

Learning Interpretable Feature Context Effects in Discrete Choice

Kiran Tomlinson PhD Student, Cornell CS

Code: bit.ly/lcl-code Data: bit.ly/lcl-data Slides: bit.lv/lcl-kdd-slides

research with Austin R. Benson

Choices and context effects

Discrete choices are everywhere

amazon.com

Amazon's Choice

\$**27**⁹⁹ (\$0.26/Fl Oz) Save \$2.00 with coupon ✓prime FREE Delivery Thu, Jun 24

KDD Banana Flavored Milk 180ML (18 PACK) 6.33 Fl Oz (Pack of 18)

★★★★☆~31

\$**27**⁹⁹ (\$0.26/Fl Oz) Save \$2.00 with coupon **√prime** FREE Delivery **Thu, Jun 24**

KDD Original Milk 180ML (18 PACK) *****~2

^{\$}27⁹⁹ (\$4.60/Ounce) **√prime** FREE Delivery **Thu, Jun 24**

Best Western University Inn

lthaca

Black Friday / Cyber Monday Deals Now Free Shuttle Transportation, Grab & Go Breakfast, WiFi & Parking. Pet friendly, Outdoor Pool, Fitness Center. Sanitizing Daily

Breakfast included

3.9/5 Good (999 reviews)

lthaca

Black Friday / Cyber Monday Deals Now

Complimentary Breakfast. Free Airport Shuttle, WiFi & parking. Close to Ithaca College & Cornell University. Pets welcome.

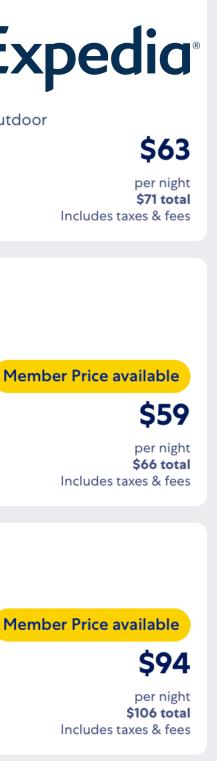
Breakfast included

3.6/5 Good (694 reviews)

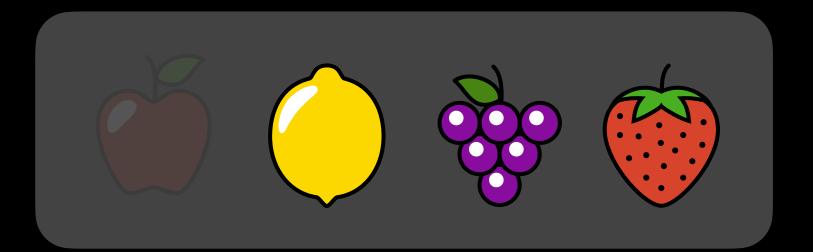
Hotel Ithaca

lthaca

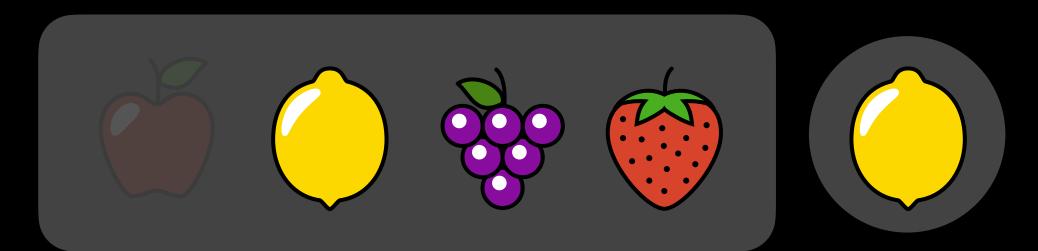
4.0/5 Very Good (842 reviews)

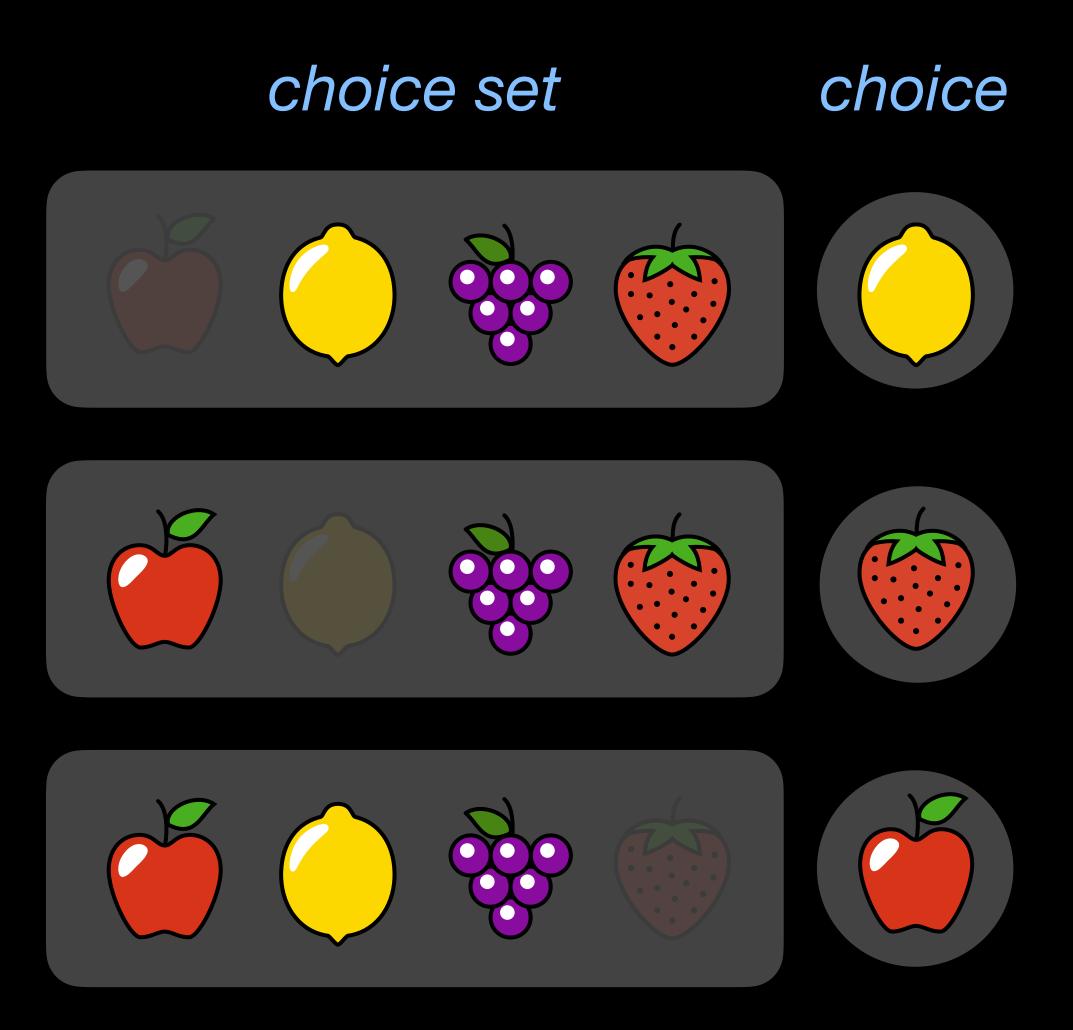


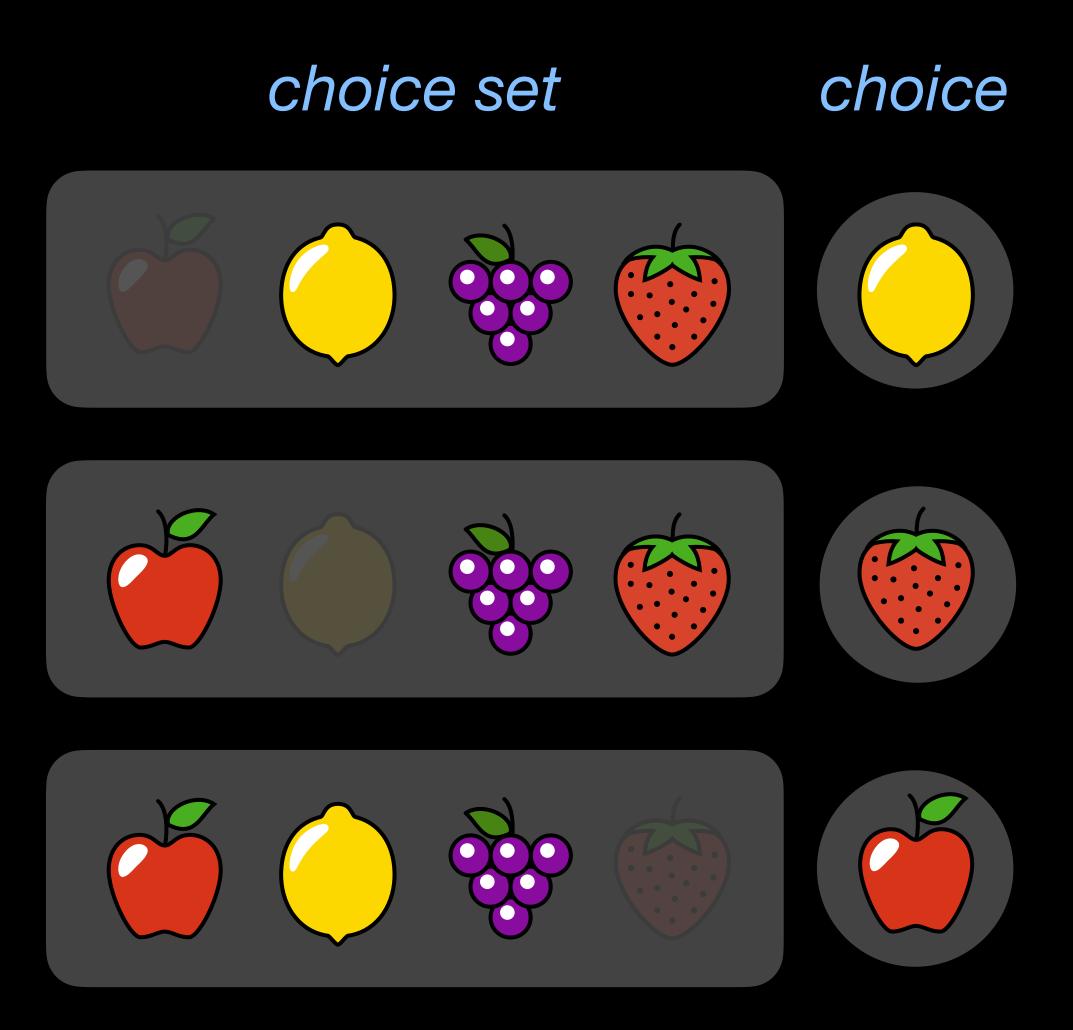
choice set

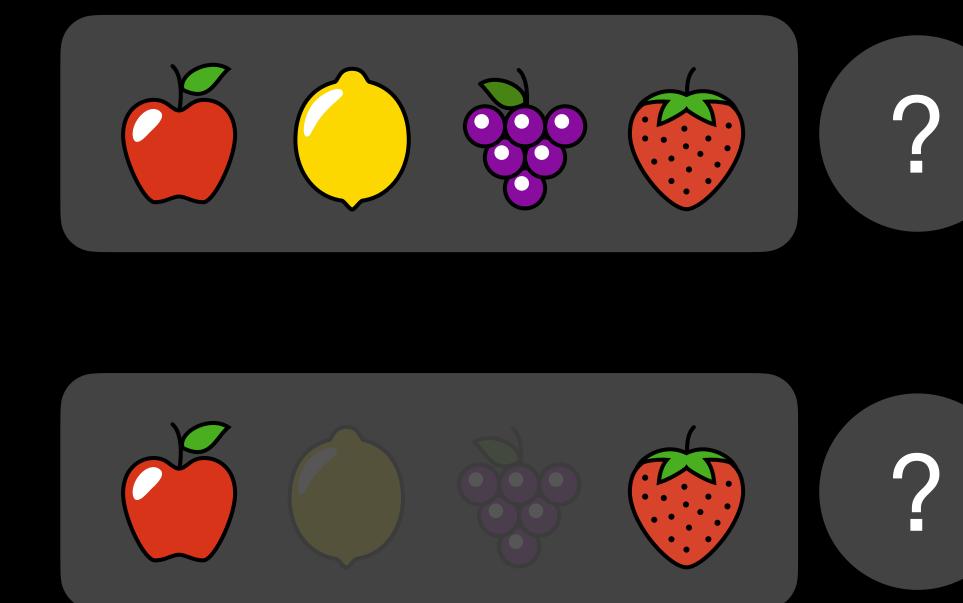


choice set choice







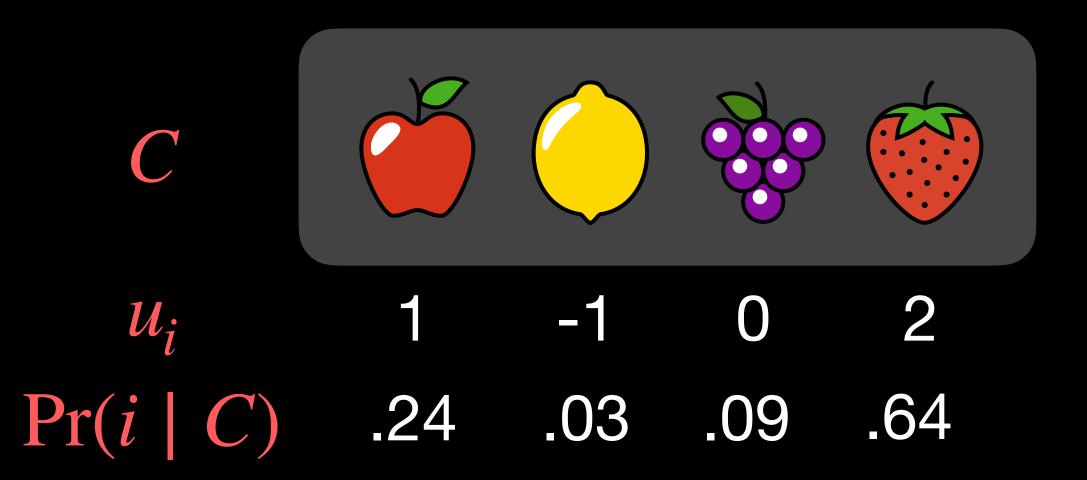


(McFadden, *Frontiers in Econometrics* 1973)

Assume *item* i has *utility* u_i $Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{j \in C} \exp(u_j)}$

(McFadden, Frontiers in Econometrics 1973)

Assume *item i* has *utility* u_i $Pr(i \mid C) = \frac{exp(u_i)}{\sum_{j \in C} exp(u_j)}$ (McFadden, Frontiers in Econometrics 1973)



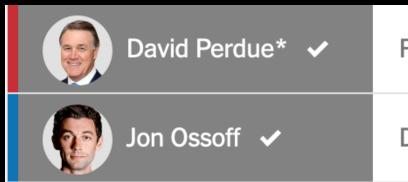
Assume *item i* has *utility u*_i $\exp(u_i)$ Pr(i C) $exp(u_i)$

Unique choice model satisfying independence of irrelevant alternatives (IIA):

(Luce, Individual Choice Behavior 1959)

(McFadden, Frontiers in Econometrics 1973)

 $Pr(i \mid C)$ $Pr(i \mid$ $Pr(j \mid C) \quad Pr(j \mid C')$



Rep.	2,462,617	49.7 %
Dem.	2,374,519	47.9



Rep.	2,462,617	49.7 %
Dem.	2,374,519	47.9

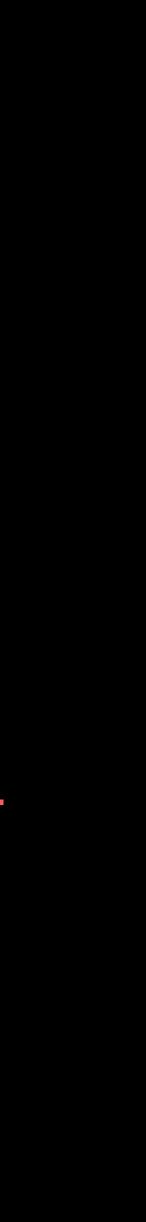
Dem.	1,617,035 32.9%	
Rep.	1,273,214 25.9	
Rep.	980,454 20.0	

The choice set influences preferences.

