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Abstract
The way that people make choices or exhibit pref-
erences can be strongly affected by the set of avail-
able alternatives, often called the choice set. Fur-
thermore, there are usually heterogeneous prefer-
ences, either at an individual level within small
groups or within sub-populations of large groups.
Given the availability of choice data, there are
now many models that capture this behavior in or-
der to make effective predictions—however, there
is little work in understanding how directly chang-
ing the choice set can be used to influence the
preferences of a collection of decision-makers.
Here, we use discrete choice modeling to develop
an optimization framework of such interventions
for several problems of group influence, namely
maximizing agreement or disagreement and pro-
moting a particular choice. We show that these
problems are NP-hard in general, but imposing
restrictions reveals a fundamental boundary: pro-
moting a choice can be easier than encouraging
consensus or sowing discord. We design approxi-
mation algorithms for the hard problems and show
that they work well on real-world choice data.

1. Context effects and optimizing choice sets
Choosing from a set of alternatives is one of the most impor-
tant actions people take, and choices determine the compo-
sition of governments, the success of corporations, and the
formation of social connections. For these reasons, choice
models have received significant attention in the fields of
economics (Train, 2009), psychology (Tversky & Kahne-
man, 1981), and, as human-generated data has become in-
creasingly available online, computer science (Overgoor
et al., 2019; Seshadri et al., 2019; Rosenfeld et al., 2020). In
many cases, it is important that people have heterogeneous
preferences; for example, people living in different parts of
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a town might prefer different government policies.

Much of the computational work on choice has been devoted
to fitting models for predicting future choices. In addition to
prediction, another area of interest is determining effective
interventions to influence choice—advertising and political
campaigning are prime examples. In heterogeneous groups,
the goal might be to encourage consensus (Amir et al., 2015),
or, for an ill-intentioned adversary, to sow discord, e.g.,
amongst political parties (Rosenberg et al., 2020).

One particular method of influence is introducing new alter-
natives or options. While early economic models assume
that alternatives are irrelevant to the relative ranking of op-
tions (Luce, 1959; McFadden, 1974), experimental work has
consistently found that new alternatives have strong effects
on our choices (Huber et al., 1982; Simonson & Tversky,
1992; Shafir et al., 1993; Trueblood et al., 2013). These
effects are often called context effects or choice set effects.
A well-known example is the compromise effect (Simonson,
1989), which describes how people often prefer a middle
ground (e.g., the middle-priced wine). Direct measurements
on choice data have also revealed choice set effects in sev-
eral domains (Benson et al., 2016; Seshadri et al., 2019).

Here, we pose adding new alternatives as a discrete opti-
mization problem for influencing a collection of decision
makers, such as the inhabitants of a city or the visitors to a
website. To this end, we consider various models for how
someone makes a choice from a given set of alternatives,
where the model parameters can be readily estimated from
data. In our setup, everyone has a base set of alternatives
from which they make a choice, and the goal is to find a set
of additional alternatives to optimize some function of the
group’s joint preferences on the base set. We specifically an-
alyze three objectives: (i) agreement in preferences amongst
the group; (ii) disagreement in preferences amongst the
group; and (iii) promotion of a particular item (decision).

We use the framework of discrete choice (Train, 2009) to
probabilistically model a person’s choice from a given set of
items, called the choice set. These models are parameterized
for individual preferences, and when fitting parameters from
data, preferences are commonly aggregated at the level of a
sub-population of individuals. Discrete choice models such
as the multinomial logit and elimination-by-aspects have
played a central role in behavioral economics for several
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decades with diverse applications, including forest manage-
ment (Hanley et al., 1998), social networks formation (Over-
goor et al., 2019), and marketing campaigns (Fader & McAl-
ister, 1990). More recently, new choice data and algo-
rithms have spurred machine learning research on models
for choice set effects (Ragain & Ugander, 2016; Chierichetti
et al., 2018b; Seshadri et al., 2019; Pfannschmidt et al.,
2019; Rosenfeld et al., 2020; Bower & Balzano, 2020).

We provide the relevant background on discrete choice mod-
els in Section 2. From this, we formally define and ana-
lyze three choice set optimization problems—AGREEMENT,
DISAGREEMENT, and PROMOTION—and analyze them un-
der four discrete choice models: multinomial logit (McFad-
den, 1974), the context dependent random utility model (Se-
shadri et al., 2019), nested logit (McFadden, 1978), and
elimination-by-aspects (Tversky, 1972). We first prove that
the choice set optimization problems are NP-hard in general
for these models. After, we identify natural restrictions of
the problems under which they become tractable. These
restrictions reveal a fundamental boundary: promoting a
particular item within a group is easier than minimizing or
maximizing consensus. More specifically, we show that re-
stricting the choice models can make PROMOTION tractable
while leaving AGREEMENT and DISAGREEMENT NP-hard,
indicating that the interaction between individuals intro-
duces significant complexity to choice set optimization.

After this, we provide efficient approximation algorithms
with guarantees for all three problems under several choice
models, and we validate our algorithms on choice data.
Model parameters are learned for different types of individ-
uals based on features (e.g., where someone lives). From
these learned models, we apply our algorithms to optimize
group-level preferences. Our algorithms outperform a natu-
ral baseline on real-world data coming from transportation
choices, insurance policy purchases, and online shopping.

1.1. Related work

Our work fits within recent interest from computer science
and machine learning on discrete choice models in general
and choice set effects in particular. For example, choice
set effects abundant in online data has led to richer data
models (Ieong et al., 2012; Chen & Joachims, 2016; Ra-
gain & Ugander, 2016; Seshadri et al., 2019; Makhijani &
Ugander, 2019; Rosenfeld et al., 2020; Bower & Balzano,
2020), new methods for testing the presence of choice set
effects (Benson et al., 2016; Seshadri et al., 2019; Seshadri
& Ugander, 2019), and new learning algorithms (Kleinberg
et al., 2017; Chierichetti et al., 2018b). More broadly, there
are efforts on learning algorithms for multinomial logit mix-
tures (Oh & Shah, 2014; Ammar et al., 2014; Kallus & Udell,
2016; Zhao & Xia, 2019), Plackett-Luce models (Maystre
& Grossglauser, 2015; Zhao et al., 2016), and other random

utility models (Oh et al., 2015; Chierichetti et al., 2018a;
Benson et al., 2018).

One of our optimization problems is maximizing group
agreement by introducing new alternatives. This is mo-
tivated in part by how additional context can sway opin-
ion on controversial topics (Munson et al., 2013; Liao &
Fu, 2014; Graells-Garrido et al., 2014). There are also
related algorithms for decreasing polarization in social net-
works (Garimella et al., 2017; Matakos et al., 2017; Chen
et al., 2018; Musco et al., 2018), although we have no ex-
plicit network and adopt a choice-theoretic framework.

Our choice set optimization framework is similar to assort-
ment optimization in operations research, where the goal
is find the optimal set of products to offer in order to maxi-
mize revenue (Talluri & Van Ryzin, 2004). Discrete choice
models are extensively used in this line of research, includ-
ing the multinomial logit (Rusmevichientong et al., 2010;
2014) and nested logit (Gallego & Topaloglu, 2014; Davis
et al., 2014) models. We instead focus our attention primar-
ily on optimizing agreement among individuals, which has
not been explored in traditional revenue-focused assortment
optimization.

Finally, our problems relate to group decision-making. In
psychology, introducing new shared information is critical
for group decisions (Stasser & Titus, 1985; Lu et al., 2012).
In computer science, the complexity of group Bayesian
reasoning is a concern (Hązła et al., 2017; 2019).

2. Background and preliminaries
We first introduce the discrete choice models that we analyze.
In the setting we explore, one or more individuals make a
(possibly random) choice of a single item (or alternative)
from a finite set of items called a choice set. We use U
to denote the universe of items and C ⊆ U the choice set.
Thus, given C, an individual chooses some item x ∈ C.

Given C, a discrete choice model provides a probability
for choosing each item x ∈ C. We analyze four broad
discrete choice models that are all random utility models
(RUMs), which derive from economic rationality. In a RUM,
an individual observes a random utility for each item x ∈
C and then chooses the one with the largest utility. We
model each individual’s choices through the same RUM
but with possibly different parameters to capture preference
heterogeneity. In this sense, we have a mixture model.

Choice data typically contains many observations from vari-
ous choice sets. We occasionally have data specific enough
to model the choices of a particular individual, but often only
one choice is recorded per person, making accurate pref-
erence learning impossible at that scale. Thus, we instead
model the heterogeneous preferences of sub-populations
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or categories of individuals. For convenience, we still use
“individual” or “person” when referring to components of a
mixed population, since we can treat each component as a
decision-making agent with its own preferences. In contrast,
we use the term “group” to refer to the entire population.
We use A to denote the set of individuals (in the broad sense
above), and a ∈ A indexes model parameters.

The parameters of the RUMs we analyze can be inferred
from data, and our theoretical results and algorithms assume
that we have learned these parameters. Our analysis focuses
on how the probability of selecting an item x from a choice
set C changes as we add new alternative items from C =
U \ C to the choice set.

We let n = |A|, k = |C|, and m = |C| for notation. We
mostly use n = 2, which is sufficient for hardness proofs.

Multinomial logit (MNL). The multinomial logit (MNL)
model (McFadden, 1974) is the workhorse of discrete choice
theory. In MNL, an individual a’s preferences are encoded
by a true utility ua(x) for every item x ∈ U . The observa-
tions are noisy random utilities ũa(x) = ua(x)+ε, where ε
follows a Gumbel distribution. Under this model, the proba-
bility that individual a picks item x from choice set C (i.e.,
x = argmaxy∈C ũa(y)) is the softmax over item utilities:

Pr(a← x | C) = eua(x)∑
y∈C e

ua(y) . (1)

We use the term exp-utility for terms like eua(x). The utility
of an item is often parameterized as a function of features of
the item in order to generalize to unseen data. For example,
a linear function is an additive utility model (Tversky &
Simonson, 1993) and looks like logistic regression. In our
analysis, we work directly with the utilities.

