

Choice Set Confounding in Discrete Choice

Kiran Tomlinson PhD Student, Cornell

Code: <u>bit.ly/csc-kdd-code</u> Slides: bit.ly/csc-kdd-slides

with Johan Ugander & Austin R. Benson

Choices and context effects

2

Discrete choices are everywhere

amazon.com

Amazon's Choice

\$**27**⁹⁹ (\$0.26/Fl Oz) Save \$2.00 with coupon ✓prime FREE Delivery Thu, Jun 24 KDD Banana Flavored Milk 180ML (18 PACK) 6.33 Fl Oz (Pack of 18)

★★★★☆~31

\$**27**⁹⁹ (\$0.26/Fl Oz) Save \$2.00 with coupon **√prime** FREE Delivery **Thu, Jun 24**

KDD Original Milk 180ML (18 PACK) *****~2

^{\$}27⁹⁹ (\$4.60/Ounce) **√prime** FREE Delivery **Thu, Jun 24**

Best Western University Inn

lthaca

Black Friday / Cyber Monday Deals Now Free Shuttle Transportation, Grab & Go Breakfast, WiFi & Parking. Pet friendly, Outdoor Pool, Fitness Center. Sanitizing Daily

Breakfast included

3.9/5 Good (999 reviews)

lthaca

Black Friday / Cyber Monday Deals Now

Complimentary Breakfast. Free Airport Shuttle, WiFi & parking. Close to Ithaca College & Cornell University. Pets welcome.

Breakfast included

3.6/5 Good (694 reviews)

Hotel Ithaca

lthaca

4.0/5 Very Good (842 reviews)

\$63 per night \$71 total Includes taxes & fees Member Price available \$59 per night \$66 total Includes taxes & fees **\$94** per night \$106 total Includes taxes & fees

3

choice set

choice set

choice

(McFadden, Frontiers in Econometrics 1973)

(McFadden, Frontiers in Econometrics 1973)

Assume item i has utility ui

(McFadden, Frontiers in Econometrics 1973)

Assume item i has utility ui

(McFadden, *Frontiers in Econometrics* 1973)

Assume *item i* has *utility u*_i $\exp(u_i)$ $Pr(i \mid C)$

Unique choice model satisfying independence of irrelevant alternatives (IIA):

(Luce, Individual Choice Behavior 1959)

 $Pr(l \mid C)$ Pr(i $Pr(j \mid C) \quad Pr(j \mid C')$

617	49.7%
519	47.9

Raphael Warnock 🗸	Dem. 1,617,035 32.9%
Kelly Loeffler* 🗸	Rep. 1,273,214 25.9
Doug Collins	Rep. 980,454 20.0

617	49.7 %
519	47.9

The choice set influences preferences.

Raphael Warnock 🗸	Dem. 1,617,035 32.9%
Kelly Loeffler* 🗸	Rep. 1,273,214 25.9
Doug Collins	Rep. 980,454 20.0

Violations of IIA: $Pr(i \mid C)$ \neq $Pr(j \mid C)$ \neq $Pr(j \mid C)$ $Pr(j \mid C')$

617	49.7 %
519	47.9

49.7%

47.9

The choice set influences preferences.

Raphael Warnock 🗸	Dem. 1,617,035 32.9%
Kelly Loeffler* 🗸	Rep. 1,273,214 25.9
Doug Collins	Rep. 980,454 20.0

Violations of IIA: $Pr(i \mid C)$ \neq $Pr(j \mid C)$ \neq $Pr(j \mid C)$ \neq $Pr(j \mid C)$

Recent contextual modeling

Chen & Joachims (KDD '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19) Bower & Balzano (ICML '20) Rosenfeld et al. (ICML '20) Tomlinson & Benson (KDD '21)

6

Choice set confounding

Each chooser *a* has their own choice probabilities: Pr(i | a, C)

Each chooser *a* has their own choice probabilities: $Pr(i \mid a, C)$

Question:

If we learn a model for Pr(i | C), will this accurately reflect average choice behavior $\mathbb{E}_a Pr(i | a, C)$?

Each chooser a has their own choice probabilities: $Pr(i \mid a, C)$

Question:

If we learn a model for Pr(i | C), will this accurately reflect average choice behavior $\mathbb{E}_a Pr(i | a, C)$?

→ Not in general. You either need
chooser-independent preferences: Pr(i | a, C) = Pr(i | C) or
chooser-independent choice sets: Pr(C) = Pr(C | a)

Each chooser a has their own choice probabilities: $Pr(i \mid a, C)$

Question:

If we learn a model for $\Pr(i \mid C)$, will this accurately reflect average choice behavior $\mathbb{E}_a \Pr(i \mid a, C)$?

→ Not in general. You either need chooser-independent preferences: $Pr(i \mid a, C) = Pr(i \mid C)$ Or chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

chooser-dependent preferences and chooser-dependent choice sets → choice set confounding

Choice probabilities:

Choice probabilities:

Choice set assignment probabilities:

Choice probabilities:

Choice set assignment probabilities:

Choice probabilities:

Choice set assignment probabilities:

But...