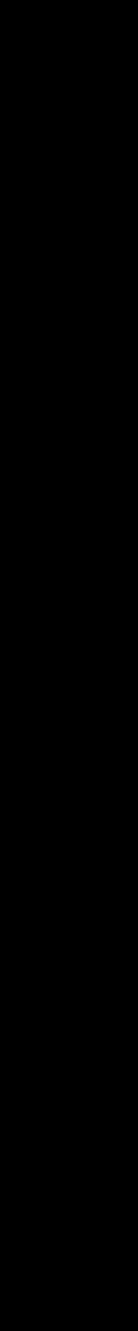
Rep.	2,462,617	49.7 %
Dem.	2,374,519	47.9

IIA violations: $Pr(i \mid C)$ \neq $Pr(i \mid C')$ $Pr(j \mid C)$ \neq $Pr(i \mid C')$ $Pr(j \mid C)$ $Pr(j \mid C')$

Dem.	1,617,035	32.9%
Rep.	1,273,214	25.9
Rep.	980,454	20.0

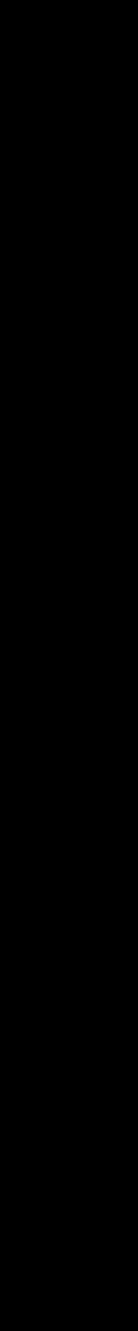


(Seshadri, Peysakhovich, & Ugander, ICML 2019)



(Seshadri, Peysakhovich, & Ugander, ICML 2019)

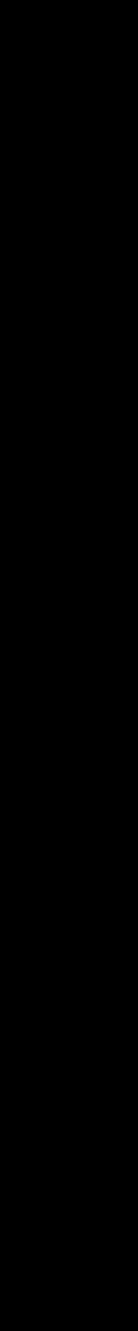
Item j exerts pull u_{ij} on item i, item utility is sum of pulls: $\Pr(i \mid C) = \frac{\exp\left(\sum_{k \in C \setminus i} u_{ik}\right)}{\sum_{j \in C} \exp\left(\sum_{k \in C \setminus i} u_{jk}\right)}$



(Seshadri, Peysakhovich, & Ugander, ICML 2019)

Item *j* exerts *pull* u_{ij} on item *i*, item utility is sum of pulls: $\Pr(i \mid C) = \frac{\exp\left(\sum_{k \in C \setminus i} u_{ik}\right)}{\sum_{j \in C} \exp\left(\sum_{k \in C \setminus i} u_{jk}\right)}$

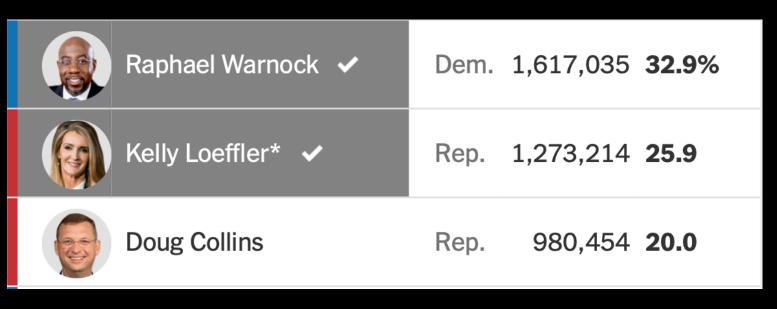
Assumes no higher-order effects (i.e., context effects decompose additively into effects of items)



(Seshadri, Peysakhovich, & Ugander, ICML 2019)

Item j exerts pull u_{ii} on item i, item utility is sum of pulls: $\exp\left(\sum_{k\in C\setminus i}u_{ik}\right)$ $Pr(i \mid C)$ $\sum_{j \in C} \exp\left(\sum_{k \in C \setminus i} u_{jk}\right)$

Assumes no higher-order effects (i.e., context effects decompose additively into effects of items)



 $u_{\text{Loeffler, Collins}} < 0$ u Collins, Loeffler < 0

Item features and the LCL

So far, models have per-item parameters

So far, models have per-item parameters

 \rightarrow can't generalize to new items not in training set

So far, models have per-item parameters

- \rightarrow can't generalize to new items not in training set
- \rightarrow hard to learn utilities for rare items

So far, models have per-item parameters

- \rightarrow can't generalize to new items not in training set
- \rightarrow hard to learn utilities for rare items
- \rightarrow too many parameters with many items

So far, models have per-item parameters

- \rightarrow can't generalize to new items not in training set
- \rightarrow hard to learn utilities for rare items
- → too many parameters with many items

Use item features:

genre: drama, *in_top_10*: True, has_new_episodes: True, producer: Netflix

genre: comedy, in_top_10: False, has_new_episodes: False, producer: NBC

genre: drama, *in_top_10*: True, has_new_episodes: False, producer: Netflix

genre: reality, *in_top_10*: True, has_new_episodes: False, producer: Banijay

MNL with item features: conditional logit

MNL with item features: conditional logit

Feature vector $x_i \in \mathbb{R}^d$ for each item *i* Preference vector $\theta \in \mathbb{R}^d$

MNL with item features: conditional logit

Feature vector $x_i \in \mathbb{R}^d$ for each item *i* Preference vector $\theta \in \mathbb{R}^d$

MNL:

 $Pr(i \mid C) = \frac{exp(u_i)}{\sum_{j \in C} exp(u_j)}$

MNL with item features: conditional logit

Feature vector $x_i \in \mathbb{R}^d$ for each item *i* Preference vector $\theta \in \mathbb{R}^d$

MNL:

Conditional logit:

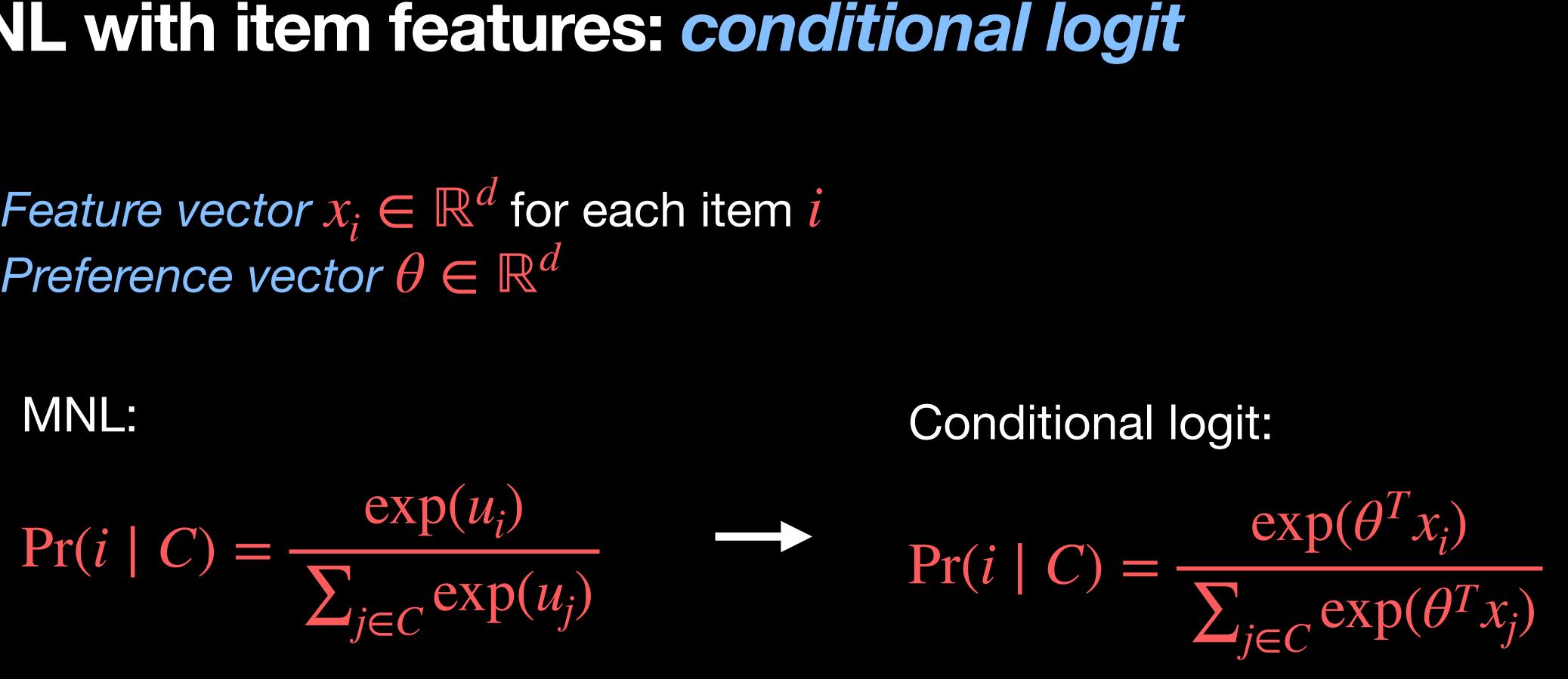
 $\Pr(i \mid C) = \frac{\exp(u_i)}{\sum_{j \in C} \exp(u_j)} \longrightarrow \Pr(i \mid C) = \frac{\exp(\theta^T x_i)}{\sum_{j \in C} \exp(\theta^T x_j)}$

NNL with item features: conditional logit

Feature vector $x_i \in \mathbb{R}^d$ for each item *i* Preference vector $\theta \in \mathbb{R}^d$

MNL:

Preference coefficient θ_k is easy to interpret: importance of the kth feature



Conditional logit utility: $u_i = \theta^T x_i$

Conditional logit utility: $u_i = \theta^T x_i$ \longrightarrow Contextual utility: $u_{i,C} = [\theta + F(C)]^T x_i$

Simplifying assumptions on F(C):

Simplifying assumptions on F(C):

1. Additivity: $F(C) \propto \int f(x_j)$ for some function f $j \in C$



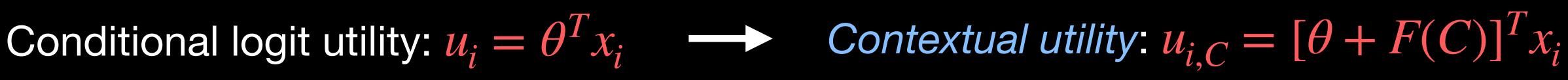
Incorporating *feature context effects* into conditional logit Conditional logit utility: $u_i = \theta^T x_i$ \longrightarrow Contextual utility: $u_{i,C} = [\theta + F(C)]^T x_i$ Simplifying assumptions on F(C): 1. Additivity: $F(C) \propto \int f(x_j)$ for some function f $j \in C$ 2. Dilution: $F(C) = \frac{1}{|C|} \sum_{i \in C} f(x_i)$

Incorporating *feature context effects* into conditional logit Conditional logit utility: $u_i = \theta^T x_i$ \longrightarrow Contextual utility: $u_{i,C} = [\theta + F(C)]^T x_i$ Simplifying assumptions on F(C): 1. Additivity: $F(C) \propto \int f(x_j)$ for some function f $i \in C$ 2. Dilution: $F(C) = \frac{1}{|C|} \sum_{i \in C} f(x_i)$

3. Linearity: $f(x_i) = Ax_i$ for some matrix $A \in \mathbb{R}^{d \times d}$

Simplifying assumptions on F(C): 1. Additivity: $F(C) \propto \int f(x_j)$ for some function f $i \in C$ 2. Dilution: $F(C) = \frac{1}{|C|} \sum_{i \in C} f(x_i)$ 3. Linearity: $f(x_i) = Ax_i$ for some matrix $A \in \mathbb{R}^{d \times d}$

Incorporating feature context effects into conditional logit



 $\rightarrow u_{i,C} = (\theta + Ax_C)^T x_i \qquad (x_C = \frac{1}{|C|} \sum_{j \in C} x_j \text{ is the mean feature vector})$

$\Pr(i \mid C) = \frac{\exp([\theta + Ax_C]^T x_i)}{\sum_{j \in C} \exp([\theta + Ax_C]^T x_j)}$

$\Pr(i \mid C) = \frac{\exp([\theta + Ax_C]^T x_i)}{\sum_{j \in C} \exp([\theta + Ax_C]^T x_j)}$

→ convex negative log-likelihood

$\Pr(i \mid C) = \frac{\exp([\theta + Ax_C]^T x_i)}{\sum_{i \in C} \exp([\theta + Ax_C]^T x_i)}$

→ convex negative log-likelihood

 $\rightarrow \theta$: base preference coefficients

\rightarrow convex negative log-likelihood

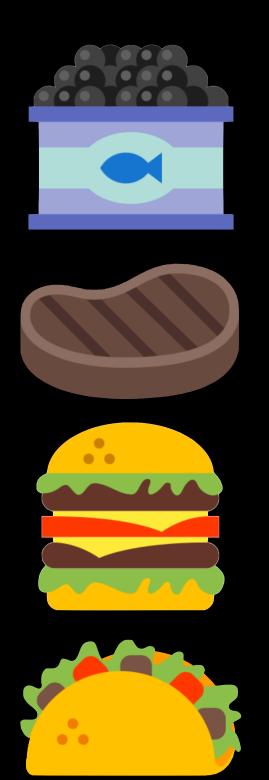
 $\rightarrow \theta$: base preference coefficients

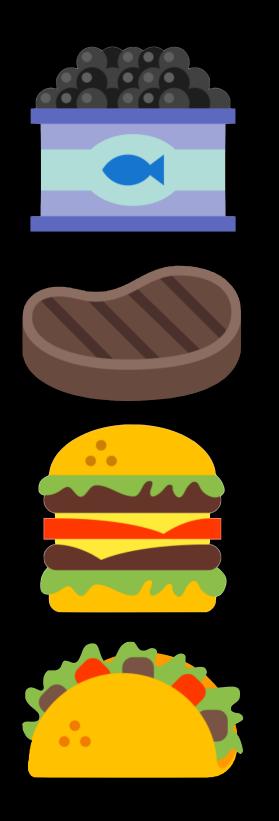
 $\rightarrow A_{pq} > 0$: when q is high in the choice set, p is more preferred

 $\Pr(i \mid C) = \frac{\exp([\theta + Ax_C]^T x_i)}{\sum_{i \in C} \exp([\theta + Ax_C]^T x_j)}$

- → convex negative log-likelihood
- $\rightarrow \theta$: base preference coefficients
- $\rightarrow A_{na} > 0$: when q is high in the choice set, p is more preferred
- $\rightarrow A_{pq} < 0$: when q is high in the choice set, p is less preferred