The MNL satisfies independence of irrelevant alternatives
(IIA) (Luce, 1959), the property that for any two choice
sets C,D and two items x, y ∈ C ∩ D: Pr(a←x|C)

Pr(a←y|C) =
Pr(a←x|D)
Pr(a←y|D) . In other words, the choice set has no effect on
a’s relative probability of choosing x or y.1 Although IIA is
intuitively pleasing, behavioral experiments show that it is
often violated in practice (Huber et al., 1982; Simonson &
Tversky, 1992). Thus, there are many models that account
for IIA violations, including the other ones we analyze.

Context-dependent random utility model (CDM). The
CDM (Seshadri et al., 2019) is an extension of MNL that
can model IIA violations. The core idea is to approximate
choice set effects by the effect of each item’s presence on the
utilities of the other items. For instance, a diner’s preference
for a ribeye steak may decrease relative to a fish option if
filet mignon is also available. Formally, each item z exerts

1Over a ∈ A, we have a mixed logit which does not have to
satisfy IIA (McFadden & Train, 2000). Here, we are interested in
the IIA property at the individual level.

a pull on a’s utility from x, which we denote pa(z, x). The
CDM then resembles the MNL with utilities ua(x | C) =
ua(x) +

∑
z∈C pa(z, x). This leads to choice probabilities

that are a softmax over the context-dependent utilities:

Pr(a← x | C) = eua(x|C)∑
y∈C e

ua(y|C) . (2)

Nested logit (NL). The nested logit (NL) model (McFad-
den, 1978) instead accounts for choice set effects by group-
ing similar items into nests that people choose between
successively. For example, a diner may first choose between
a vegetarian, fish, or steak meal and then select a particular
dish. NL can be derived by introducing correlation between
the random utility noise ε in MNL; here, we instead consider
a generalized tree-based version of the model.2

The (generalized) NL model for an individual a consists of
a tree Ta with a leaf for each item in U , where the internal
nodes represent categories of items. Rather than having a
utility only on items, each person a also has utilities ua(v)
on all nodes v ∈ Ta (except the root). Given a choice set
C, let Ta(C) be the subtree of Ta induced by C and all
ancestors of C. To choose an item from C, a starts at the
root and repeatedly picks between the children of the current
node according to the MNL model until reaching a leaf.

Elimination-by-aspects (EBA). While the previous mod-
els are based on MNL, the elimination-by-aspects (EBA)
model (Tversky, 1972) has a different structure. In EBA,
each item x has a set of aspects x′ representing properties
of the item, and person a has a utility ua(χ) > 0 on each
aspect χ. An item is chosen by repeatedly picking an aspect
with probability proportional to its utility and eliminating all
items that do not have that aspect until only one item remains
(or, if all remaining items have the same aspects, the choice
is made uniformly at random). For example, a diner may
first eliminate items that are too expensive, then disregard
meat options, and finally look for dishes with pasta before
choosing mushroom ravioli. Formally, let C ′ =

⋃
x∈C x

′

be the set of aspects of items in C and let C0 =
⋂
x∈C x

′

be the aspects shared by all items in C. Additionally, let
Cχ = {x ∈ C | χ ∈ x′}. The probability that individual a
picks item x from choice set C is recursively defined as

Pr(a← x | C) =
∑
χ∈x′\C0 ua(χ) Pr(a←x|Cχ)∑

ψ∈C′\C0 ua(ψ)
. (3)

If all remaining items have the same aspects (C ′ = C0), the
denominator is zero, and Pr(a← x | C) = 1

|C| in that case.

Encoding MNLs in other models. Although the three
models with context effects appear quite different, they all
subsume the MNL model. Thus, if we prove a problem hard
under MNL, then it is hard under all four models.

2Certain parameter regimes in this generalized model do not
correspond to RUMs (Train, 2009), but this model is easier to
analyze and captures the salient structure.
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Lemma 1. The MNL model is a special case of the CDM,
NL, and EBA models.

Proof. LetM be an MNL model. For the CDM, use the
utilities fromM and set all pulls to 0. For NL, make all
items children of Ta’s root and use the utilities from M.
Lastly, for EBA, assign a unique aspect χx to each item x ∈
U with utility ua(χx) = eua(x). Following (3), Pr(a← x |
C) =

ua(χx) Pr(a←x|Cχx )∑
ψ∈C′\C0 ua(ψ)

. Since Cχx = {x}, Pr(a ← x |
Cχx) = 1 and thus Pr(a ← x | C) ∝ ua(χx) = eua(x),
matching the MNLM.

3. Choice set optimization problems
By introducing new alternatives to the choice set C, we
can modify the relationships amongst individual prefer-
ences, resulting in different dynamics at the collective level.
Similar ideas are well-studied in voting models, e.g., intro-
ducing alternatives to change winners selected by Borda
count (Easley & Kleinberg, 2010). Here, we study how
to optimize choice sets for various group-level objectives,
measured in terms of individual choice probabilities coming
from discrete choice models.

Agreement and Disagreement. Since we are modeling
the preferences of a collection of decision-makers, one im-
portant metric is the amount of disagreement (conversely,
agreement) about which item to select. Given a set of al-
ternatives Z ⊆ C we might introduce, we quantify the
disagreement this would induce as the sum of all pairwise
differences between individual choice probabilities over C:

D(Z) =
∑

{a,b}⊆A,x∈C

|Pr(a← x | C ∪ Z)− Pr(b← x | C ∪ Z)|.

(4)

Here, we care about the disagreement on the original choice
set C that results from preferences over the new choice set
C ∪ Z. In this setup, C could represent core options (e.g.,
two major health care policies under deliberation) and Z
additional alternatives designed to sway opinions.

Concretely, we study the following problem: given A,C,C,
and a choice model, minimize (or maximize) D(Z) over
Z ⊆ C. We call the minimization problem AGREEMENT
and the maximization problem DISAGREEMENT. AGREE-
MENT has applications in encouraging consensus, while
DISAGREEMENT yields insight into how susceptible a group
may be to an adversary who wishes to increase conflict. An-
other potential application for DISAGREEMENT is to enrich
the diversity of preferences present in a group.

Promotion. Promoting an item is another natural objective,
which is of considerable interest in online advertising and
content recommendation. Given A,C,C, a choice model,
and a target item x∗ ∈ C, the PROMOTION problem is

to find the set of alternatives Z ⊆ C whose introduction
maximizes the number of individuals whose “favorite” item
in C is x∗. Formally, this means maximizing the number
of individuals a ∈ A for whom Pr(a ← x∗ | C ∪ Z) >
Pr(a ← x | C ∪ Z), x ∈ C, x 6= x∗. This also has
applications in voting, where questions about the influence
of new candidates constantly arise.

One of our contributions in this paper is showing that pro-
motion can be easier (in a computational complexity sense)
than agreement or disagreement optimization.

4. Hardness results
We now characterize the computational complexity of
AGREEMENT, DISAGREEMENT, and PROMOTION under
the four discrete choice models. We first show that AGREE-
MENT and DISAGREEMENT are NP-hard under all four
models and that PROMOTION is NP-hard under the three
models with context effects. After, we prove that imposing
additional restrictions on these discrete choice models can
make PROMOTION tractable while leaving AGREEMENT
and DISAGREEMENT NP-hard. The parameters of some
choice models have extra degrees of freedom, e.g., MNL
has additive-shift-invariant utilities. For inference, we use a
standard form (e.g., sum of utilities equals zero). For ease of
analysis, we do not use such standard forms, but the choice
probabilities remain unambiguous.

4.1. AGREEMENT

Although the MNL model does not have any context effects,
introducing alternatives to the choice set can still affect the
relative preferences of two different individuals. In partic-
ular, introducing alternatives can impact disagreement in a
sufficiently complex way to make identifying the optimal
set of alternatives computationally hard. Our proof of Theo-
rem 1 uses a very simple MNL in the reduction, with only
two individuals and two items in C, where the two individu-
als have exactly the same utilities on alternatives. In other
words, even when individuals agree about new alternatives,
encouraging them to agree over the choice set is hard.

Theorem 1. In the MNL model, AGREEMENT is NP-hard,
even with just two items in C and two individuals that have
identical utilities on items in C.

Proof. By reduction from PARTITION, an NP-complete
problem (Karp, 1972). Let S be the set of integers we wish
to partition into two subsets with equal sum. We construct an
instance of DISAGREEMENT with A = {a, b}, C = {x, y},
C = S (abusing notation to identify alternatives with the
PARTITION integers). Let t = 1

2

∑
z∈S z. Define the util-

ities as: ua(x) = log t, ub(x) = log 3t, ua(y) = log t,
ub(y) = log 2t, and ua(z) = ub(z) = log z for all z ∈ C.
The disagreement induced by a set of alternatives Z ⊆ C is
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characterized by its sum of exp-utility sZ =
∑
z∈Z z:

D(Z) =
∣∣ t
2t+sZ

− 3t
5t+sZ

∣∣+ ∣∣ t
2t+sZ

− 2t
5t+sZ

∣∣.
The total exp-utility of all items in C is 2t. On the interval
[0, 2t], D(Z) is minimized at sZ = t (Appendix A.1; Fig. 4,
left). Thus, if we could efficiently find the set Z minimizing
D(Z), then we could efficiently solve PARTITION.

From Lemma 1, the other models we consider can all encode
any MNL instance, which leads to the following corollary.

Corollary 1. AGREEMENT is NP-hard in the CDM, NL,
and EBA models.

4.2. DISAGREEMENT

Using a similar strategy, we can construct an MNL instance
whose disagreement is maximized rather than minimized
at a particular target value (Theorem 2). The reduction
requires an even simpler MNL setup.

Theorem 2. In the MNL model, DISAGREEMENT is NP-
hard, even with just one item in C and two individuals that
have identical utilities on items in C.

Proof. By reduction from SUBSET SUM (Karp, 1972). Let
S be a set of positive integers with target t. Let A = {a, b},
C = {x}, C = S, with utilities: ua(x) = log 2t, ub(x) =
log t/2, and ua(z) = ub(z) = log z for all z ∈ C. Letting
sZ =

∑
z∈Z z, including Z ⊆ C makes the disagreement

D(Z) =
∣∣ 2t
2t+sZ

− t/2
t/2+sZ

∣∣.
For sZ ≥ 0, D(Z) is maximized at sZ = t (Appendix A.1;
Fig. 4, right). Thus, if we could efficiently maximize D(Z),
then we could efficiently solve SUBSET SUM.

By Lemma 1, we again have the following corollary.

Corollary 2. DISAGREEMENT is NP-hard in the CDM, NL,
and EBA models.

