1 02)

Save $2.00 with coupon
prime FREE Delivery Thu, Jun 24

Hotel Ithaca

Ithaca

Member Price available

$94

per night
) $106 total
4.0/5 Very Good (842 reviews) Includes taxes & fees
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The classic model: logit

(McFadden, Frontiers in Econometrics 1973)

Assume item 1 has utility u; C
. exp(u;)
Pr(l ‘ C) L U, 1 1 0 5
(| C) .24 .03 .09 .64
Unique choice model satistying Pri | C)  Pr(i| C)

Independence of irrelevant alternatives (lI1A): -_— =
(Luce, Individual Choice Behavior 1959) PI’(] ‘ C ) PI‘(] ‘ C ,)
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Accurate models need to account for context effects

The choice set influences preferences.

Compromise Similarity

ep. 2,462,617 49.7%

Dem 2,374,519 47.9

Dem. 1,617,035 32.9%

Rep. 1,273,214 25.9

Rep. 980,454 20.0

Violations of llA:
Pr(i | C) , Pr(i | C")
Pr(j| C) Pr(j| C)

Recent contextual modeling

Chen & Joachims (KDD ‘16)
Ragain & Ugander (NeurlPS ’'16)
Seshadri et al. (ICML ‘19)
Bower & Balzano (ICML '20)
Rosenfeld et al. (ICML ’20)
Tomlinson & Benson (KDD ’'21)
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What if our data has heterogeneous preferences?

Each chooser ¢ has their own choice probabilities: Pr(i | a, C)

Question:
If we learn a model for Pr(i | ('), will this accurately reflect
average choice behavior =, Pr(i | a, C)?

— Not in general. You either need

chooser-independent preferences: Pr(i | a, C) = Pr(i | C)
or

chooser-independent choice sets: Pr(C) = Pr(C | a)

chooser-dependent preferences and chooser-dependent choice sets
— choice set confounding
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Option 1: inverse probability weighting (IPW)

Idea: rebalance data so that we have
chooser-independent choice sets: Pr(C) = Pr(C | a)

learn model from reweighed log-likelihood:

| B . S log Pry(i | C)
f(e, @) — Z(i,C,a)EQZ log Pr@(l ‘ C) —p f(@, QZ) e Z(i,c,a)eg Pr(C | xa)
N
. . . . . choice set
requires assumption on x_: choice set ignorability propensities

= “covariates fully capture choice set assignment”
y &ap J Need to learn Pr(C | x )

Guarantee

. . X 1 covariates for chooser a
Can learn a model as if choice sets o )

were uniformly random

13



Option 2: regression



Option 2: regression

Idea: model preference variation



Option 2: regression
Idea: model preference variation
Logit:

exp(u;)

szC €Xp(l/t])

Pr(i | C) =

14



Option 2: regression
Idea: model preference variation

Logit:

Pr(i | C) = — P

ZjEC €Xp(l/t])

Multinomial logit (MNL):

exp(u: + D
Pr(i | a,C) = Pl + Pix)

J

2 eXP(; + fix,)

14



Option 2: regression
Idea: model preference variation

Logit: Multinomial logit (MNL):
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Option 2: regression

Idea: model preference variation

Logit: Multinomial logit (MNL):
exp(u: expl(u; + D.x
Pr(i | O) = P py( g, 0) = SPUFT AN
szC eXp(l/l]) ZjEC eXp(uj + ﬂixa)
CDM =—» Multinomial COM (MCDM)

requires assumption on x : preference ignorability
= “covariates fully capture preferences”

Guarantee

If the model is correctly specified,
can learn true choice probabillities

Combine IPW and regression
— doubly robust

14
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Synthetic CDM data

counterfactuals: new instances not drawn from data distribution

Confounded Counterfactual
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Expedia hotel booking data

On Promotion _ Without IPW, importance of
Price > price Is exaggerated
Location Score ‘%
Review Score 5 Expedia covariates more
Star Rating > informative about choice
sets than preferences
On Promotion — IPW > regreSSiOn

Price

Location Score

Dataset log-likelihood:

Model Confounded IPW-adjusted
CL —339499 —7866353

uoISSa.1bay

Review Score

Star Rating

-2 -1 -3 —2 -1
Coefficient Coefficient

CML —338231 —783753
LCL —337154 —784770
MLCL —335986 —783928
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Clustering based on choice sets

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations |
Cluster users (e.g., spectral co-clustering),

users movies learn choice model per-cluster

“drama fans” % dramas  Much better than mixed logit!
(YOOCHOOSE online shopping data)

—249000 Spectral cluster logit
» s . —249500
comedy fans comedies 0000
= —250500

T

appeared In choice set
(from rec. sys., €.9.)

e,
@)
@)

I

[0
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< —251000

Log
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More things In the paper

The power of choice set confounding

THEOREM 2. Mixed logit with chooser-dependent choice sets is

powerful enough to express any system of choice probabilities.

Graphical intuition about ignorability assumptions

Duality between context effect models and models of choice set confounding
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Choice set confounding can mislead choice models

We can adjust for it using chooser covariates

Interested in context effect models?

See our other KDD 21 paper:
“Learning Interpretable Feature Context

Effects in Discrete Choice”

Future work

Learning choice set propensities
Other causal inference methods:
- Instrumental variables?
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