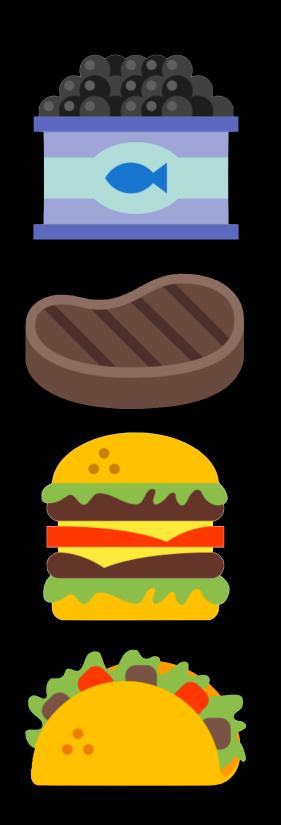
 $\Pr(i \mid C) = \frac{\exp([\theta + Ax_C]^T x_i)}{\sum_{i \in C} \exp([\theta + Ax_C]^T x_j)}$





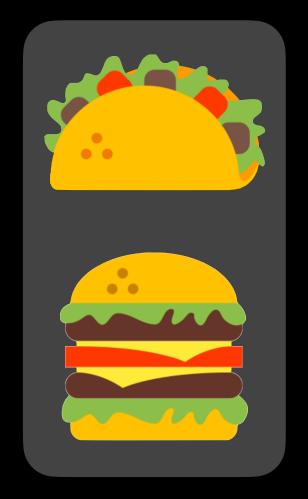
item features:

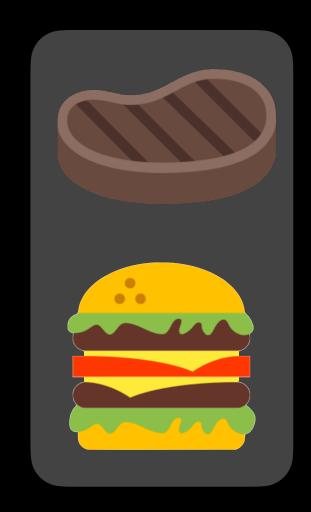
- price
- service speed
- wine selection



item features:

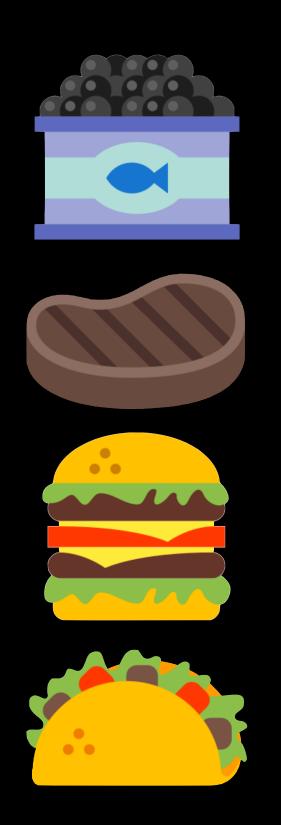
- price
- service speed
- wine selection





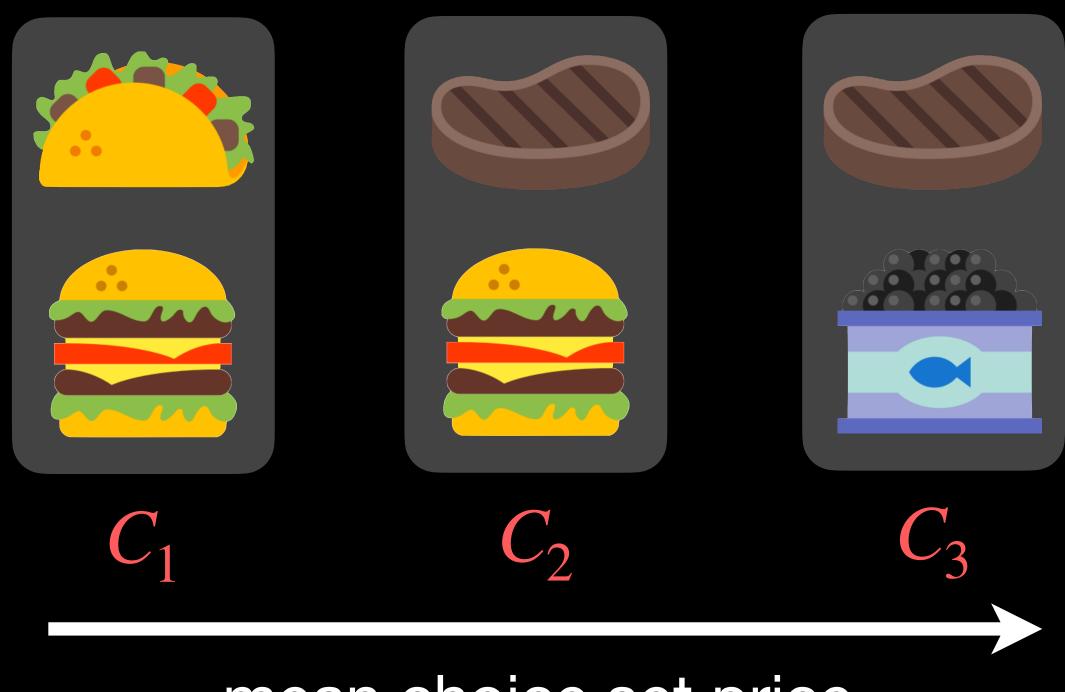
U₂

U3

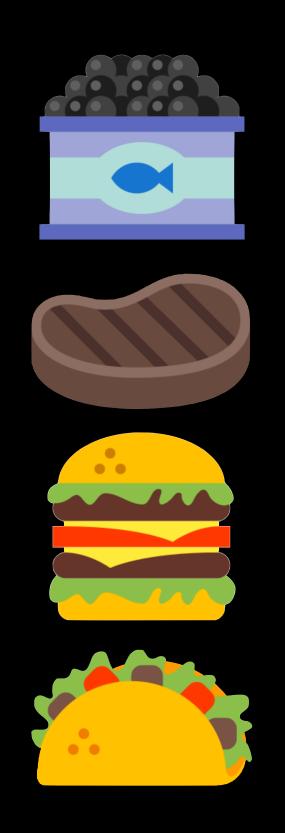


item features:

- price
- service speed
- wine selection

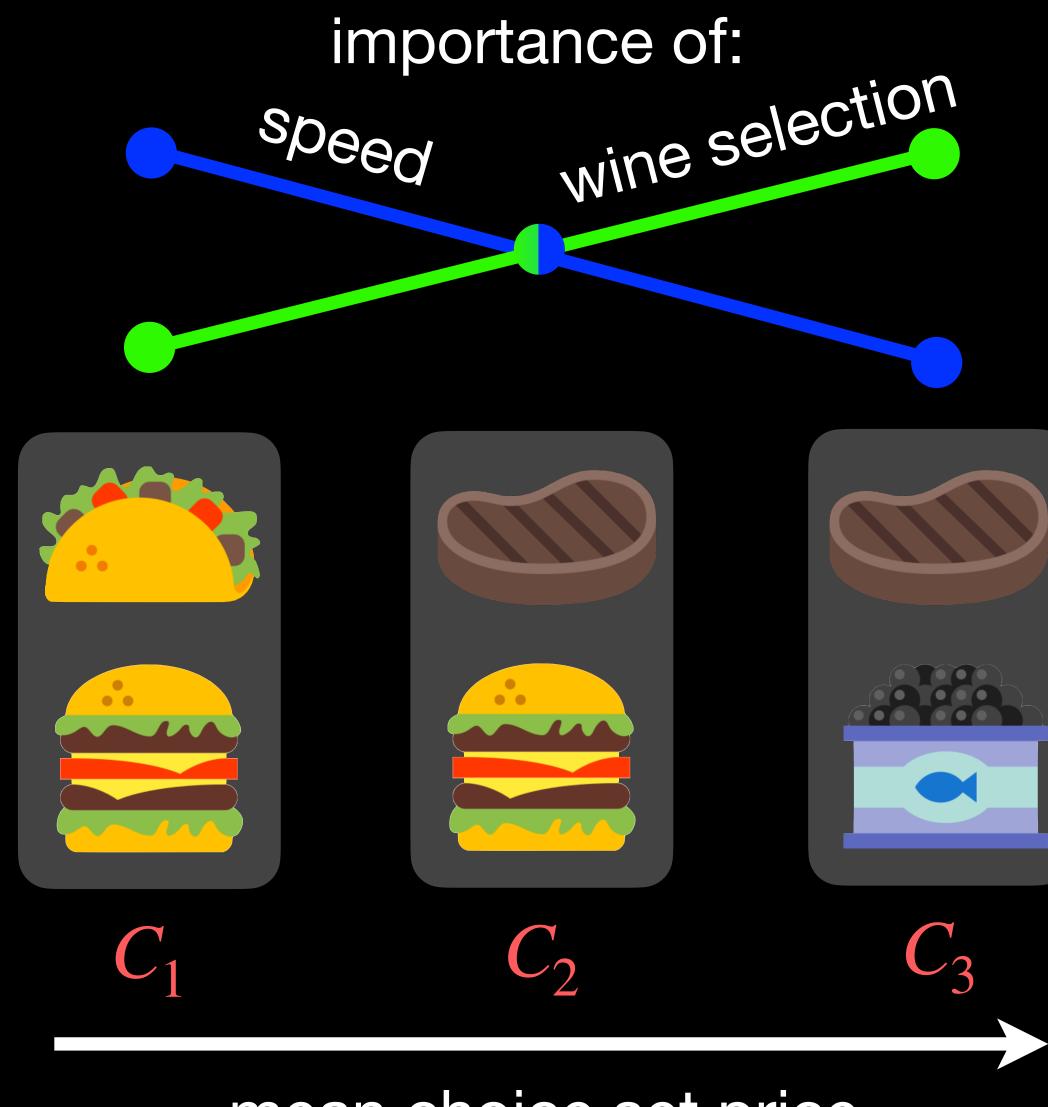


mean choice set price

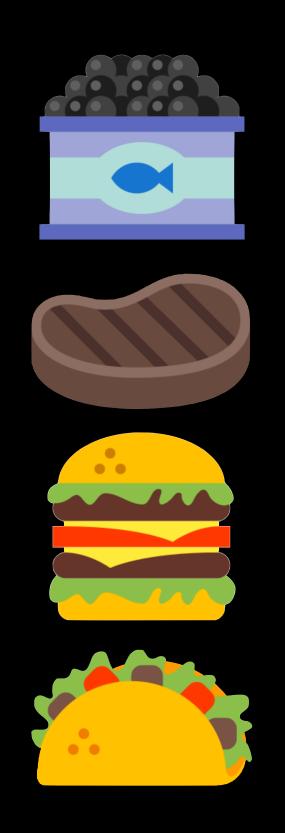


item features:

- price
- service speed
- wine selection

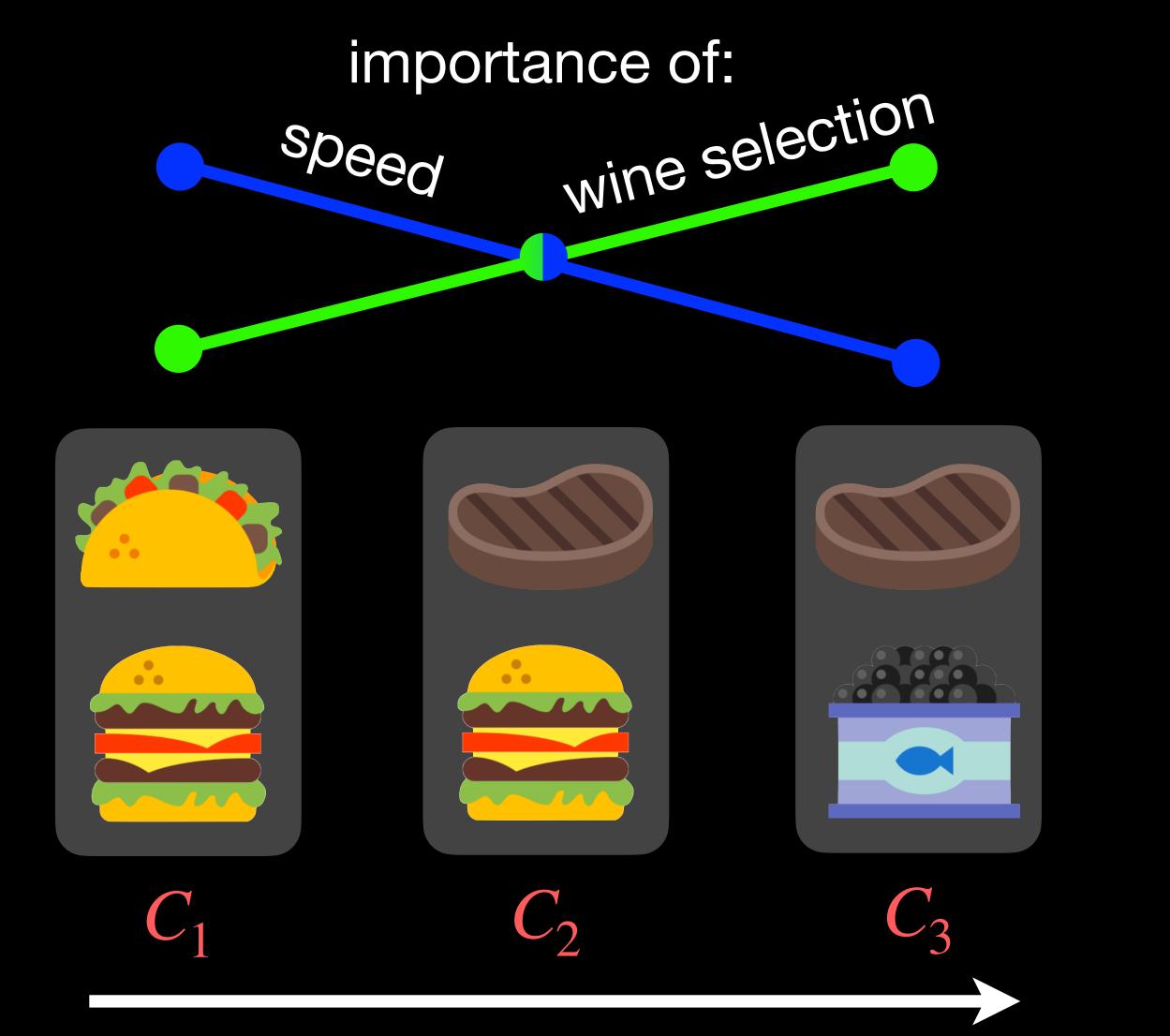


mean choice set price



item features:

- price
- service speed
- wine selection



mean choice set price

model is *identifiable* from dataset \mathcal{D} if no two parameter values result in the same probability distribution

model is *identifiable* from dataset \mathcal{D} if no two parameter values result in the same probability distribution

→ important for inference and interpretation

model is *identifiable* from dataset *S* if no two parameter values result in the same probability distribution

 \rightarrow important for inference and interpretation

dataset \mathcal{D} if and only if span $\left\{ \begin{vmatrix} x_C \\ 1 \end{vmatrix} \otimes (x_i - x_C) \right\}$

Theorem 1. A *d*-feature linear context logit is identifiable from a

$$) \mid C \in C_{\mathcal{D}}, i \in C \bigg\} = \mathbb{R}^{d^2 + d}.$$
 (6)

 $(\mathscr{C}_{\mathcal{P}}: unique choice sets in \mathcal{D}, \bigotimes: Kronecker product)$

model is *identifiable* from dataset *S* if no two parameter values result in the same probability distribution

 \rightarrow important for inference and interpretation

dataset \mathcal{D} if and only if span $\left\{ \begin{vmatrix} x_C \\ 1 \end{vmatrix} \otimes (x_i - x_C) \right\}$