4.3. PROMOTION

In choice models with no context effects, PROMOTION has
a constant-time solution: under IIA, the presence of alterna-
tives has no effect on an individual’s relative preference for
items in C. However, PROMOTION is more interesting with
context effects, and we show that it is NP-hard for CDM,
NL, and EBA. In Section 4.4, we will show that restric-
tions of these models make PROMOTION tractable but keep
AGREEMENT and DISAGREEMENT hard.

Theorem 3. In the CDM model, PROMOTION is NP-hard,
even with just one individual and three items in C.

Proof. By reduction from SUBSET SUM. Let set S with
target t be an instance of SUBSET SUM. Let A = {a},
C = {x∗, w, y}, C = S. Using tuples interpreted entry-
wise for brevity, suppose that we have the following utilities:

ua(〈x∗, w, y〉 | C) = 〈1, t,−t〉, ua(z) = −∞ for all z ∈
C, and pa(z, 〈x∗, w, y〉) = 〈z, 0, 2z〉 for all z ∈ C. We
wish to promote x∗. Let sZ =

∑
z∈Z z. When we include

the alternatives in Z, x∗ is the item in C most likely to be
chosen if and only if 1 + sZ > t and 1 + sZ > −t+ 2sZ .
Since sZ and t are integers, this is only possible if sZ = t.
Thus, if we could efficiently promote x∗, then we could
efficiently solve SUBSET SUM.

We use the same Goldilocks strategy in our proofs for the
NL and EBA models (details in Appendix A): by carefully
defining utilities, we create choice instances where the op-
timal promotion solution is to pick just the right quantity
of alternatives to increase preference for one item without
overshooting. However, the NL model has a novel challenge
compared to the CDM. With CDM, alternatives can increase
the choice probability of an item in C, but in the NL, new
alternatives only lower choice probabilities.

Theorem 4. In the NL model, PROMOTION is NP-hard,
even with just two individuals and two items in C.

This construction relies on the two individuals having dif-
ferent tree structures. We will see in Section 4.4 that this
is a necessary condition for the hardness of PROMOTION.
Finally, we have the following hardness result for EBA.

Theorem 5. In the EBA model, PROMOTION is NP-hard,
even with just two individuals and two items in C.

4.4. Restricted models that make promotion easier

We now show that, in some sense, PROMOTION is a funda-
mentally easier problem than AGREEMENT or DISAGREE-
MENT. Specifically, there are simple restrictions on CDM,
NL, and EBA that make PROMOTION tractable but leave
AGREEMENT and DISAGREEMENT NP-hard. Importantly,
these restrictions still allow for choice set effects. In
Appendix B, we also prove a strong restriction on the
MNL model where AGREEMENT and DISAGREEMENT are
tractable, but we could not find meaningful restrictions for
similar results on the other models.

2-item CDM with equal context effects. The proof of
Theorem 3 shows that PROMOTION is hard with only a sin-
gle individual and three items in C. However, if C only
has two items and context effects are the same (i.e., pa(z, ·)
is the same for all z ∈ C), then PROMOTION is tractable.
The optimal solution is to include all alternatives that in-
crease utility for x∗ more than the other item, as doing so
makes strict progress on promoting x∗. If individuals have
different context effects or if there are more than two items,
then there can be conflicts between which items should be
included (see Appendix A.2 for a proof that 2-item CDM
with unequal context effects makes PROMOTION NP-hard).
Although this restriction makes PROMOTION tractable, it
leaves AGREEMENT and DISAGREEMENT NP-hard: the
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Algorithm 1 ε-additive approximation for AGREEMENT in
the MNL model.

1 Input: n individuals A, k items C, m alternatives C,
utilities ua(·) > 0 for each a ∈ A. For brevity:

2 eax ← eua(x), sa ←
∑
z∈C eaz , δ ← ε/(2km

(
n
2

)
)

3 L0 ← empty n-dimensional array whose ath dimension
has size 1+blog1+δ sac (each cell can store a setZ ⊆ C
and its n exp-utility sums for each individual)

4 Initialize L0[0, . . . , 0]← (∅, 0, . . . , 0) (n zeros)
5 for i = 1 to m do
6 z ← C[i− 1], Li ← Li−1
7 for each cell of Li−1 containing (Z, t1, . . . , tn) do
8 h← n-tuple w/ entries blog1+δ(tj + eajz)c, ∀j
9 if Li[h] is empty then

10 Li[h]← (Z∪{z}, t1+ea1z, . . . , tn+eanz)
11 Zm ← collection of all sets Z in cells of Lm
12 return argminZ∈Zm D(Z) (see Eq. (4))

proofs of Theorems 1 and 2 can be interpreted as 2-item and
1-item CDMs with equal (zero) context effects.

Same-tree NL. If we require that all individuals share the
same NL tree structure, but still allow different utilities,
then promotion becomes tractable. For each z ∈ C, we can
determine whether it reduces the relative choice probability
of x∗ based on its position in the tree: adding z decreases
the relative choice probability of x∗ if and only if z is a
sibling of any ancestor of x∗ (including x∗) or if it causes
such a sibling to be added to Ta(C). Thus, the solution to
PROMOTION is to include all z not in those positions, which
is a polynomial-time check. This restriction leaves AGREE-
MENT and DISAGREEMENT NP-hard via Theorems 1 and 2
as we can still encode any MNL model in a same-tree NL
using the tree in which all items are children of the root.

Disjoint-aspect EBA. The following condition on aspects
makes promoting x∗ tractable: for all z ∈ C, either
z′ ∩ x∗′ = ∅ or z′ ∩ y′ = ∅ for all y ∈ C, y 6= x∗. That is,
alternatives either share no aspects with x∗ or share no as-
pects with other items in C. This prevents alternatives from
cannibalizing from both x∗ and its competitors. To promote
x∗, we include all alternatives that share aspects with com-
petitors of x∗ but not x∗ itself, which strictly promotes x∗.
This condition is slightly weaker than requiring all items to
have disjoint aspects, which reduces to MNL. However, this
condition is again not sufficient to make AGREEMENT and
DISAGREEMENT tractable, since any MNL model can be
encoded in a disjoint-aspect EBA instance.

5. Approximation algorithms
Thus far, we have seen that several interesting group
decision-making problems are NP-hard across standard dis-
crete choice models. Here, we provide a positive result:
we can compute arbitrarily good approximate solutions to

∅ {F}

{F,�
}{�}

Alice

Bob

Carla

Figure 1. Example of the structure Li used in Algorithm 1 for
n = 3 individuals and C = {F,�}. Here, Alice has high utility
forF and low utility for�, Bob has medium utility forF and low
utility for �, and Carla has low utility forF and high utility for �.
The exp-utility sums stored in cells are omitted.

many instances of these problems in polynomial time. We
focus our analysis on Algorithm 1, which is an ε-additive
approximation algorithm to AGREEMENT under MNL, with
runtime polynomial in k, m, and 1

ε , but exponential in n
(recall that k = |C|, m = |C|, and n = |A|). In contrast,
brute force (testing every set of alternatives) is exponential
in m and polynomial in k and n. AGREEMENT is NP-hard
even with n = 2 (Theorem 1), so our algorithm provides
a substantial efficiency improvement. We discuss how to
extend this algorithm to other objectives and other choice
models later in the section. Finally, we present a faster but
less flexible mixed-integer programming approach for MNL
AGREEMENT and DISAGREEMENT that performs very well
in practice.

Algorithm 1 is based on an FPTAS for SUBSET SUM (Cor-
men et al., 2001, Sec. 35.5), and the first parts of our anal-
ysis follow some of the same steps. The core idea of our
algorithm is that a set of items can be characterized by its
exp-utility sums for each individual and that there are only
polynomially many combinations of exp-utility sums that
differ by more than a multiplicative factor 1 + δ. We can
therefore compute all sets of alternatives with meaningfully
different impacts and pick the best one. For the purpose of
the algorithm, we assume all utilities are positive (otherwise
we may access a negative index); utilities can always be
shifted by a constant to satisfy this requirement.

We now provide an intuitive description of Algorithm 1.
The array Li has one dimension for each individual in
A (we use a hash table in practice since Li is typically
sparse). The cells along a particular dimension discretize
the exp-utility sums that the individual corresponding to
that dimension could have for a particular set of alternatives
(Figure 1). In particular, if individual j has total exp-utility
tj =

∑
y∈Z e

uj(y) for a set Z, then we store Z at index
blog1+δ tjc along dimension j.

As the algorithm progresses, we place possible sets of al-
ternatives Z in the cells of Li according to their exp-utility
sums t1, . . . , tn for each individual (we store t1, . . . , tn in
the cell along with Z). We add one element at a time fromC
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to the sets already in Li (L0 starts with only the empty set).
If two sets have very similar exp-utility sums, they may map
to the same cell, in which case only one of them is stored.
If the discretization of the array is coarse enough (that is,
with large enough δ), many sets of alternatives will map to
the same cells, reducing the number of sets we consider and
saving computational work. On the other hand, if the dis-
cretization is fine enough (δ is sufficiently small), then the
best set we are left with at the end of the algorithm cannot
induce a disagreement value too different from the optimal
set. The proof of Theorem 6 formalizes this reasoning.

Theorem 6. Algorithm 1 is an ε-additive approximation
for AGREEMENT in the MNL model.

Proof. We will use the following lemma, which says that
sets mapping to the same cell have similar exp-utility sums.

Lemma 2. Let Ci be the first i elements processed by the
outer for loop. At the end of the algorithm, for all Z ⊆ Ci
with exp-utility sums ta, there exists some Z ′ ∈ Li with
exp-utility sums t′a such that ta

(1+δ)i < t′a < ta(1 + δ)i, for
all a ∈ A (with δ as defined in Algorithm 1, Line 2).

The proof is in Appendix C. Now let β = ε/(k
(
n
2

)
). Fol-

lowing our choice of δ and using Lemma 2, at the end of the
algorithm, the optimal set Z∗ ⊆ C (with exp-utility sums
t∗a) has some representative Z ′ in Lm such that

t∗a
(1+β/(2m))m < t′a < t∗a (1 + β/(2m))

m
, ∀a ∈ A.