Choice probabilities:

Choice set assignment probabilities:

Choice set confounding example

Choice probabilities:

Choice set assignment probabilities:

Context effect?

Choice set confounding example

Choice probabilities:

Choice set assignment probability

Context effect?

SFWork & SFShop

(Koppelman & Bhat, 2006)

San Francisco transportation data

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

Motorized - Private Auto Nest (Model 26W)

JA SKZ SKJT I KIN VULK DIK

(Koppelman & Bhat, 2006)

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

Motorized - Private Auto Nest (Model 26W)

JA SKZ SKJT I KIN VULK DIK

(Koppelman & Bhat, 2006)

Has regularity violations!

SF-WORK Choice set (C)	$\Pr(DA \mid C)$	N
{DA, SR 2, SR 3+, Transit}	0.72	1661
{DA, SR 2, SR 3+, Transit, Bike}	0.83	829

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

Motorized - Private Auto Nest (Model 26W)

JA SKZ SKJT I KIN VULK DIK

(Koppelman & Bhat, 2006)

Has regularity violations!

SF-WORK Choice set (C)	$\Pr(DA \mid C)$	N
{DA, SR 2, SR 3+, Transit}	0.72	1661
{DA, SR 2, SR 3+, Transit, Bike}	0.83	829

Context effects or choice set confounding?

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

Motorized - Private Auto Nest (Model 26W)

(Koppelman & Bhat, 2006)

Has regularity violations!

SF-WORK Choice set (C)	$\Pr(DA \mid C)$	N
{DA, SR 2, SR 3+, Transit}	0.72	1661
{DA, SR 2, SR 3+, Transit, Bike}	0.83	829

Context effects Or choice set confounding?

Comparison	Testing	Controlling	$\Delta \ell$	LRT p
SF-WORK				
Logit to MNL	covariates		883	$< 10^{-10}$
Logit to CDM	context	—	85	$< 10^{-10}$
CDM to MCDM	covariates	context	819	$< 10^{-10}$
MNL to MCDM	context	covariates	20	0.08
SF-SHOP				
Logit to MNL	covariates		343	$< 10^{-10}$
Logit to CDM	context		96	$< 10^{-10}$
CDM to MCDM	covariates	context	276	$< 10^{-10}$
MNL to MCDM	context	covariates	29	0.36

CDM: context effect model (Seshadri et al, 2019) 10

SFWork & SFShop (Koppelman & Bhat, 2006)

San Francisco transportation data

Used to test context effect models:

Koppelman & Bhat ('06) Benson et al. (WWW '16) Ragain & Ugander (NeurIPS '16) Seshadri et al. (ICML '19)

Motorized - Private Auto Nest (Model 26W)

(Koppelman & Bhat, 2006)

Has regularity violations!

SF-WORK Choice set (C)	$\Pr(DA \mid C)$	N
{DA, SR 2, SR 3+, Transit}	0.72	1661
{DA, SR 2, SR 3+, Transit, Bike}	0.83	829

Context effects

Or **★** choice set confounding?

Comparison	Testing	Controlling	$\Delta \ell$	LRT p
SF-WORK				
Logit to MNL	covariates		883	$< 10^{-10}$
Logit to CDM	context	—	85	$< 10^{-10}$
CDM to MCDM	covariates	context	819	$< 10^{-10}$
MNL to MCDM	context	covariates	20	0.08
SF-SHOP				
Logit to MNL	covariates	_	343	$< 10^{-10}$
Logit to CDM	context	—	96	$< 10^{-10}$
CDM to MCDM	covariates	context	276	$< 10^{-10}$
MNL to MCDM	context	covariates	29	0.36

CDM: context effect model (Seshadri et al, 2019) 10

This is a causal inference problem

Causal inference methods

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

 $\ell(\theta; \mathcal{D}) = \sum_{(i,C,a) \in \mathcal{D}} \log \Pr_{\theta}(i \mid C)$

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

Need to learn $\Pr(C \mid x_{a})$

 $(x_{a}: covariates for chooser a)$

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

requires assumption on x_{a} : choice set ignorability

Need to learn $Pr(C \mid x_{a})$

 $(x_{a}: covariates for chooser a)$

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

requires assumption on x_{a} : choice set ignorability = "covariates fully capture choice set assignment"

 $(x_{a}: covariates for chooser a)$

Idea: rebalance data so that we have chooser-independent choice sets: $Pr(C) = Pr(C \mid a)$

learn model from reweighed log-likelihood:

requires assumption on x_{a} : choice set ignorability

= "covariates fully capture choice set assignment"

Guarantee

Can learn a model as if choice sets were uniformly random

 $(X_{\alpha}: covariates for chooser \alpha)$

Idea: model preference variation

Idea: model preference variation

Logit: $Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{j \in C} \exp(u_j)}$

Idea: model preference variation

Logit:

Multinomial logit (MNL): $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{j \in C} \exp(u_j)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{j \in C} \exp(u_j + \beta_i x_a)}$

Idea: model preference variation

Logit:

Multinomial logit (MNL): $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{j \in C} \exp(u_j)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{j \in C} \exp(u_j + \beta_i x_a)}$ CDM — Multinomial CDM (MCDM)

Idea: model preference variation

Logit: $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{i \in C} \exp(u_i)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{i \in C} \exp(u_i + \beta_i x_a)}$

requires assumption on χ_{a} : preference ignorability

Multinomial logit (MNL): CDM — Multinomial CDM (MCDM)

Idea: model preference variation

Logit: $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{i \in C} \exp(u_j)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{i \in C} \exp(u_i + \beta_i x_a)}$ CDM — Multinomial CDM (MCDM)

requires assumption on x_{a} : preference ignorability = "covariates fully capture **preferences**"

Multinomial logit (MNL):

Idea: model preference variation

Logit:

requires assumption on x_{a} : preference ignorability

= "covariates fully capture **preferences**"

Guarantee

If the model is correctly specified, can learn true choice probabilities

Multinomial logit (MNL):

 $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{i \in C} \exp(u_j)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{i \in C} \exp(u_i + \beta_i x_a)}$ CDM — Multinomial CDM (MCDM)

Idea: model preference variation

Logit:

requires assumption on x_{a} : preference ignorability

= "covariates fully capture **preferences**"

Guarantee

If the model is correctly specified, can learn true choice probabilities

Multinomial logit (MNL):

 $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{i \in C} \exp(u_i)} \longrightarrow \Pr(i \mid a, C) = \frac{\exp(u_i + \beta_i x_a)}{\sum_{i \in C} \exp(u_i + \beta_i x_a)}$

CDM — Multinomial CDM (MCDM)

Combine IPW and regression \rightarrow doubly robust

Causal inference results

counterfactuals: new instances not drawn from data distribution

counterfactuals: new instances not drawn from data distribution

counterfactuals: new instances not drawn from data distribution

IPW & regression

(a) improve counterfactual prediction

(b) prevent overconfidence on confounded data

Expedia hotel booking data

Expedia hotel booking data

Expedia hotel booking data

No Regression Regression

Without IPW, importance of price is exaggerated

Expedia hotel booking data

No Regression Regressior

Without IPW, importance of price is exaggerated

Expedia covariates more informative about choice sets than preferences → IPW > regression

Expedia hotel booking data

No Regression Regression

Without IPW, importance of price is exaggerated

Expedia covariates more informative about choice sets than preferences \rightarrow IPW > regression

Dataset log-likelihood:

Model	Confounded	IPW-adjusted
CL	-839499	-786653
CML	-838281	-785753
LCL	-837154	-784770
MLCL	-835986	-783928

Managing without covariates

Idea: take advantage of the correlation between choice sets and preferences

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

users movies

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

users movies

appeared in choice set (from rec. sys., e.g.)

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

users movies

dramas

appeared in choice set (from rec. sys., e.g.)

Example: movie recommendations

movies users

dramas

comedies

appeared in choice set (from rec. sys., e.g.)

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

movies users

"drama fans"

dramas

comedies

appeared in choice set (from rec. sys., e.g.)

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

movies users

"drama fans"

dramas

"comedy fans"

comedies

appeared in choice set (from rec. sys., e.g.)

Idea: take advantage of the correlation between choice sets and preferences

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

movies users

"drama fans"

dramas

"comedy fans"

comedies

appeared in choice set (from rec. sys., e.g.)

Cluster users (e.g., spectral co-clustering), learn choice model per-cluster (Dhillon, 2001)

Idea: take advantage of the correlation between choice sets and preferences

Example: movie recommendations

movies users

"drama fans"

dramas

"comedy fans"

comedies

appeared in choice set (from rec. sys., e.g.)

Cluster users (e.g., spectral co-clustering), learn choice model per-cluster (Dhillon, 2001)

Much better than mixed logit! (YOOCHOOSE online shopping data)

(RecSys, 2015)

The power of choice set confounding

THEOREM 2. Mixed logit with chooser-dependent choice sets is powerful enough to express any system of choice probabilities.

The power of choice set confounding

THEOREM 2. Mixed logit with chooser-dependent choice sets is powerful enough to express any system of choice probabilities.

Graphical intuition about ignorability assumptions

The power of choice set confounding

THEOREM 2. Mixed logit with chooser-dependent choice sets is powerful enough to express any system of choice probabilities.

Graphical intuition about ignorability assumptions

Duality between context effect models and models of choice set confounding

Concluding thoughts

Key takeaways Choice set confounding can mislead choice models We can adjust for it using chooser covariates

Future work

Learning choice set propensities Other causal inference methods: - instrumental variables? - matching?

Thank you!

More questions or ideas? Email me: kt@cs.cornell.edu

@kiran_tomlinson

Code: <u>bit.ly/csc-kdd-code</u> Slides: bit.ly/csc-kdd-slides

Interested in context effect models? See our other KDD '21 paper: "Learning Interpretable Feature Context Effects in Discrete Choice"

Submit to our NeurIPS '21 workshop! bit.ly/WHMD2021

Acknowledgments

Funding from NSF, ARO, Koret Foundation, JP Morgan Chase