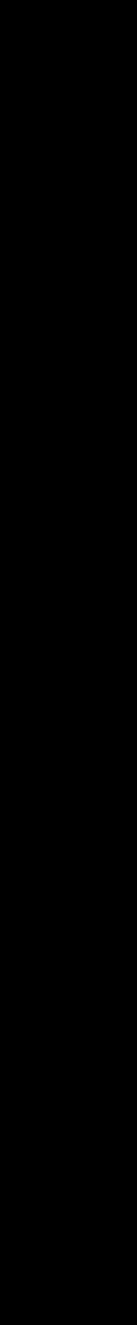
 $(\mathscr{C}_{\mathcal{P}}: unique choice sets in \mathcal{D}, \bigotimes: Kronecker product)$

intuition: need varied choice sets containing varied items

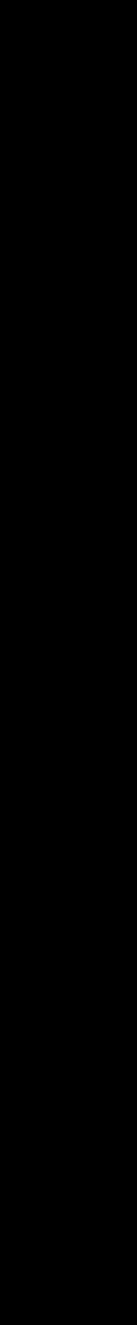
Theorem 1. A *d*-feature linear context logit is identifiable from a

$$) \mid C \in C_{\mathcal{D}}, i \in C \bigg\} = \mathbb{R}^{d^2 + d}.$$
 (6)

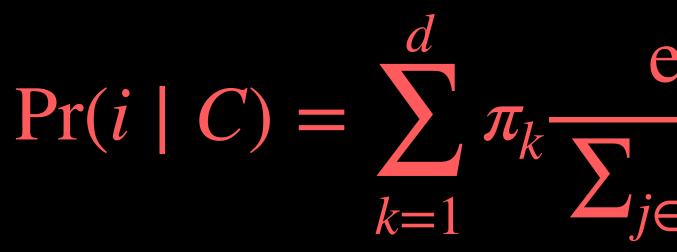




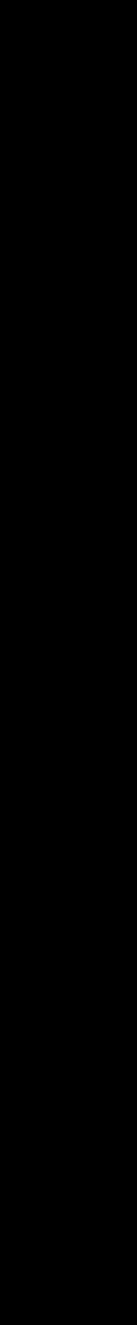
- → combines *mixed logit* with LCL
- → more flexible but harder to train (expectation-maximization)



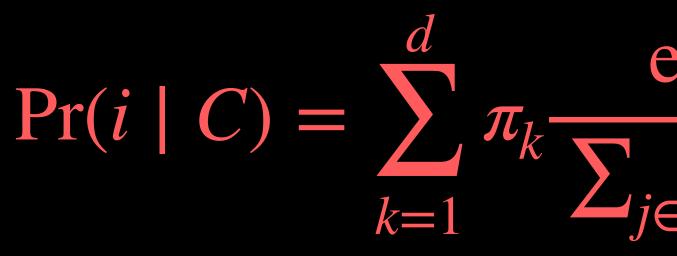
- → combines *mixed logit* with LCL
- \rightarrow more flexible but harder to train (expectation-maximization)



 $\Pr(i \mid C) = \sum_{k=1}^{d} \pi_k \frac{\exp([B_k + A_k(x_C)_k]^T x_i)}{\sum_{j \in C} \exp([B_k + A_k(x_C)_k]^T x_j)}$

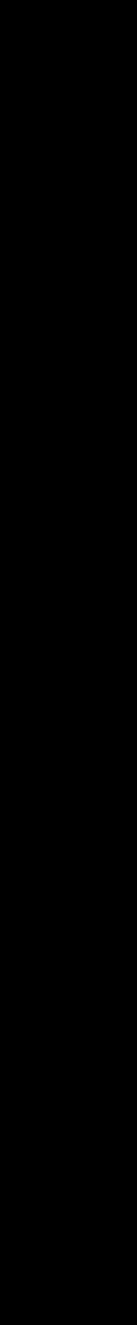


- → combines *mixed logit* with LCL
- \rightarrow more flexible but harder to train (expectation-maximization)



→ see paper for details

 $\Pr(i \mid C) = \sum_{k=1}^{d} \pi_k \frac{\exp([B_k + A_k(x_C)_k]^T x_i)}{\sum_{j \in C} \exp([B_k + A_k(x_C)_k]^T x_j)}$

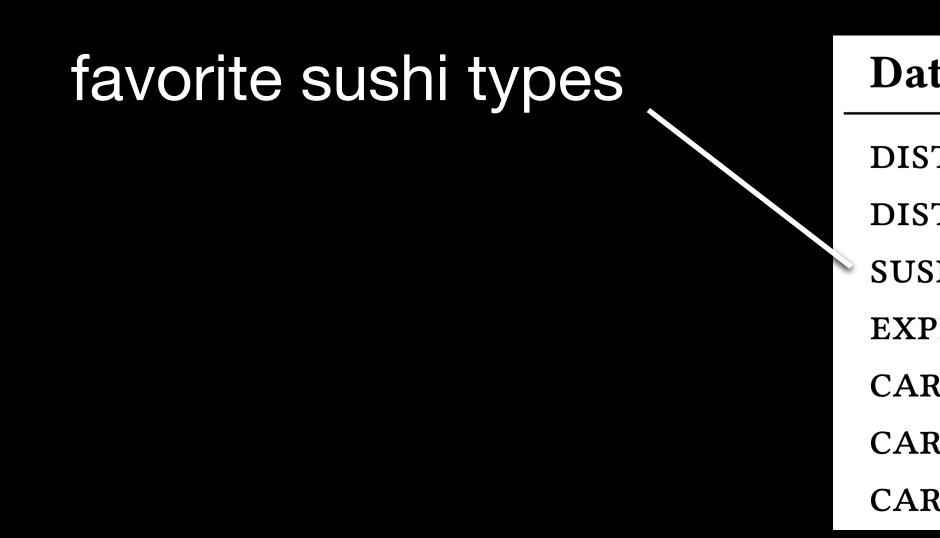


Results on choice data

Choice datasets

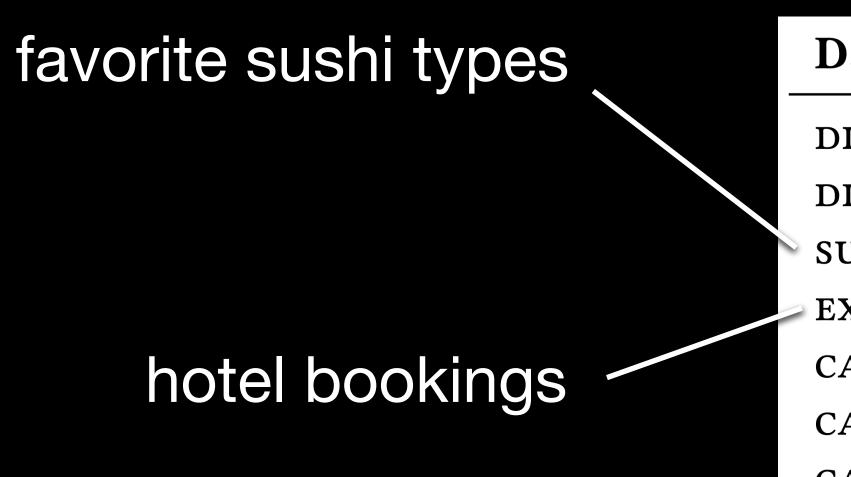
L D C C C C

Dataset	Choices	Features	Largest Choice Set
DISTRICT	5376	27	2
DISTRICT-SMART	5376	6	2
SUSHI	5000	6	10
EXPEDIA	276593	5	38
CAR-A	2675	4	2
CAR-B	2206	5	2
CAR-ALT	4654	21	6



Dataset	Choices	Features	Largest Choice Set
DISTRICT	5376	27	2
DISTRICT-SMART	5376	6	2
SUSHI	5000	6	10
EXPEDIA	276593	5	38
CAR-A	2675	4	2
CAR-B	2206	5	2
CAR-ALT	4654	21	6

Choice datasets



Dataset	Choices	Features	Largest Choice Set
DISTRICT	5376	27	2
DISTRICT-SMART	5376	6	2
SUSHI	5000	6	10
EXPEDIA	276593	5	38
CAR-A	2675	4	2
CAR-B	2206	5	2
CAR-ALT	4654	21	6

LCL improves model fit

whole-dataset negative log-likelihood (lower = better)

	CL	LCL	Mixed logit	DLCL
DISTRICT	3313	3130	3258	3206
DISTRICT-SMART	3426	3278 *	3351	3303 [†]
EXPEDIA	839505	837649*	839055	837569 [†]
SUSHI	9821	9773 [*]	9793	9764
CAR-A	1702	1694	1696	1692
CAR-B	1305	1295	1297	1284
CAR-ALT	7393	6733 *	7301	7011^{\dagger}

*significant likelihood ratio test vs MNL (p < 0.001)

†significant likelihood ratio test vs mixed logit (p < 0.001)

LCL can improve out-of-sample prediction performance

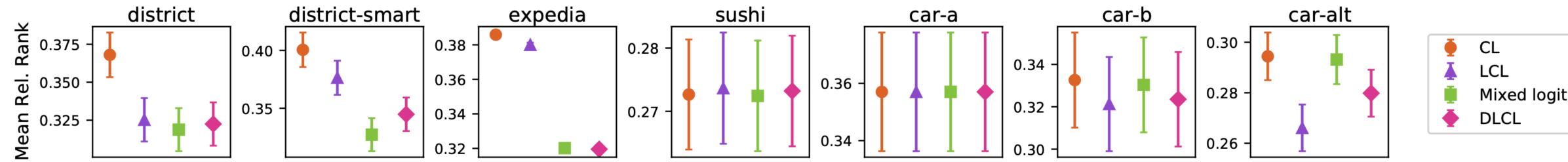
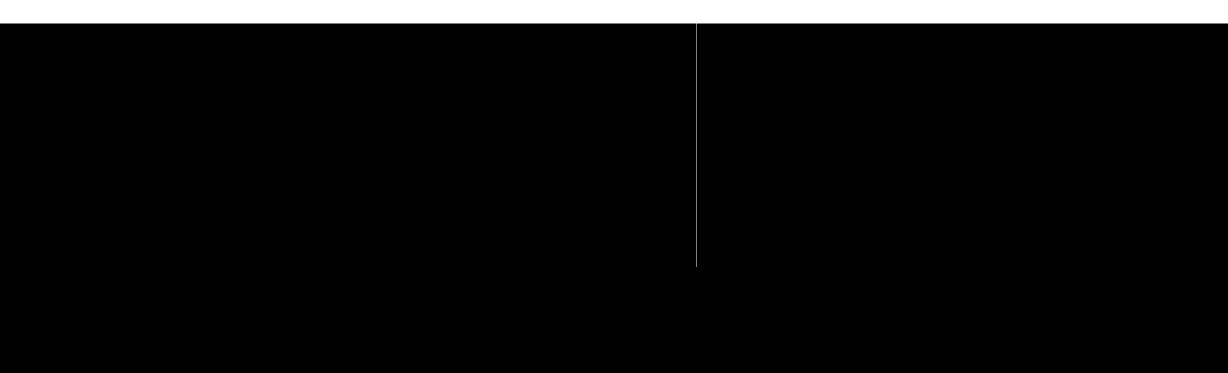


Figure 2: Mean relative rank of predictions on held-out test data (lower is better). Error bars show standard error of the mean.



Compute std. errs. (and z-scores) for each parameter estimate using MLE *asymptotic normality*

Compute std. errs. (and z-scores) for each parameter estimate using MLE *asymptotic normality*

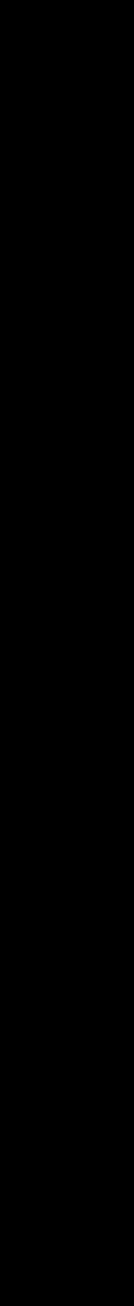
Table 4: Five largest context effects in sushi.			
Effect (q on p)	A_{pq} (std. err.)	<i>p</i> -value	
popularity on popularity	-0.28 (0.15)	0.066	
availability on is maki	0.24(0.14)	0.087	
oiliness on oiliness	-0.20(0.08)	0.0089	
popularity on availability	0.19 (0.14)	0.16	
availability on oiliness	-0.18 (0.10)	0.064	

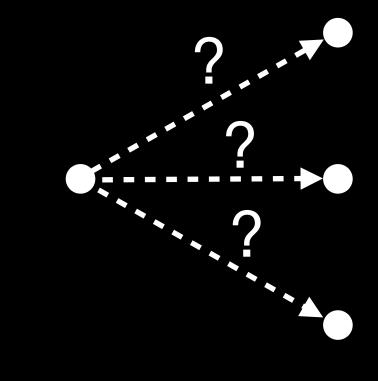
Compute std. errs. (and z-scores) for each parameter estimate using MLE asymptotic normality

Table 4: Five largest context effects in sushi.			
Effect (q on p)	A_{pq} (std. err.)	<i>p</i> -value	
popularity on popularity	-0.28 (0.15)	0.066	
availability on is maki	0.24(0.14)	0.087	
oiliness on oiliness	-0.20(0.08)	0.0089	
popularity on availability	0.19 (0.14)	0.16	
availability on oiliness	-0.18 (0.10)	0.064	

Table 5: Five largest context effects in EXPEDIA.				
Effect (q on p)	A_{pq} (std. err.)	<i>p</i> -value		
location score on price	-0.47(0.05)	$< 10^{-16}$		
on promotion on price	0.27(0.03)	$< 10^{-16}$		
review score on price	-0.19 (0.03)	$1.4 imes 10^{-9}$		
star rating on price	0.15 (0.04)	$6.7 imes 10^{-5}$		
price on star rating	0.10 (0.00)	$< 10^{-16}$		

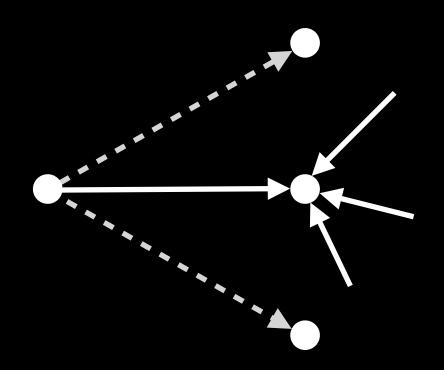
Social network application

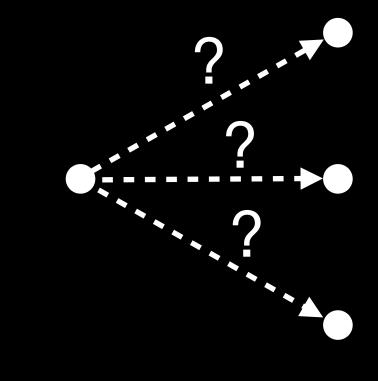




Preferential attachment

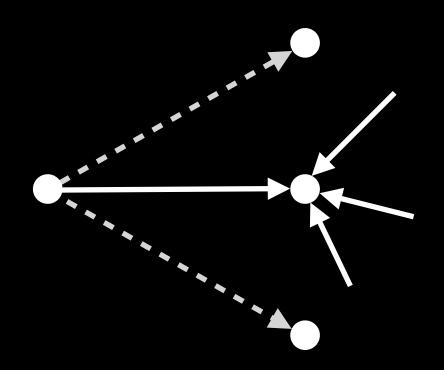
(Barabási & Albert, Science 1999)