Since ex ≥ (1 + x/m)m, we have t∗a/e
β
2 < t′a < t∗ae

β
2 ,

and since ex ≤ 1 + x+ x2 when x < 1,

t∗a
1+β/2+β2/4 < t′a < t∗a(1 + β/2 + β2/4).

Finally, t∗a
1+β < t′a < t∗a(1 + β) because 0 < β < 1.

Now we show that D(Z∗) and D(Z ′) differ by at most ε.
To do so, we first bound the difference between Pr(a← x |
C∪Z∗) and Pr(a← x | C∪Z ′) by β. Let ca =

∑
x∈C eax

be the total exp-utility of a on C. By the above reasoning,

eax
ca + t∗a(1 + β)

<
eax

ca + t′a
<

eax

ca +
t∗a

1+β

,

where the middle term is equal to Pr(a ← x | C ∪ Z ′).
From the lower bound, the difference between Pr(a← x |
C ∪ Z∗) and Pr(a← x | C ∪ Z ′) could be as large as

eax
ca + t∗a

− eax
ca + t∗a(1 + β)

=
eaxt

∗
aβ

(ca + t∗a)(ca + t∗a(1 + β))
<
eaxt

∗
aβ

2cat∗a
≤ β

2
.

From the upper bound, the difference between Pr(a← x |

C ∪ Z∗) and Pr(a← x | C ∪ Z ′) could be as large as

eax

ca +
t∗a

1+β

− eax
ca + t∗a

=
eaxta(1− 1

1+β )

(ca +
t∗a

1+β )(ca + t∗a)

=
eaxt

∗
aβ

(ca(1 + β) + t∗a)(ca + t∗a)
<
eaxt

∗
aβ

2cat∗a
≤ β

2
.

Thus, Pr(a← x | C ∪ Z∗) and Pr(a← x | C ∪ Z ′) differ
by at most β2 . Using the same argument for an individual b,
the disagreement between a and b about x can only increase
by β with the set Z compared to the optimal set Z∗. Since
there are

(
n
2

)
pairs of individuals and k items in C, the total

error of the algorithm is bounded by k
(
n
2

)
β = ε.

We now show that the runtime of Algorithm 1 is O((m +
kn2)(1 + blog1+δ sc)n), where s = maxa sa is the max-
imum exp-utility sum for any individual. Thus, for any
fixed n, this runtime is bounded by a polynomial in k,m,
and 1

ε . To see this, first note that the size of Li is bounded
above by (1 + blog1+δ sc)n. For each z ∈ C, we perform
constant-time operations on each entry of Li, for a total of
O(m(1 + blog1+δ sc)n) time. Then we compute D(Z) for
each cell of Lm, which takes O(kn2) time per cell. The
total runtime is therefore O((m+ kn2)(1 + blog1+δ sc)n),
as claimed. Finally, (1 + blog1+δ sc)n is bounded by a
polynomial in m, k, and 1

ε for any fixed n (Appendix C.2).

AGREEMENT is NP-hard even when individuals have equal
utilities on alternatives. In this case, we only need to com-
pute exp-utility sums for a single individual, which brings
the runtime down to O((m+ kn2) log1+δ s).

Extensions to other objectives and models. Algorithm 1
can be easily extended to any objective function that is
efficiently computable from utilities. For instance, Algo-
rithm 1 can be adapted for DISAGREEMENT by replacing
the argmin with an argmax on Line 12.

Algorithm 1 can also be adapted for CDM and NL. The anal-
ysis is similar and details are in Appendix C, although the
running times and guarantees are different. With CDM, the
exponent in the runtime increases to nk for AGREEMENT
and DISAGREEMENT, and the ε-additive approximation is
guaranteed only if items in C exert zero pulls on each other.
However, even for the general CDM, our experiments will
show that the adapted algorithm remains a useful heuris-
tic. When we adapt Algorithm 1 for NL, we retain the full
approximation guarantee but the exponent in the runtime
increases and has a dependence on the tree size.

PROMOTION is not interesting under MNL and also has a
discrete rather than continuous objective, i.e., the number of
people with favorite item x∗ in C. For models with context
effects, we can define a meaningful notion of approximation.
We say that an item y ∈ C ∪ Z is an ε-favorite item of indi-
vidual a if Pr(a← y | C∪Z)+ε ≥ Pr(a← x | C∪Z) for
all x ∈ C. A solution then ε-approximates PROMOTION if
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Table 1. Dataset statistics: item, observation, and unique choice
set counts; and percent of observations in sub-population splits.

Dataset # items # obs. # sets split %

SFWORK 6 5029 12 16/84
ALLSTATE 24 97009 2697 45/55
YOOCHOOSE 41 90493 1567 47/53

Table 2. Sum of error over all 2-item choice sets C compared to
optimal (brute force) on SFWORK. Algorithm 1 is optimal.

Model Problem Greedy Algorithm 1

MNL AGREEMENT 0.03 0.00
DISAGREEMENT 0.00 0.00

rank-2 CDM AGREEMENT 0.14 0.00
DISAGREEMENT 0.13 0.00

NL AGREEMENT 0.00 0.00
DISAGREEMENT 0.00 0.00

the number of people for whom x∗ is an ε-favorite item is at
least the value of the optimal PROMOTION solution. Using
this, we can adapt Algorithm 1 for PROMOTION under CDM
and NL. Again, for CDM, the approximation has guarantees
in certain parameter regimes and the NL has full approxima-
tion guarantees. Since we do not have compute D(Z), the
runtimes loses the kn2 term compared to the AGREEMENT
and DISAGREEMENT versions (Appendix C.5).

Finally, EBA has considerably different structure than the
other models. We leave algorithms for EBA to future work.

Fast exact methods for MNL. We provide another ap-
proach for solving AGREEMENT and DISAGREEMENT in
the MNL model, based on transforming the objective func-
tions into mixed-integer bilinear programs (MIBLPs; details
in Appendix D). MIBLPs can be solved for moderate prob-
lem sizes with high-performance branch-and-bound solvers
(we use Gurobi’s implementation). In practice, this ap-
proach is faster than Algorithm 1 and can optimize over
larger sets C. However, this approach does not easily ex-
tend to CDM, NL, or PROMOTION and does not have a
polynomial-time runtime guarantee.

6. Numerical experiments
We apply our methods to three datasets (Table 1). The
SFWORK dataset (Koppelman & Bhat, 2006) comes from
a survey of San Francisco residents on available (choice
set) and selected (choice) transportation options to get to
work. We split the respondents into two segments (|A| = 2)
according to whether or not they live in the “core residen-
tial district of San Fransisco or Berkeley.” The ALLSTATE
dataset (Kaggle, 2014) consists of insurance policies (items)
characterized by anonymous categorical features A–G with
2 to 4 values each. Each customer views a set of policies (the
choice set) before purchasing one. We reduce the number
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Figure 2. Algorithm 1 vs. Greedy performance box plots when
applied to all 2-item choice sets in ALLSTATE and YOOCHOOSE

under MNL and CDM (subplots also show ε and the percent of
subsets of C computed by Algorithm 1, written X% sets). Each
point is the difference in D(Z) when Algorithm 1 and Greedy are
run on a particular choice set. Horizontal spread shows approxi-
mate density and the Xs mark means. A negative (resp. positive)
y-value for AGREEMENT (resp. DISAGREEMENT) indicates that
Algorithm 1 outperformed Greedy. Algorithm 1 performs better in
all cases except for DISAGREEMENT under CDM on YOOCHOOSE.
Even in this exception, though, our approach finds a few very good
solutions and Algorithm 1 has better mean performance.

of items to 24 by considering only features A, B, and C. To
model different types of individuals, we split the data into
homeowners and non-homeowners (again, |A| = 2). The
YOOCHOOSE dataset (Ben-Shimon et al., 2015) contains
online shopping data of clicks and purchases of categorized
items in user browsing sessions. Choice sets are unique cate-
gories browsed in a session and the choice is the category of
the purchased product (categories appearing fewer than 20
times were omitted). We split the choice data into two sub-
populations by thresholding on the purchase timestamps.

For inferring maximum-likelihood models from data, we
use PyTorch’s Adam optimizer (Kingma & Ba, 2015; Paszke
et al., 2019) with learning rate 0.05, weight decay 0.00025,
batch size 128, and the amsgrad flag (Reddi et al., 2018).
We use the low-rank (rank-2) CDM (Seshadri et al., 2019)
that expresses pulls as the inner product of item embeddings.
Our code and data are available at https://github.
com/tomlinsonk/choice-set-opt.

For SFWORK under the MNL, CDM, and NL models, we
considered all 2-item choice sets C (using all other items
for C) for AGREEMENT and DISAGREEMENT (for the NL
model, we used the best-performing tree from Koppelman
& Bhat (2006)). We compare Algorithm 1 (ε = 0.01) to a

https://github.com/tomlinsonk/choice-set-opt
https://github.com/tomlinsonk/choice-set-opt
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greedy approach (henceforth, “Greedy”) that builds Z by
repeatedly selecting the item from C that, when added to
Z, most improves the objective, if such an item exists. This
dataset was small enough to compare against the optimal,
brute-force solution (Table 2). In all cases, Algorithm 1
finds the optimal solution, while Greedy is often subopti-
mal. However, for this value of ε, we find that Algorithm 1
searches the entire space and actually computes the brute
force solution (we get the number of sets analyzed by Al-
gorithm 1 from |Lm| for a given ε and compare it to 2|C|).
Even though we have an asymptotic polynomial runtime
guarantee, for small enough datasets, we might not see com-
putational savings. Running with larger ε yielded similar
results, even for ε > 2, when our bounds are vacuous.

The results still highlight two important points. First,
even on small datasets, Greedy can be sub-optimal.
For example, for AGREEMENT under CDM with C =
{drive alone, transit}, Algorithm 1 found the optimal Z =
{bike, walk}, inferring that both sub-populations agree on
both driving less and taking transit less. However, Greedy
just introduced a carpool option, which has a lower effect
on discouraging driving alone or taking transit, resulting in
lower agreement between city and suburban residents.

Second, our theoretical bounds can be more pessimistic than
what happens in practice. Thus, we can consider larger val-
ues of ε to reduce the search space; Algorithm 1 remains a
principled heuristic, and we can measure how much of the
search space Algorithm 1 considers. This is the approach we
take for the ALLSTATE and YOOCHOOSE data, where we
find that Algorithm 1 far outperforms its theoretical worst-
case bound. We again considered all 2-item choice sets C
and tested our method under MNL and CDM,3 setting ε so
that the experiment took about 30 minutes to run for ALL-
STATE and 2 hours for YOOCHOOSE (of that time, Greedy
takes 5 seconds to run; the rest is taken up by Algorithm 1).
Algorithm 1 consistently outperforms Greedy (Fig. 2), even
with ε > 2 for CDM. Moreover, Algorithm 1 only computes
a small fraction of possible sets of alternatives, especially
for YOOCHOOSE. Algorithm 1 does not perform as well
with the rank-2 CDM as it does with MNL, which is to
be expected as we only have approximation guarantees for
CDM under particular parameter regimes (in which these
data do not lie). The worse performance on CDM is due to
the context effects that items from C exert on each other.
Greedy does fairly well for DISAGREEMENT under CDM
with YOOCHOOSE, but even in this case, Algorithm 1 per-
forms significantly better in enough instances for the mean
(but not median) performance to be better than Greedy. We
repeated the experiment with 500 choice sets of size up to 5
sampled from data with similar results (Appendix E.3). We

3In this case, we did not have available tree structures for NL,
which are difficult to derive from data (Benson et al., 2016).
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Figure 3. PROMOTION results on ALLSTATE 2-item choice sets.
(Left) Success rate comparison; Algorithm 1 has near-optimal per-
formance (about 9% of instances have no PROMOTION solution).
(Right) Number of subsets of C computed by Algorithm 1 (dashed
gray line at 222 = 2m for brute force computation).

also ran the MIBLP approach for MNL, which performed
as well as Algorithm 1 and was about 12x faster on YOO-
CHOOSE and 240x faster on ALLSTATE (Appendix E.2).

PROMOTION. We applied the CDM PROMOTION version
of Algorithm 1 to ALLSTATE, since this dataset is small
enough to compute brute-force solutions. For each 2-item
choice set C, we attempted to promote the less-popular
item of the pair using brute-force, Greedy, and Algorithm 1.
Algorithm 1 performed optimally up to ε = 32, above which
it failed in only 2–26 of 252 feasible instances (Fig. 3, left).
(Here, successful promotion means that the item becomes
the true favorite among C.) On the other hand, Greedy
failed in 37% of the feasible instances. As in the previous
experiment, our algorithm’s performance in practice far
exceeds the worst-case bounds. The number of sets tested
by Algorithm 1 falls dramatically as ε increases (Fig. 3,
right). With more items (or a smaller range of utilities), the
value of ε required to achieve the same speedup over brute
force would be smaller (as with YOOCHOOSE). In tandem,
these results show that we get near-optimal PROMOTION
performance with far fewer computations than brute force.

7. Discussion
Our decisions are influenced by the alternatives that are
available, the choice set. In collective decision-making,
altering the choice set can encourage agreement or create
new conflict. We formulated this as an algorithmic question:
how can we optimize the choice set for some objective?

We showed that choice set optimization is NP-hard for natu-
ral objectives under standard choice models; however, we
also found that model restrictions makes promoting a choice
easier than encouraging a group to agree or disagree. We de-
veloped approximation algorithms for these hard problems
that are effective in practice, although there remains a gap
between theoretical approximation bounds and performance
on real-world data. Future work could address choice set
optimization in interactive group decisions, where group
members can communicate their preferences to each other
or must collaborate to reach a unified decision. Lastly, Ap-
pendix F discusses the ethical considerations of this work.
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Hązła, J., Jadbabaie, A., Mossel, E., and Rahimian, M. A.
Reasoning in Bayesian opinion exchange networks is
PSPACE-hard. In Proceedings of the Thirty-Second Con-
ference on Learning Theory, pp. 1614–1648, 2019.

Huber, J., Payne, J. W., and Puto, C. Adding asymmetrically
dominated alternatives: Violations of regularity and the
similarity hypothesis. Journal of Consumer Research, 9
(1):90–98, 1982.

Ieong, S., Mishra, N., and Sheffet, O. Predicting preference
flips in commerce search. In Proceedings of the 29th
International Coference on International Conference on
Machine Learning, pp. 1795–1802. Omnipress, 2012.



Choice Set Optimization Under Discrete Choice Models of Group Decisions

Kaggle. Allstate purchase prediction challenge.
https://www.kaggle.com/c/allstate-
purchase-prediction-challenge, 2014.

Kallus, N. and Udell, M. Revealed preference at scale:
Learning personalized preferences from assortment
choices. In Proceedings of the 2016 ACM Conference on
Economics and Computation, pp. 821–837. ACM, 2016.

Karp, R. M. Reducibility among combinatorial problems.
In Complexity of Computer Computations, pp. 85–103.
Springer, 1972.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kleinberg, J., Mullainathan, S., and Ugander, J.
Comparison-based choices. In Proceedings of the 2017
ACM Conference on Economics and Computation, pp.
127–144. ACM, 2017.

Koppelman, F. S. and Bhat, C. A self instructing course
in mode choice modeling: Multinomial and nested logit
models, 2006.

Liao, Q. V. and Fu, W.-T. Can you hear me now?: mitigating
the echo chamber effect by source position indicators. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing, pp.
184–196. ACM, 2014.

Lu, L., Yuan, Y. C., and McLeod, P. L. Twenty-five years
of hidden profiles in group decision making: A meta-
analysis. Personality and Social Psychology Review, 16
(1):54–75, 2012.

Luce, R. D. Individual Choice Behavior. Wiley, 1959.

Makhijani, R. and Ugander, J. Parametric models for in-
transitivity in pairwise rankings. In The World Wide Web
Conference, pp. 3056–3062. ACM, 2019.

Matakos, A., Terzi, E., and Tsaparas, P. Measuring and mod-
erating opinion polarization in social networks. Data Min-
ing and Knowledge Discovery, 31(5):1480–1505, 2017.

Maystre, L. and Grossglauser, M. Fast and accurate infer-
ence of Plackett–Luce models. In Advances in Neural
Information Processing Systems, pp. 172–180, 2015.

McFadden, D. Conditional logit analysis of qualitative
choice behavior. In Zarembka, P. (ed.), Frontiers in
Econometrics, pp. 105–142. Academic Press, 1974.

McFadden, D. Modeling the choice of residential location.
Transportation Research Record, 1978.

McFadden, D. and Train, K. Mixed MNL models for dis-
crete response. Journal of Applied Econometrics, 15(5):
447–470, 2000.

Munson, S. A., Lee, S. Y., and Resnick, P. Encouraging
reading of diverse political viewpoints with a browser
widget. In Seventh International AAAI Conference on
Weblogs and Social Media, 2013.

Musco, C., Musco, C., and Tsourakakis, C. E. Minimizing
polarization and disagreement in social networks. In
Proceedings of the 2018 World Wide Web Conference,
pp. 369–378. International World Wide Web Conferences
Steering Committee, 2018.

Oh, S. and Shah, D. Learning mixed multinomial logit
model from ordinal data. In Advances in Neural Informa-
tion Processing Systems, pp. 595–603, 2014.

Oh, S., Thekumparampil, K. K., and Xu, J. Collaboratively
learning preferences from ordinal data. In Advances in
Neural Information Processing Systems, pp. 1909–1917,
2015.

Overgoor, J., Benson, A., and Ugander, J. Choosing to
grow a graph: modeling network formation as discrete
choice. In The World Wide Web Conference, pp. 1409–
1420, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, pp. 8024–8035, 2019.

Pfannschmidt, K., Gupta, P., and Hüllermeier, E. Learn-
ing choice functions: Concepts and architectures.
arXiv:1901.10860, 2019.

Ragain, S. and Ugander, J. Pairwise choice Markov chains.
In Advances in Neural Information Processing Systems,
pp. 3198–3206, 2016.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of Adam and beyond. In International Conference on
Learning Representations, 2018.

Rosenberg, M., Perlroth, N., and Sanger, D. E. ‘Chaos is
the point’: Russian hackers and trolls grow stealthier
in 2020, 2020. URL https://www.nytimes.
com/2020/01/10/us/politics/russia-
hacking-disinformation-election.html.

Rosenfeld, N., Oshiba, K., and Singer, Y. Predicting choice
with set-dependent aggregation. In Proceedings of the
37th International Coference on International Conference
on Machine Learning, 2020.

https://www.kaggle.com/c/allstate-purchase-prediction-challenge
https://www.kaggle.com/c/allstate-purchase-prediction-challenge
https://www.nytimes.com/2020/01/10/us/politics/russia-hacking-disinformation-election.html
https://www.nytimes.com/2020/01/10/us/politics/russia-hacking-disinformation-election.html
https://www.nytimes.com/2020/01/10/us/politics/russia-hacking-disinformation-election.html


Choice Set Optimization Under Discrete Choice Models of Group Decisions

Rusmevichientong, P., Shen, Z.-J. M., and Shmoys, D. B.
Dynamic assortment optimization with a multinomial
logit choice model and capacity constraint. Operations
Research, 58(6):1666–1680, 2010.

Rusmevichientong, P., Shmoys, D., Tong, C., and Topaloglu,
H. Assortment optimization under the multinomial logit
model with random choice parameters. Production and
Operations Management, 23(11):2023–2039, 2014.

Seshadri, A. and Ugander, J. Fundamental limits of testing
the independence of irrelevant alternatives in discrete
choice. In Proceedings of the 2019 ACM Conference on
Economics and Computation, pp. 65–66, 2019.

Seshadri, A., Peysakhovich, A., and Ugander, J. Discovering
context effects from raw choice data. In International
Conference on Machine Learning, pp. 5660–5669, 2019.

Shafir, E., Simonson, I., and Tversky, A. Reason-based
choice. Cognition, 49(1-2):11–36, 1993.

Simonson, I. Choice based on reasons: The case of at-
traction and compromise effects. Journal of Consumer
Research, 16(2):158–174, 1989.

Simonson, I. and Tversky, A. Choice in context: Tradeoff
contrast and extremeness aversion. Journal of Marketing
Research, 29(3):281–295, 1992.

Stasser, G. and Titus, W. Pooling of unshared information
in group decision making: Biased information sampling
during discussion. Journal of Personality and Social
Psychology, 48(6):1467, 1985.

Talluri, K. and Van Ryzin, G. Revenue management under
a general discrete choice model of consumer behavior.
Management Science, 50(1):15–33, 2004.