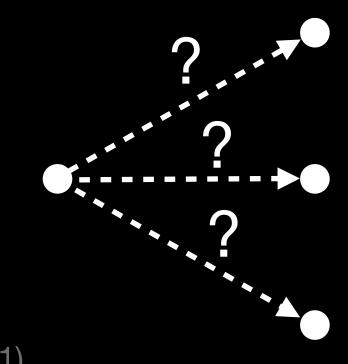




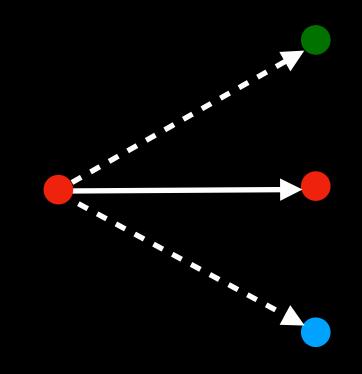
Preferential attachment

(Barabási & Albert, Science 1999)



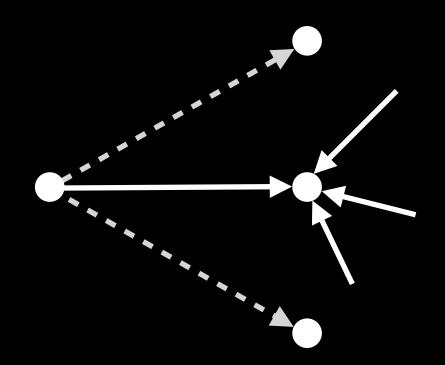


Homophily (McPherson et al., Annual Review of Sociology 2001) (Papadopoulos et al., *Nature* 2012)



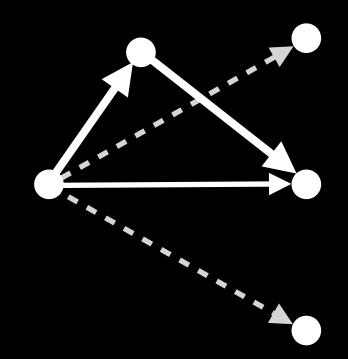
Preferential attachment

(Barabási & Albert, Science 1999)

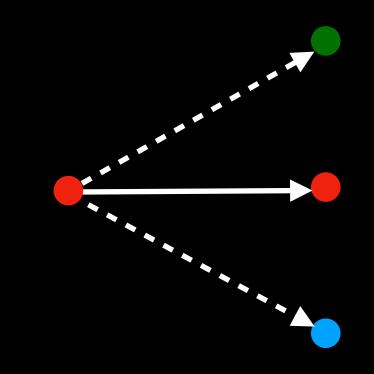


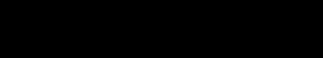
Triadic closure

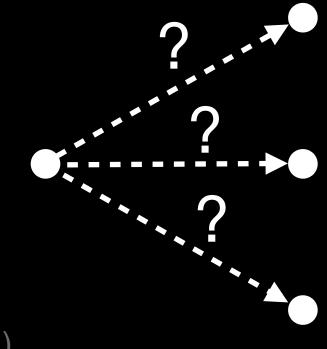
(Rapoport, Bulletin of Mathematical Biophysics 1953) (Jin et al., *Physical Review E* 2001)



(McPherson et al., Annual Review of Sociology 2001) (Papadopoulos et al., *Nature* 2012)



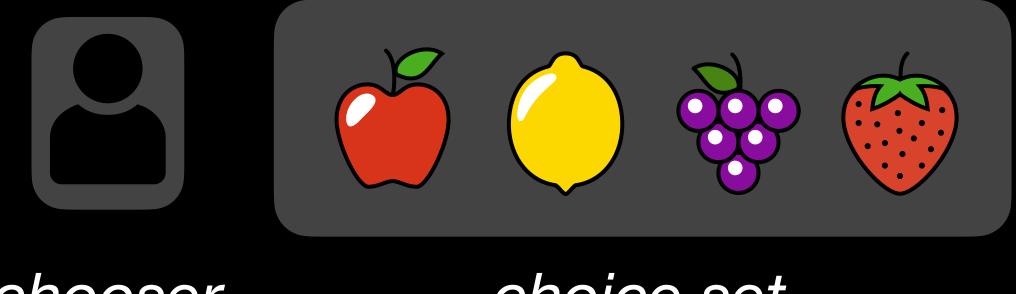




(Overgoor et al., SINM '19 & WWW '19) (Gupta & Porter, arXiv 2020)

(Overgoor et al., SINM '19 & WWW '19) (Gupta & Porter, arXiv 2020)

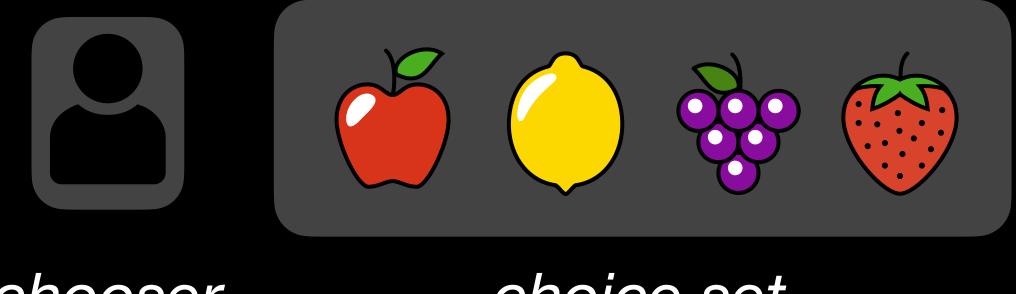
so far:



chooser choice set

(Overgoor et al., SINM '19 & WWW '19) (Gupta & Porter, arXiv 2020)

so far:



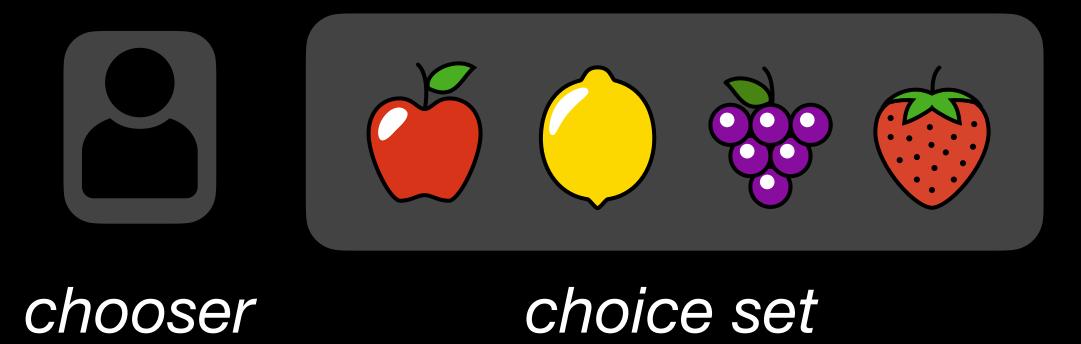
chooser choice set

in network growth: chooser _ _ _ _ _ _

choice set

(Overgoor et al., SINM '19 & WWW '19) (Gupta & Porter, arXiv 2020)

so far:



Key usage

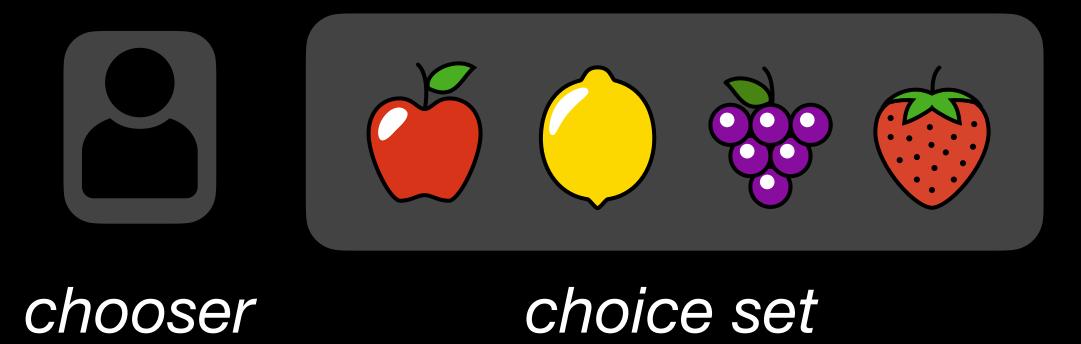
Timestamped edges → meaningful choice sets Infer relative importance of edge formation mechanisms from data

in network growth: chooser

choice set

(Overgoor et al., *SINM* '19 & *WWW* '19) (Gupta & Porter, arXiv 2020)

so far:



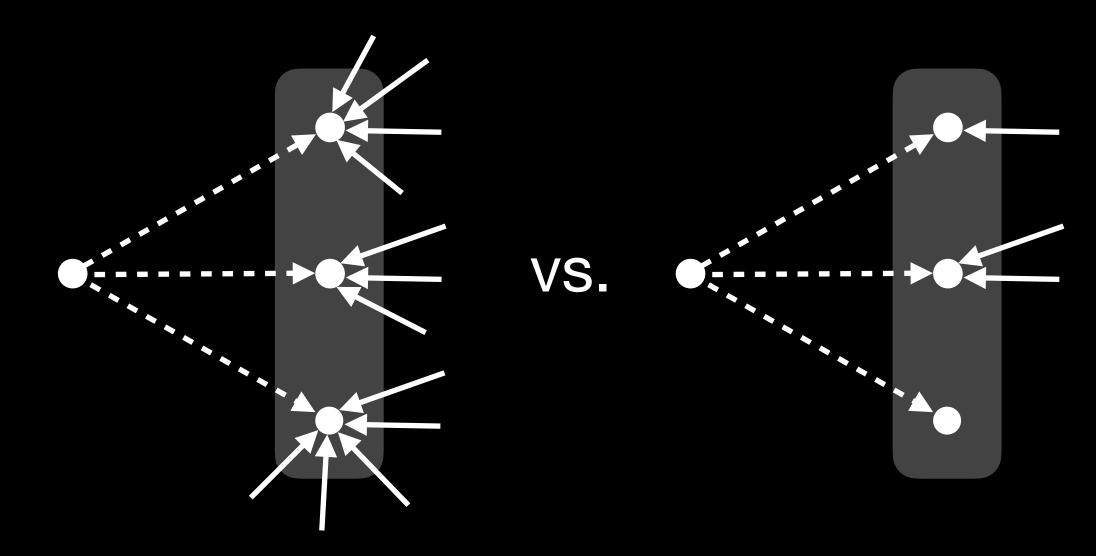
Key usage

Timestamped edges → meaningful choice sets Infer relative importance of edge formation mechanisms from data

in network growth: chooser

choice set

feature context effects:

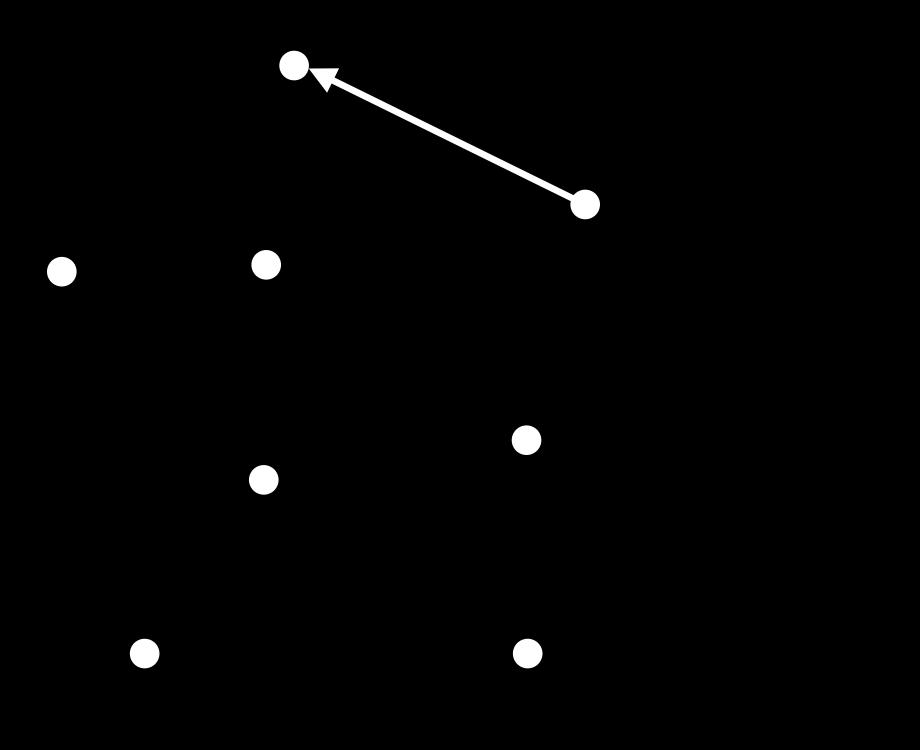


Triadic closure offers small choice sets → tractable inference → varied choice sets

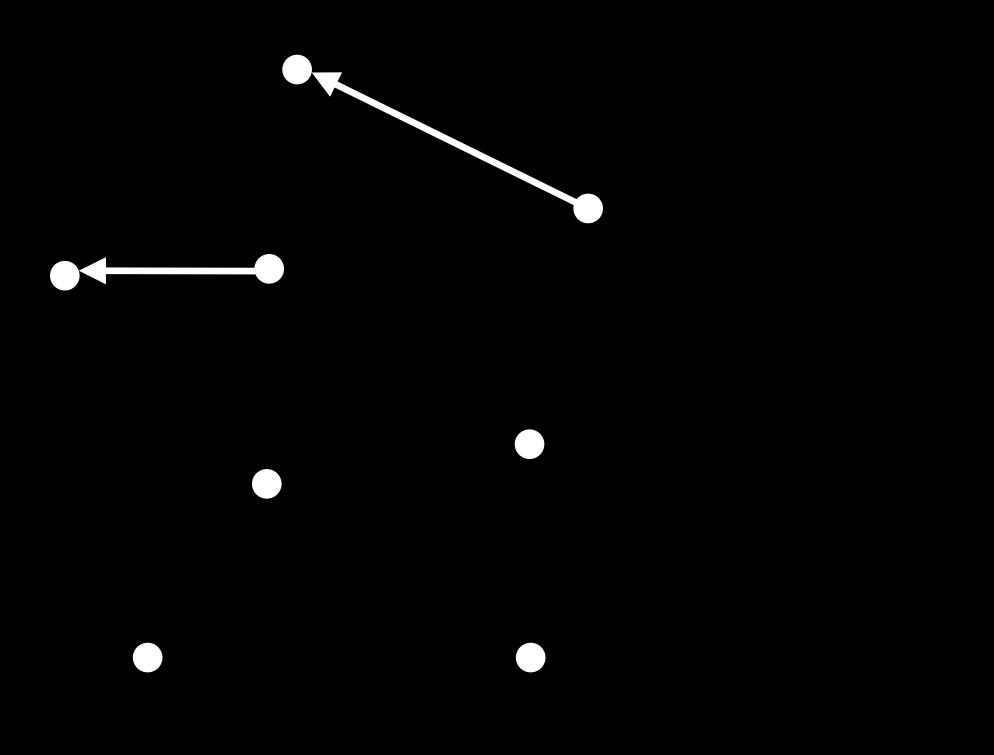
Triadic closure offers small choice sets → tractable inference → varied choice sets

Triadic closure offers small choice sets → tractable inference → varied choice sets