Train, K. E. Discrete Choice Methods with Simulation.
Cambridge University Press, 2009.

Trueblood, J. S., Brown, S. D., Heathcote, A., and Buse-
meyer, J. R. Not just for consumers: Context effects are
fundamental to decision making. Psychological Science,
24(6):901–908, 2013.

Tversky, A. Elimination by aspects: A theory of choice.
Psychological Review, 79(4):281, 1972.

Tversky, A. and Kahneman, D. The framing of decisions
and the psychology of choice. Science, 211(4481):453–
458, 1981.

Tversky, A. and Simonson, I. Context-dependent prefer-
ences. Management Science, 39(10):1179–1189, 1993.

Zhao, Z. and Xia, L. Learning mixtures of Plackett-Luce
models from structured partial orders. In Advances in Neu-
ral Information Processing Systems, pp. 10143–10153,
2019.

Zhao, Z., Piech, P., and Xia, L. Learning mixtures of
Plackett-Luce models. In International Conference on
Machine Learning, pp. 2906–2914, 2016.



Choice Set Optimization Under Discrete Choice Models of Group Decisions

A. Hardness proofs
A.1. Disagreement functions from proofs of

Theorems 1 and 2
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Figure 4. (Left) Plot of D(Z) =
∣∣ t
2t+sZ

− 3t
5t+sZ

∣∣ + ∣∣ t
2t+sZ

−
2t

5t+sZ

∣∣ from the proof of Theorem 1. (Right) Plot of D(Z) =∣∣ 2t
2t+sZ

− t/2
t/2+sZ

∣∣ from the proof of Theorem 2. Both functions
are re-parameterized in terms of the ratio sZ/t by dividing through
by t and achieve local optima at sZ/t = 1 (i.e. sZ = t); this can
be verified analytically.

A.2. CDM PROMOTION is hard with |A| = 2, |C| = 2

In the main text, we show CDM PROMOTION is NP-hard
when |A| = 1, |C| = 3 (Theorem 3). Here, we provide
an additonal proof for the case when |A| = 2, |C| = 2.
These are the smallest hard instances of the problem (|A| =
1, |C| = 2 is easy to solve: introduce alternatives that in-
crease utility for x∗ for than its competitor).

Theorem 7. In the CDM model, PROMOTION is NP-hard,
even with just two individuals and two items in C.

Proof. By reduction from SUBSET SUM. Let S, t be an
instance of SUBSET SUM. Let A = {a, b}, C = {x, y},
C = S. Using tuples interpreted entrywise, construct a
CDM with the following parameters.

ua(〈x∗, y〉) = 〈t+ ε, 0〉
ub(〈x∗, y〉) = 〈ε, t〉

ua(z) = ub(z) = −∞ ∀z ∈ C
pa(z, 〈x∗, y〉) = 〈0, z〉 ∀z ∈ C
pb(z, 〈x∗, y〉) = 〈z, 0〉 ∀z ∈ C

To promote x∗, we need to add more than t− ε to b’s utility
for x∗, but add less than t+ ε to a’s utility for x∗. Since all
pulls are integral, the only solution is a set Z whose sum
of pulls is t. If we could efficiently find such a set, then we
could efficiently find the SUBSET SUM solution.

A.3. Proof of Theorem 4

Proof. By reduction from SUBSET SUM. Let S =
{z1, . . . , zn}, t be an instance of SUBSET SUM. Let A =
{a, b}, C = {x∗, y}, C = S, and 0 < ε < 1. The nest
structures and utilities are shown in Fig. 5.

a’s root

y r

x∗ z1 . . . zn

0 log 2

log(t+ ε)
log z1

log zn

b’s root

x∗ r

y z1 . . . zn

0 log 2

log(t− ε)
log z1

log zn

Figure 5. NL trees used in the proof of Theorem 4. The left tree is
for individual a and the right tree for individual b.

Notice that x∗ and y are swapped in the two trees. We
wish to promote x∗. With just the choice set C, a prefers
x∗ to y, but b does not. To make b prefer x∗ to y, we
need to cannibalize y by adding zi items. However, this
simultaneously cannibalizes x∗ in a’s tree, so we need to
be careful not to introduce too much additional utility. To
ensure a prefers x∗, we need to pick Z such that

Pr(a← y | C ∪ Z) < Pr(a← y | C ∪ Z)

⇐⇒ 1

1 + elog 2
<

elog 2

1 + elog 2
· elog(t+ε)

elog(t+ε) +
∑
z∈Z e

log z

⇐⇒ 1

3
<

2

3
· t+ ε

t+ ε+
∑
z∈Z z

⇐⇒
∑
z∈Z

z < t+ ε.

To ensure b prefers x∗, we need

Pr(b← x∗ | C ∪ Z) > Pr(b← y | C ∪ Z)

⇐⇒ 1

1 + elog 2
>

elog 2

1 + elog 2
· elog(t−ε)

elog(t−ε) +
∑
z∈Z e

log z

⇐⇒ 1

3
>

2

3
· t− ε
t− ε+

∑
z∈Z z

⇐⇒
∑
z∈Z

z > t− ε.

Since the z are all integers, we must then have
∑
z∈Z z = t.

If we could efficiently promote x∗, we could efficiently find
such a Z.

A.4. Proof of Theorem 5

Proof. By reduction from SUBSET SUM. Let S, t be an
instance of SUBSET SUM. Let A = {a, b}, C = {x∗, y},
C = S, and s =

∑
z∈S z. Make aspects χz, ψz, γz for each

z ∈ S as well as two more aspects χ, ψ. The items have
aspects as follows:

x∗′ = {χ} ∪ {χz | z ∈ S}
y′ = {ψ} ∪ {ψz | z ∈ S}
z′ = {χz, ψz, γz} ∀z ∈ S
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The individuals have the following utilities on aspects,
where 0 < ε < 1:

ua(χ) = 0

ua(χz) = z

ua(ψ) = s− t/2− ε
ua(ψz) = 0

ua(γz) = s− z

ub(χ) = s− t/2 + ε

ub(χz) = 0

ub(ψ) = 0

ub(ψz) = z

ub(γz) = s− z

∀z ∈ S

∀z ∈ S
∀z ∈ S

We want to promote x∗. Notice that x∗ and y have disjoint
aspects. Thus the choice probabilities from C are propor-
tional to the sum of the item’s aspects:

Pr(a← x∗ | C) ∝ s

Pr(a← y | C) ∝ s− t

2
− ε

Pr(b← x∗ | C) ∝ s− t

2
+ ε

Pr(b← y | C) ∝ s.

To promote x∗, we need to make b prefer x∗ to y. Adding
a z item cannibalizes from a’s preference for x∗ and b’s
preference for y. As in the NL proof, we want to add just
enough z items to make b prefer x∗ to y without making a
prefer y to x∗.

First, notice that the γz aspects have no effect on the indi-
viduals’ relative preference for x∗ and y. If we introduce
the alternative z, then if a picks the aspect χz , y will be
eliminated. The remaining aspects of x∗, namely x∗′ \{χz},
have combined utility s − z, as does γz . Therefore a will
be equallly likely to pick x∗ and z. Symmetric reasoning
shows that if b chooses aspect ψz , then b will end up picking
y with probability 1/2. This means that when we include
alternatives Z ⊆ C, each aspect χz, ψz for z ∈ Z effec-
tively contributes z/2 to a’s utility for x∗ and b’s utility for
y rather than the full z. The optimal solution is therefore a
set Z of alternatives whose sum is t, since that will cause
a to have effective utility s− t/2 on x∗, which exceeds its
utility s − t/2 − ε on y. Meanwhile, b’s effective utility
on y will also be s − t/2, which is smaller than its utility
s− t/2 + ε on x∗. If we include less alternative weight, b
will prefer y. If we include more, a will prefer y. Therefore
if we could efficiently find the optimal set of alternatives
to promote x∗, we could efficiently find a subset of S with
sum t.

B. Restrictions on MNL that make
AGREEMENT and DISAGREEMENT
tractable

As we saw in the proofs of Theorems 1 and 2 that AGREE-
MENT and DISAGREEMENT are hard in the MNL model

even when individuals have identical utilities on alternatives.
This is possible because the individuals have different sums
of utilities on C; one unit of utility on an alternative has
a weaker effect for individuals with higher utility sums on
C. To address the issue of identifiability, we assume each
individual’s utility sum over U is zero in this section. This
allows us to meaningfully compare the sum of utilities of
two different individuals.

Definition 1. If an individual a has
∑
x∈U ua(x) = 0, then

the stubbornness of a is σa =
∑
x∈C e

u(x).

We call this quantity “stubbornness” since it quantifies how
reluctant an individual is to change its probabilities on C
given a unit of utility on an alternative.

Proposition 1. In an MNL model where all individuals are
equally stubborn and have identical utilities on alternatives,
the solution to AGREEMENT is C.

Proof. Assume utilities are in standard form, with∑
x∈U ua(x) = 0. Let σ =

∑
x∈C e

u(x) be each individ-
ual’s stubborness and let Z be a set of alternatives. Suppose
all individuals have the same utility u(z) for each alternative
z. The disagreement between two individuals about a single
item x in C is then:∣∣∣ eua(x)

σ +
∑
z∈Z e

u(z)
− eub(x)

σ +
∑
z∈Z e

u(z)

∣∣∣ = |eua(x) − eub(x)|
σ +

∑
z∈Z e

u(z)
.

Notice that this strictly decreases if
∑
z∈Z e

u(z) increases,
so we minimize D by including all of the alternatives.

The same reasoning also allows us to solve DISAGREEMENT
in this restricted MNL model.

Corollary 3. The solution to DISAGREEMENT in an equal
alternative utilities, equal stubbornness MNL model is ∅.

C. Approximation algorithm details and
extensions

C.1. Proof of Lemma 2

Proof. If a set Z has total exp-utility ta to individual a, then
it is placed in L at position blog1+δ tac in dimension a. So,
if two sets Z, Z ′ with exp-utility totals ta, t′a for individual
a are mapped to the same cell of L, then for all a ∈ A,
blog1+δ tac = blog1+δ t′ac. We can therefore bound t′a:

log1+δ ta − 1 < log1+δ t
′
a < log1+δ ta + 1.