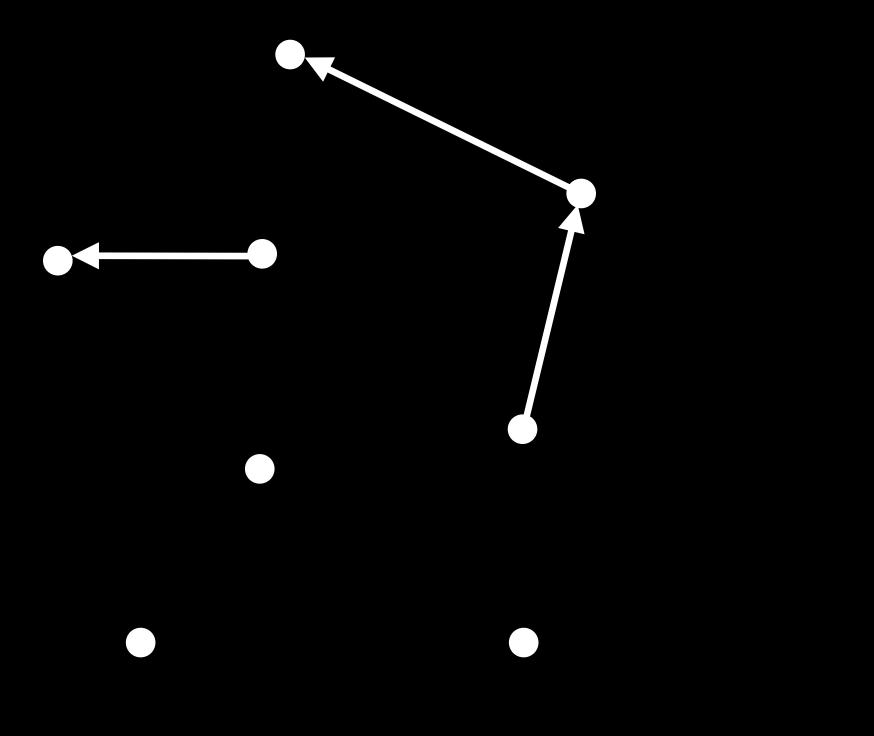
Triadic closure offers small choice sets → tractable inference → varied choice sets



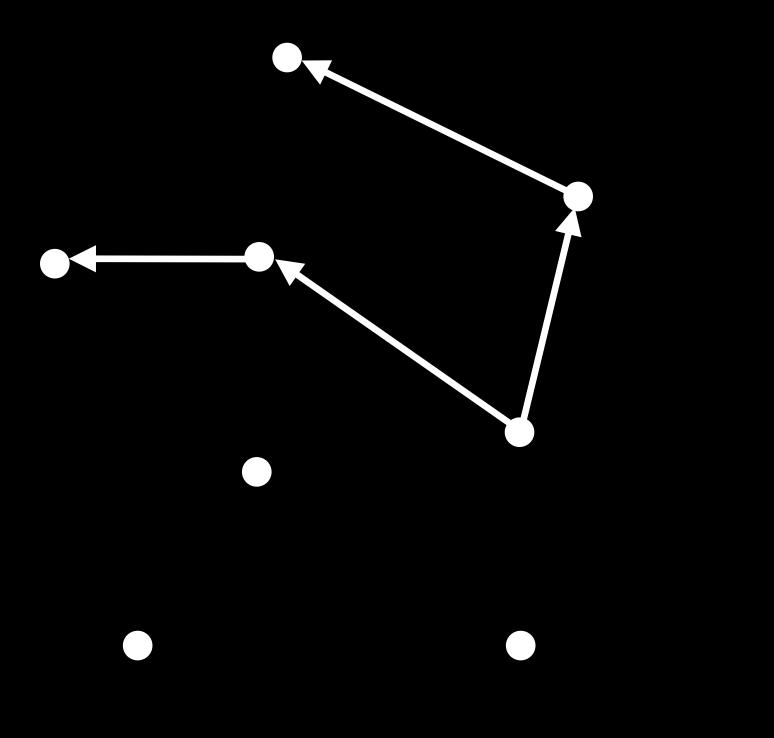
Triadic closure offers small choice sets → tractable inference → varied choice sets



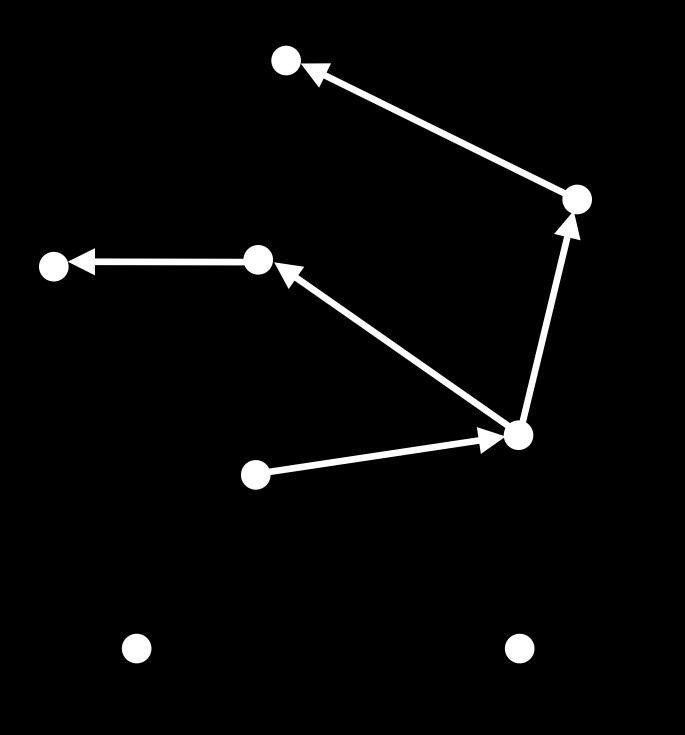
Triadic closure offers small choice sets → tractable inference → varied choice sets



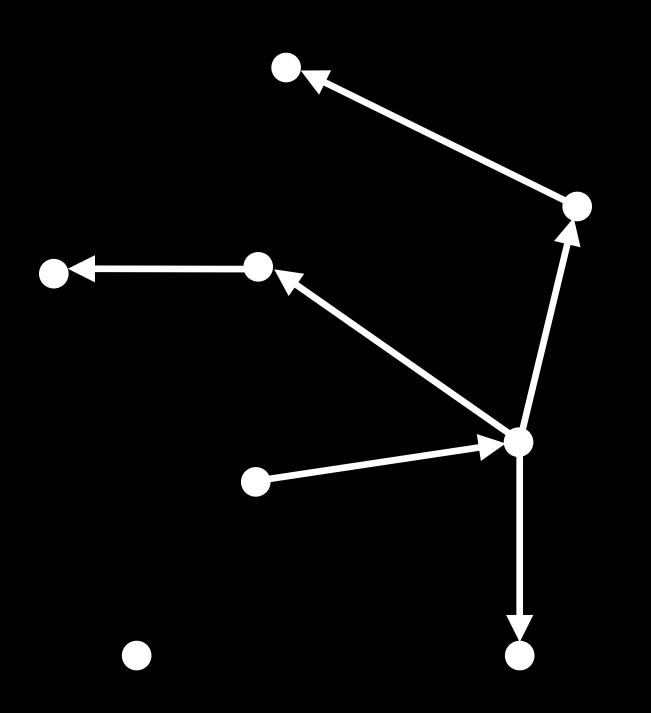
Triadic closure offers small choice sets → tractable inference → varied choice sets



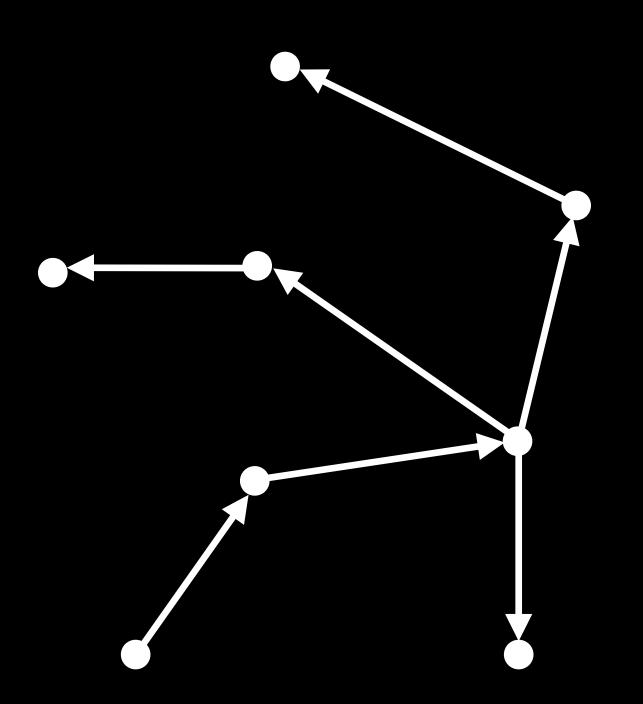
Triadic closure offers small choice sets → tractable inference → varied choice sets



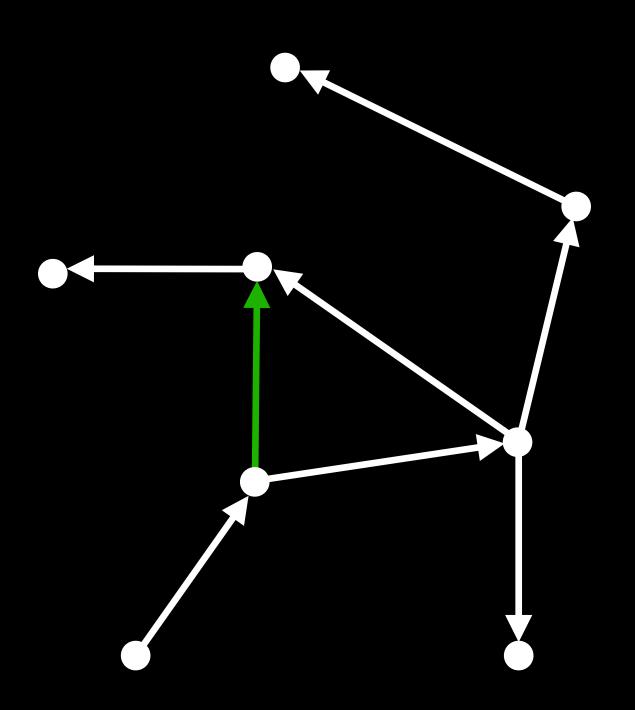
Triadic closure offers small choice sets → tractable inference → varied choice sets



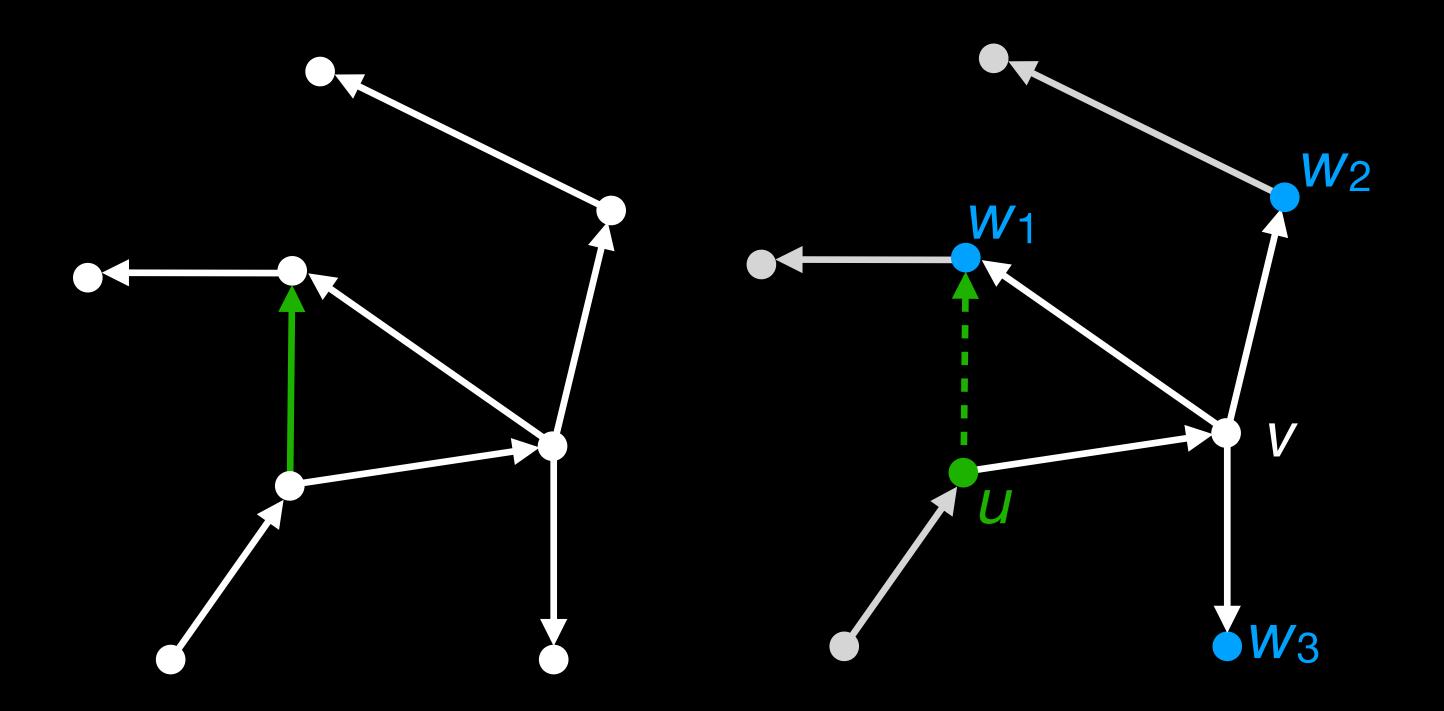
Triadic closure offers small choice sets → tractable inference → varied choice sets