Exponentiating both sides with base 1 + δ and simplifying
yields

ta
1 + δ

< t′a < ta(1 + δ). (5)

With this fact in hand, we proceed by induction on i. When
i = 0, Ci is empty and the lemma holds. Now suppose that
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i > 0 and that the lemma holds for i − 1. Every set in Ci
was made by adding (a) zero elements or (b) one element to
a set in Ci−1. We consider these two cases separately.

(a) For any set Z ⊆ Ci that is also contained in Ci−1, we
know by the inductive hypothesis that some element in Li−1
satisfied the inequality. Since we never overwrite cells, the
lemma also holds for Z after iteration i.

(b) Now consider sets Z ′ ⊆ Ci that were formed by adding
the new element z to a set Z ⊆ Ci−1. In the inner for loop,
we at some point encountered the cell containing the set
Y ∈ Li−1 satisfying the lemma for set Z by the inductive
hypothesis. Let ya be the exp-utility totals for Y and ta
for Z. Notice that the exp-utility totals of Z ′ are exactly
ta+ eaz . Starting with the inductive hypothesis, we see that
the exp-utility totals of Y ∪ {z} satisfy

ta + eaz
(1 + δ)i−1

< ya + eaz < (ta + eaz)(1 + δ)i−1.

When we go to place Y ∪ {z} in a cell, it might be unoccu-
pied, in which case we place it in Li and the lemma holds
for Z ′. If it is occupied by some other set, then by applying
Eq. (5) we find that the lemma also holds for Z ′.

C.2. Polynomial bound on runtime of Algorithm 1

The runtime of Algorithm 1 is O((m + kn2)(1 +
blog1+δ sc)n). We can show that the second part is bounded
by a polynomial in k,m, and 1

ε :

(1 + blog1+δ sc)n ≤
(
1 +

ln s

ln 1 + δ

)n
≤
(
1 + (1 + δ)

ln s

δ

)n
(since ln(1 + x) ≥ x

1+x for x > −1)

=
(
1 +

ln s

δ
+ ln s

)n
=
(
1 +

2km
(
n
2

)
ln s

ε
+ ln s

)n
C.3. Adapting Algorithm 1 for CDM with guarantees

for special cases

We can adapt Algorithm 1 for the CDM model, but we
only maintain the approximation error bounds under special
cases of the structure of the “pulls”. Still, we can use this
algorithm as a principled heuristic and it tends to work well
in practice, as we saw in Fig. 2.

As a first step, we use the alternative parametrization of the
model used by Seshadri et al. (2019, Eq. (1)), which has
fewer parameters. In this description of the model, utilities
and context effects are merged into a single utility-adjusted
pull qa(z, x) = pa(z, x) − ua(x), with the special case

qa(x, x) = 0. We then have

Pr(a← x | C) =
exp(

∑
w∈C qa(w, x))∑

y∈C exp(
∑
z∈C qa(z, y))

. (6)

Refer to Seshadri et al. (2019, Appendix C.1) for details of
the equivalence between this formulation and the one we
use in the main text.

Matching the notation of the proof of Theorem 6, we use
the shorthand eax = exp(

∑
w∈C qa(w, x)).

To adapt Algorithm 1 to the CDM, we expand Li to have
nk dimensions for each individual-item pair, increasing the
runtime to O((m+ kn2)(1 + blog1+δ sc)nk). This is only
practical if nk is small, but as we have seen, AGREEMENT,
DISAGREEMENT, and PROMOTION are all NP-hard even
with n = 2 and k = 2 or 3. Each individual-item dimension
stores eax, the total exp-utility of that item to that individual
given that we have included some set of alternatives. When
we include an additional item from C, we place the new sets
in Li with updated eax values.

This only preserves the ε-additive approximation if alterna-
tives (items in C) have zero context effects on each other;
however, they may still have context effects on items in C.
Formally, we need qa(z, z′) = 0 for all z, z′ ∈ C and a ∈ A.
Although this is a serious restriction, it leaves AGREEMENT,
DISAGREEMENT, and PROMOTION NP-hard, as the CDM
we used in our proofs had this form (see also Appendix C.5
for how to apply Algorithm 1 to PROMOTION). If this ver-
sion of the algorithm is applied to a general CDM, it may
experience higher error. Nonetheless, our real-data experi-
ments show it to be a good heuristic.

For the following analysis, we assume a CDM with zero
context effects between items in C. We need to verify that
if every item’s exp-utility is approximated to within factor
(1 + β)±1, then the total disagreement of a set is approx-
imated to within ε as we had in the MNL case. The ap-
proximation error guarantee increases to 4ε in the restricted
CDM version—to recover the ε-additive approximation, we
can make δ smaller by a factor of 4 (that is, we could pick
δ = ε/(8km

(
n
2

)
); we instead keep the old δ for simplicity

in the following analysis).

Recall that Z ′ is the representative in Lm of the optimal set
of alternatives Z∗. For compactness, we define Ta to be the
denominator of Eq. (6), with T ′a and T ∗a referring to those
denominators under the choice sets C ∪ Z ′ and C ∪ Z∗,
respectively. This is where we require zero context effects
between alternatives: if alternatives interact, then storing
every eax in the table (from which we can compute Ta) is
not enough to determine updated choice probabilities when
we add a new alternative.

The difference in the analysis begins when we bound
Pr(a ← x | C ∪ Z ′) on both sides using the fact that
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each exp-utility sum is approximated within a 1 + β factor
(so the probability denomiators Ta are also approximated
within this factor):

e∗ax
1+β

T ∗a (1 + β)
=

1

(1 + β)2
e∗ax
T ∗a

<
e′ax
T ′a

= Pr(a← x | C ∪ Z ′)

<
e∗ax(1 + β)

T∗a
1+β

= (1 + β)2
e∗ax
T ∗a

.

Based on the lower bound, the difference between Pr(a←
x | C ∪ Z∗) and Pr(a← x | C ∪ Z ′) could be as large as

e∗ax
T ∗a
− 1

(1 + β)2
e∗ax
T ∗a
≤ 1− 1

(1 + β)2
.

Now considering the upper bound, the difference between
Pr(a← x | C ∪ Z∗) and Pr(a← x | C ∪ Z ′) could be as
large as

(1 + β)2
e∗ax
T ∗a
− e∗ax
T ∗a
≤ (1 + β)2 − 1.

Therefore, |Pr(a← x | C∪Z ′)−Pr(b← x | C∪Z ′)| can
only exceed |Pr(a← x | C ∪Z∗)−Pr(b← x | C ∪Z∗)|
by at most 1− 1

(1+β)2 +(1+β)2− 1 = (1+β)2− 1
(1+β)2 .

This is at most 4β:

4β − (1 + β)2 +
1

(1 + β)2
=
β2(2− β2)

(1 + β)2

> 0. (for 0 < β <
√
2)

So D(Z ′) and D(Z∗) are within 4β
(
n
2

)
k = 4ε.

C.4. Adapting Algorithm 1 for NL with full guarantees

We can also adapt Algorithm 1 for the NL model, and unlike
the CDM, the ε-additive approximation holds in all parame-
ter regimes. Recall that the NL tree has two types of leaves:
choice set items and alternative items. Let Pa be the set
of internal nodes of individual a’s tree that have at least
one alternative item as a child and let p = maxa∈A |Pa|. If
we know the total exp-utility that alternatives contribute as
children of each v ∈ Pa, then we can compute a’s choice
probabilites over items in C in polynomial time.

With this in mind, we modify Algorithm 1 by having dimen-
sions in L for each individual for each of their nodes in Pa.
This results in ≤ np dimensions. The algorithm then keeps
track of the exp-utility sums from alternatives under each
node in Pa for each individual. The exponent in the run-
time increases to (at most) np, but this remains tractable for
some hard instances, such as those in our hardness proofs.
In some cases, we can dramatically improve the runtime of

the algorithm: if the subtree under an internal node contains
only alternatives as leaves in an individuals’s tree, then we
only need one dimension L for that individual’s entire sub-
tree, and it has only two cells: one for sets that contain at
least one alternative in that subtree, and one for sets that do
not. The only factor that affects the choice probabilities of
items in C is whether that subtree is “active” and its root
can be chosen.

We now show how the error from exp-utility sums of al-
ternatives propagates to choice probabilities. In the NL
model, Pr(a ← x | C) is the product of probabilities that
a chooses each ancestor of x as a descends down its tree.
Let v1, . . . , v` be the nodes in a’s tree along the path from
the root to x. For compactness, we use Pr(x, Z) instead of
Pr(a← x | C ∪ Z) in the following analysis.

Pick δ ≤ ([ε/(2k
(
n
2

)
) + 1]1/` − 1)/m and recall that β =

2mδ. We can use the same analysis as in the proof of
Theorem 6 to find that for any set Z∗ ⊆ C, there exists
some Z ′ ∈ L such that

Pr(x, Z∗) = Pr(v1, Z
∗) · · · · · Pr(vx, Z∗)

<
(
Pr(v1, Z

′) +
β

2

)
· · · · ·

(
Pr(vx, Z

′) +
β

2

)
≤ Pr(x, Z ′) +

(
1 +

β

2

)`
− 1

≤ Pr(x, Z ′) +
ε

2k
(
n
2

) .
Now for the lower bound, pick δ ≤ (1 − [1 −
ε/(2k

(
n
2

)
)]1/`)/m. Again from the proof of Theorem 6:

Pr(x, Z∗) = Pr(v1, Z
∗) · · · · · Pr(vx, Z∗)

>
(
Pr(v1, Z

′)− β

2

)
· · · · ·

(
Pr(vx, Z

′)− β

2

)
≥ Pr(x, Z ′) +

(
1− β

2

)`
− 1

≥ Pr(x, Z ′)− ε

2k
(
n
2

) .
Let h be the maximum height of any indivdual’s NL tree (so
` ≤ h). Then, by picking δ = min{[ε/(2k

(
n
2

)
) + 1]1/h −

1, 1 − [1 − ε/(2k
(
n
2

)
)]1/h}/m, we find that Pr(a ← x |

C ∪ Z∗) and Pr(a ← x | C ∪ Z ′) differ by less than
ε/(k

(
n
2

)
) for all x ∈ C and a ∈ A, meaning that the total

disagreement between a and b cannot differ by more than ε
as before.