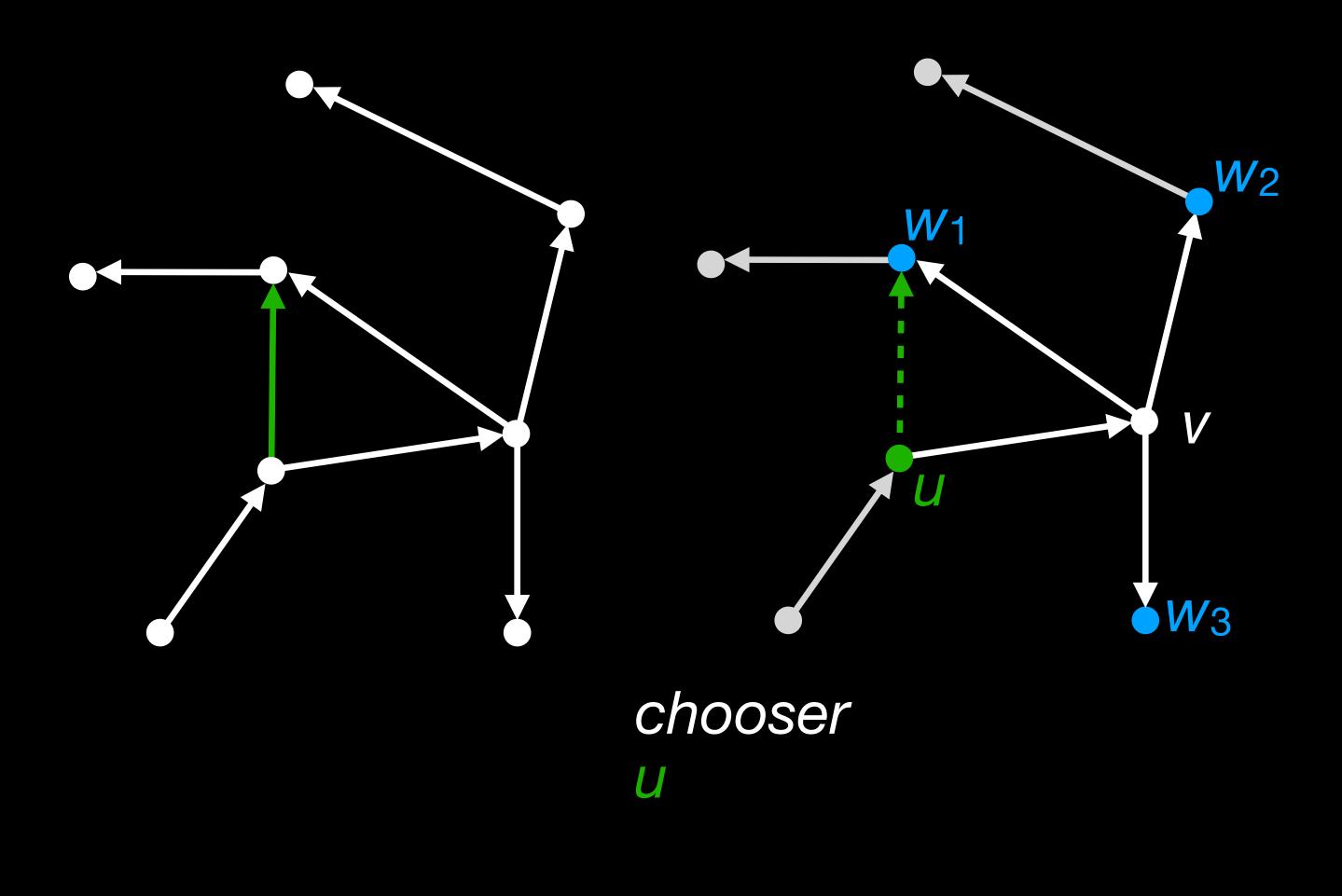
Triadic closure offers small choice sets → tractable inference → varied choice sets



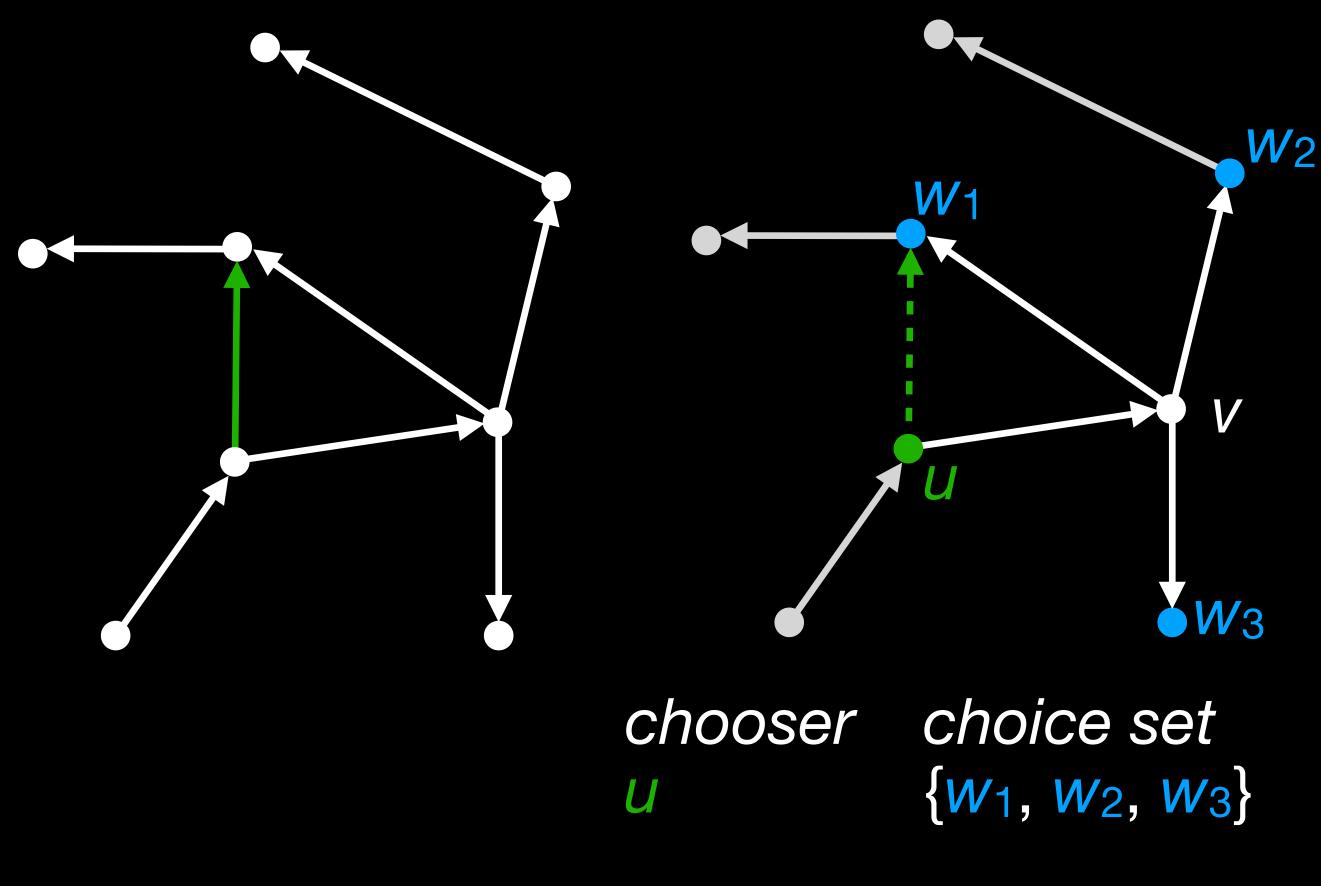
Triadic closure offers small choice sets → tractable inference → varied choice sets



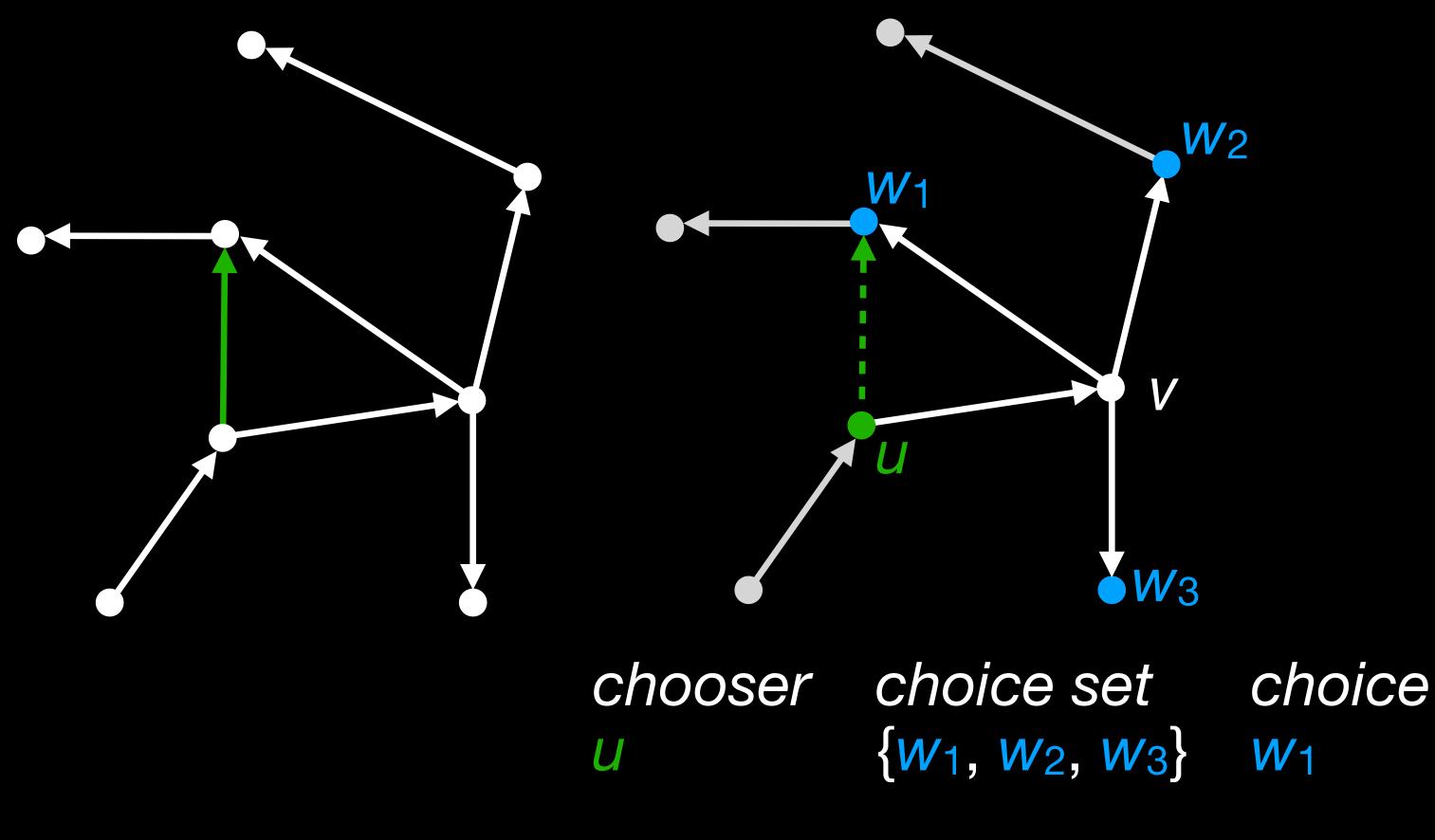
Triadic closure offers small choice sets → tractable inference → varied choice sets



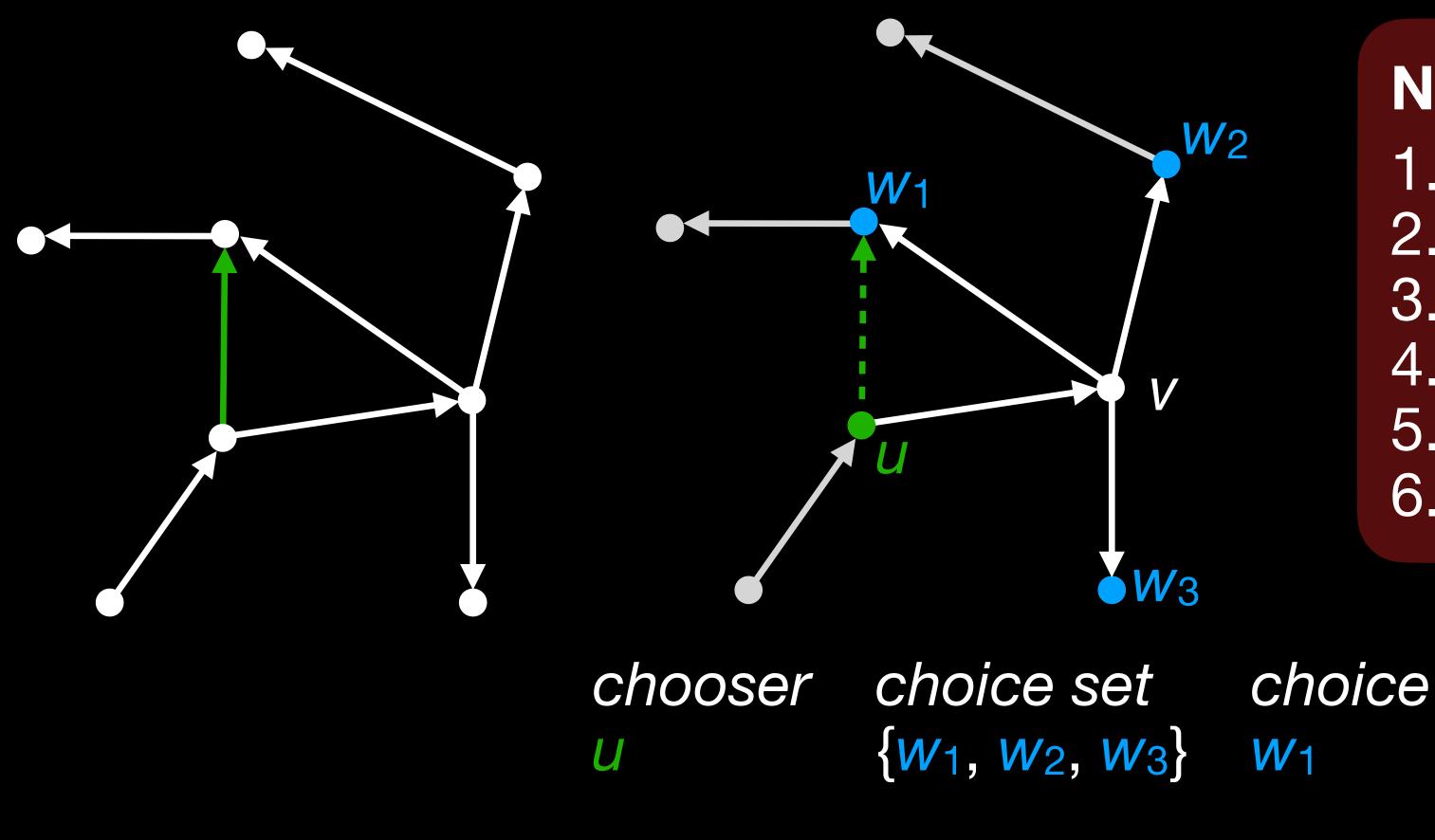
Triadic closure offers small choice sets → tractable inference → varied choice sets



Triadic closure offers small choice sets → tractable inference → varied choice sets



Triadic closure offers small choice sets → tractable inference → varied choice sets



Our data Timestamped edges (including repeats)