Unfortunately, this means we need to make δ exponentially
(in h) smaller in the NL model. Put another way, our error
bound gets exponentially worse as h increases if we keep
δ constant. However, we have seen that there are NP-hard
families of NL instances in which h is a small constant (e.g.,
h = 2 in our hardness proof), so once again this algorithm
is an exponential improvement over brute force. Moreover,
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the error bound here is often far from tight, since we use
the very loose bounds Pr(vi, Z ′) ≤ 1 in the analysis. This
means the algorithm will tend to outperform the worst-case
guarantee by a significant margin.

C.5. Adapting Algorithm 1 for PROMOTION

C.5.1. CDM PROMOTION WITH SPECIAL CASE
GUARANTEES

Algorithm 1 can be applied to PROMOTION in the (re-
stricted) CDM model with only a small modification to
the CDM version described in Appendix C.3: at the end
of the algorithm, we return the set that results in the maxi-
mum number of individuals having x∗ as an ε-favorite item.
Additionally, we choose δ = ε/(10m) (we don’t need the
factors

(
n
2

)
or k since we aren’t optimizing D(Z)).

Following the analysis in Appendix C.3 (with β = 2mδ =
ε/5), we find that Pr(a ← x | C ∪ Z∗) and Pr(a ← x |
C∪Z ′) differ by at most max{1− 1

(1+ε/5)2 , (1+ε/5)
2−1}

for all x. On the interval [0, 1], this is bounded by ε/2. Thus,
if x∗ is the favorite item for a given the optimal choice set
C ∪ Z∗, then it must be an ε-favorite of individual a given
C ∪ Z ′ (as always, Z ′ is the representative of Z∗ in Lm).
This is because when we go from C ∪ Z∗ to C ∪ Z ′, the
choice probability of x∗ can shrink by at most ε/2 and the
choice probability for any other item can grow by at most
ε/2. Thus, including Z ′ makes at least as many individuals
have x∗ as an ε-favorite item as including Z∗ makes have
x∗ as a favorite item.

This is exactly what it means for Algorithm 1 to ε-
approximate PROMOTION in the CDM (when items in C
do not exert context effects on each other). Moreover, not
having to compute D(Z) makes the runtime of Algorithm 1
O(m(1 + blog1+δ sc)nk) when applied to PROMOTION in
the CDM. In the general CDM, this algorithm is only a
heuristic.

C.5.2. NL PROMOTION WITH FULL GUARANTEES

A very similar idea allows us to apply the NL version of
Algorithm 1 from Appendix C.4 to PROMOTION and retain
an approximation guarantee. As before, use the NL version
and return the set that results in the maximum number of
individuals having x∗ as an ε-favorite item. However, we
instead use δ = min{(ε/4+1)1/h−1, 1−(1−ε/4)1/h}/m,
which by the analysis in Appendix C.4 results in Pr(a ←
x | C ∪ Z∗) and Pr(a← x | C ∪ Z ′) differing by at most
ε/2. As in the CDM case, this guarantees that if x∗ is the
favorite item for a given the optimal choice set C∪Z∗, then
it must be an ε-favorite of a given C ∪ Z ′. Therefore this
version of Algorithm 1 ε-approximates PROMOTION in the
NL model with runtime O(m(1 + blog1+δ sc)np).

D. Mixed-integer bilinear programs for MNL
agreement and disagreement optimization

D.1. AGREEMENT

Let xi be a decision variable indicating whether we add in
the ith item in C. Let eya = eua(y) and eCa =

∑
y∈C eya.

We can write AGREEMENT as the following 0-1 optimiza-
tion problem.

min
x

∑
a,b∈A

∑
y∈C

∣∣∣∣ eya
eCa +

∑
i∈C xieia

− eyb
eCb +

∑
i∈C xieib

∣∣∣∣
s.t. xi ∈ {0, 1}

We can rewrite this with no absolute values by introducing
new variables δyab that represent the absolute disagreement
about item y between individuals a and b. We then use the
standard trick for minimizing an absolute value in linear
programs:

min
x

∑
a,b∈A

∑
y∈C

δyab

s.t.
eya

eCa +
∑
i∈C xieia

− eyb
eCb +

∑
i∈C xieib

≤ δyab

∀y ∈ C, {a, b} ⊂ A ,
eyb

eCb +
∑
i∈C xieib

− eya
eCa +

∑
i∈C xieia

≤ δyab

∀y ∈ C, {a, b} ⊂ A ,

xi ∈ {0, 1} ∀i ∈ C,
δyab ∈ R ∀y ∈ C, {a, b} ⊂ A

To get rid of the fractions, we introduce the new variables
za = 1

eCa+
∑
i xieia

for each individual a and add corre-
sponding constraints enforcing the definition of za:

min
x

∑
a,b∈A

∑
y∈C

δyab

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,
zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zaeCa + za
∑
i∈C

xieia = 1 ∀a ∈ A,

xi ∈ {0, 1} ∀i ∈ C,
δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,
za ∈ R ∀a ∈ A

This is a mixed-integer bilinear program (MIBLP) with
m binary variables, n + k

(
n
2

)
real variables, 2k

(
n
2

)
linear

constraints, and n bilinear constraints. We plug this form
of the problem directly into a branch-and-bound solver (we
use Gurobi).



Choice Set Optimization Under Discrete Choice Models of Group Decisions

D.2. DISAGREEMENT

A similar technique works for DISAGREEMENT, but maxi-
mizing an absolute value is slightly trickier than minimizing.
In addition to the variables δyab that we used before, we also
add new binary variables gyab indicating whether each dif-
ference in choice probabilities is positive or negative. With
these new variables (and following the same steps as above),
DISAGREEMENT can be written as the following MIBLP:

max
x

∑
a,b∈A

∑
y∈C

δyab

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,
zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

2gyab + zaeya − zbeyb ≥ δyab ∀y ∈ C, {a, b} ⊂ A,
2(1− gyab) + zbeyb − zaeya ≥ δyab ∀y ∈ C, {a, b} ⊂ A,

zaeCa + za
∑
i∈C

xieia = 1 ∀a ∈ A,

xi ∈ {0, 1} ∀i ∈ C,
gyab ∈ {0, 1} ∀y ∈ C, {a, b} ⊂ A,
δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,
za ∈ R ∀a ∈ A

E. Additional experiment details
E.1. Simple example of poor performance for Greedy

As we saw in experimental data, Greedy can perform poorly
even in small instances of AGREEMENT. Below we provide
an MNL instance with n = m = k = 2 for which the error
of the greedy solution is approximately 1. With only two
individuals, 0 ≤ D(Z) ≤ 2, so an error of 1 is very large.

In the bad instance for greedy, A = {a, b}, C = {x, y},
C = {p, q}, and the utilities are as follows.

ua(x) = 8

ua(y) = 2

ua(p) = 10

ua(q) = 0

ub(x) = 8

ub(y) = 8

ub(p) = 0

ub(q) = 15

In this instance of AGREEMENT, the greedy solution is
D(∅) ≈ 0.9951 (including either p or q alone increases
disagreement), while the optimal solution is D({p, q}) ≈
0.0009.

E.2. All-pairs agreement results for MIBLP

Figure 6 shows the comparison in performance between
Algorithm 1 and the MIBLP approach for the all-pairs
AGREEMENT and DISAGREEMENT experiment. The meth-
ods perform nearly identically on both ALLSTATE and YOO-
CHOOSE. The MIBLP approach performs marginally better

in some cases of YOOCHOOSE AGREEMENT. As noted in
the paper, the MIBLP heuristic is considerably faster (12x
and 240x on YOOCHOOSE and ALLSTATE, respectively),
but provides no a priori performance guarantee and cannot
be applied to CDM or NL. Nonetheless, we can see that it
performs very competitively and would be a good approach
to use in practice for MNL AGREEMENT and DISAGREE-
MENT.
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Figure 6. MIBLP vs. Algorithm 1 performance box plots when
applied to all 2-item choice sets in ALLSTATE and YOOCHOOSE

under MNL. Each point is the difference in D(Z) when MIBLP
and Algorithm 1 are run on a choice set, and Xs mark means.

E.3. Choice sets sampled from data

We repeated the all-pairs agreement experiment with 500
choice sets of size up to 5 sampled uniformly from each
dataset, allowing us to evaluate the performance of Algo-
rithm 1 on realistic choice sets. We limited the size of
sampled choice sets since the CDM version of Algorithm 1
scales poorly with |C| (see Appendix C.3). For this ver-
sion of the experiment, we fixed larger values of ε (2 for
MNL, 500 for CDM) to handle larger choice sets and to
keep running time down. Again, Algorithm 1 has better
mean performance in every case (Fig. 7), showing that it
performs well on real choice sets.

F. A note on ethical considerations
Influencing the preferences of decision-makers has the po-
tential for malicious applications, so it is important to ad-
dress the ethical context of this work.
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Figure 7. Results of the agreement experiment with 500 choice sets
sampled uniformly from each dataset. Compare with Fig. 2 in the
main text. Again, Algorithm 1 has better mean performance in all
cases. The larger values of ε result in slightly worse performance
on the margins than in Fig. 2, but also fewer sets computed.

Any problem with positive social applications (e.g., AGREE-
MENT: encouraging consensus, PROMOTION: promot-
ing environmentally-friendly transportation options, DIS-
AGREEMENT: increasing diversity of opinions) has the
potential to be used for ill. This should not prevent us
from seeking methods to acheive these positive ends, but
we should certainly be cognizant of the possibility of un-
intended applications. In a different vein, understanding
when a group is susceptible to undesired interventions (or
detecting such interventions) makes problems like DIS-
AGREEMENT worth studying from an adversarial perspec-
tive. Along these lines, our hardness results are encouraging
since optimal malicious interventions are difficult.

Finally, we note that all of the theoretical problems we study
presuppose access to choice data from which preferences
can be learned and the ability to influence choice sets. Any
entity which has both of these (such as an online retailer, a
government deciding transportation policy, etc.) already has
significant power to influence choosers. If such an entity
had malicious intent, then near-optimal DISAGREEMENT
solutions would be the least of our concerns.

To summarize, these problems are worth studying because
of (1) their purely theoretical value in furthering the field
of discrete choice, (2) their potential for positive applica-
tions, (3) insight into the potential for harmful manipulation
by an adversary, and (4) the minimal additional risk from
undesired use of our methods.
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