W_2

Node features

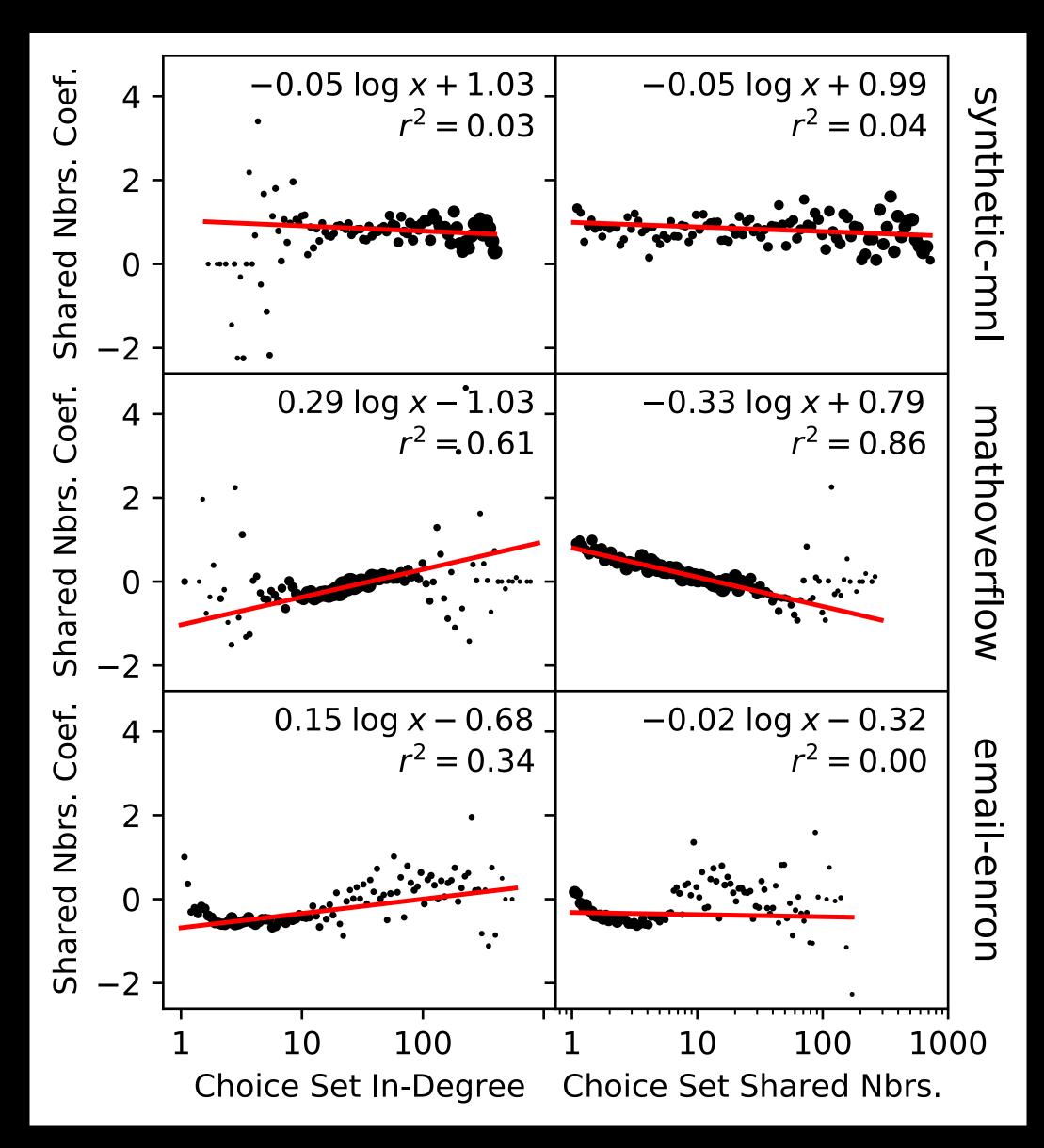
- 1. in-degree of w
- 2. # shared neighbors of *u*, *w*
- weight of edge $w \rightarrow u$ 3.
- time since last edge into w 4.
- 5. time since last edge out of w
- 6. time since last $w \rightarrow u$ edge

Context matters in triadic closure

Context matters in triadic closure

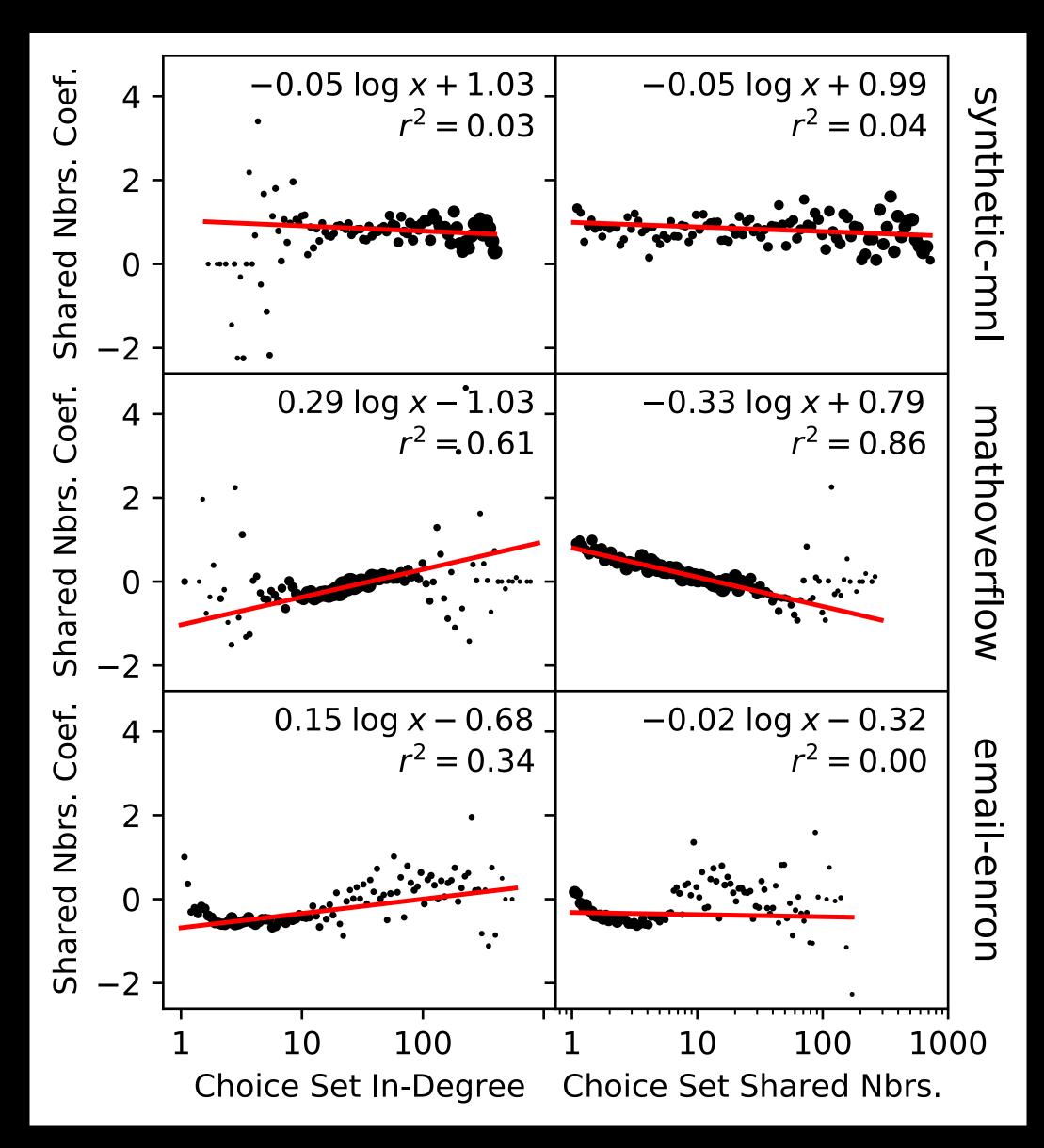
Datasets email-enron email-eu email-w3c wiki-talk reddit-hyperlink bitcoin-alpha bitcoin-otc mathoverflow college-msg facebook-wall sms-a sms-b sms-c

Context matters in triadic closure



Datasets email-enron email-eu email-w3c wiki-talk reddit-hyperlink bitcoin-alpha bitcoin-otc mathoverflow college-msg facebook-wall sms-a sms-b sms-c

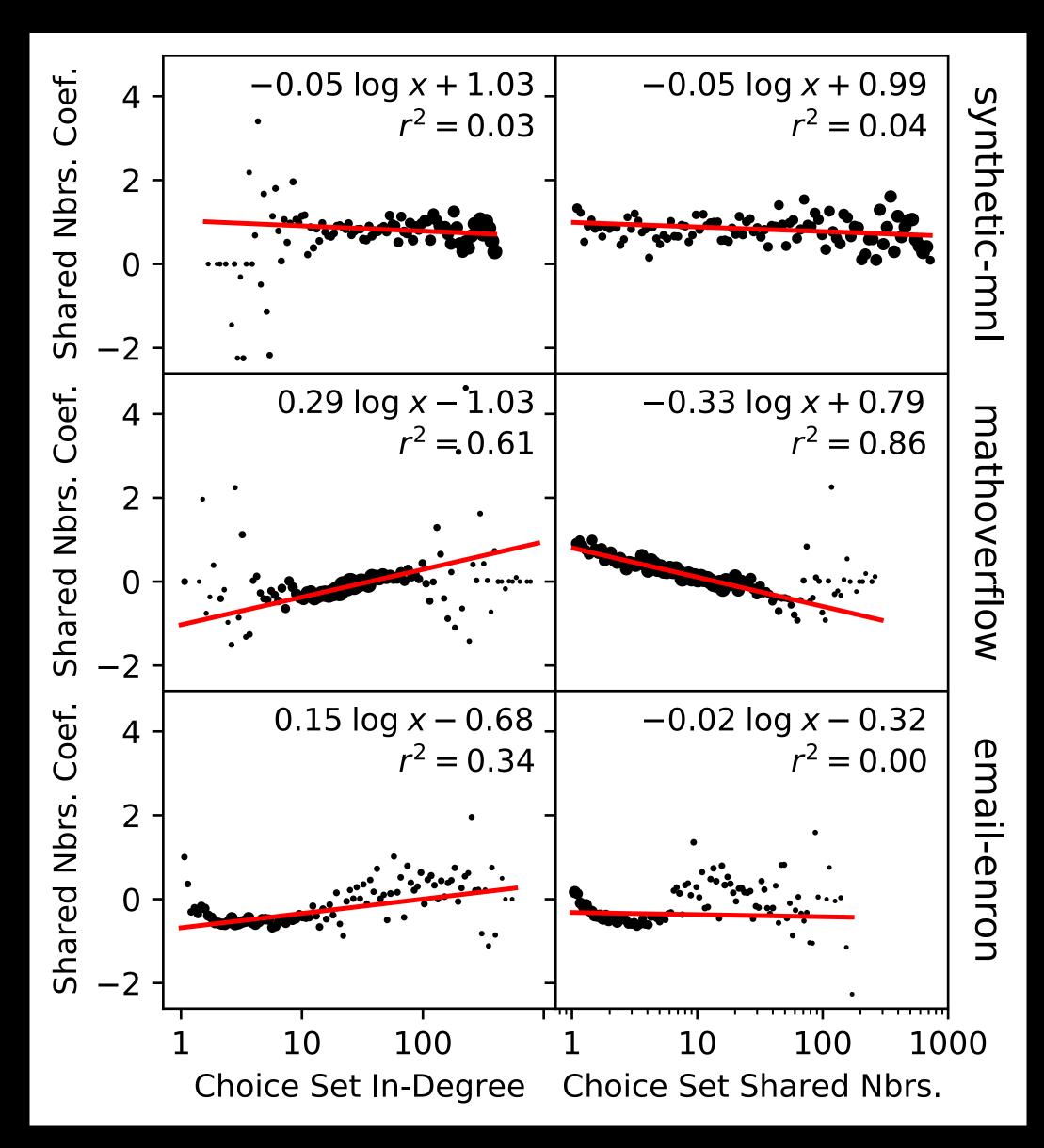
Context matters in triadic closure



Synthetic data, no context effects

Datasets email-enron email-eu email-w3c wiki-talk reddit-hyperlink bitcoin-alpha bitcoin-otc mathoverflow college-msg facebook-wall sms-a sms-b sms-c

Context matters in triadic closure

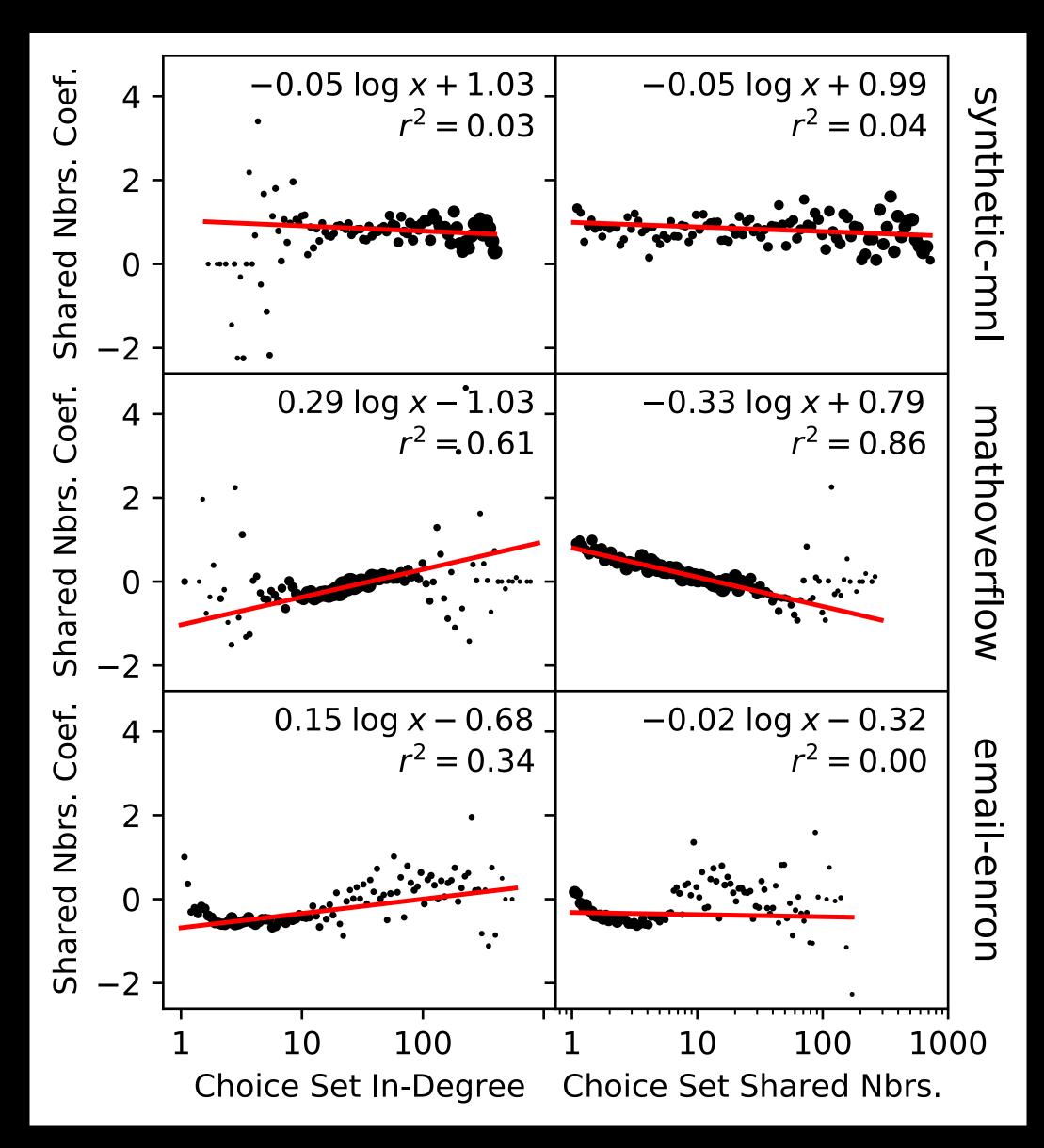


Synthetic data, no context effects

Commenting network, linear context effects

Datasets email-enron email-eu email-w3c wiki-talk reddit-hyperlink bitcoin-alpha bitcoin-otc mathoverflow college-msg facebook-wall sms-a sms-b sms-c

Context matters in triadic closure

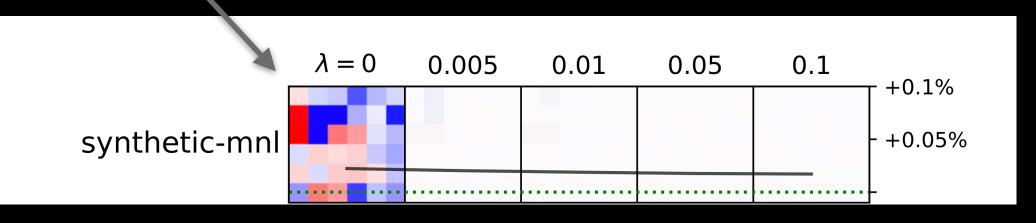


Synthetic data, no context effects

Commenting network, linear context effects

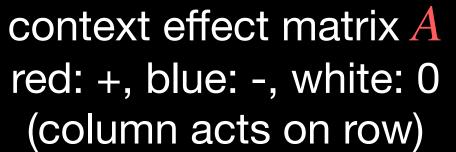
Email network, nonlinear context effects? Datasets email-enron email-eu email-w3c wiki-talk reddit-hyperlink bitcoin-alpha bitcoin-otc mathoverflow college-msg facebook-wall sms-a sms-b sms-c

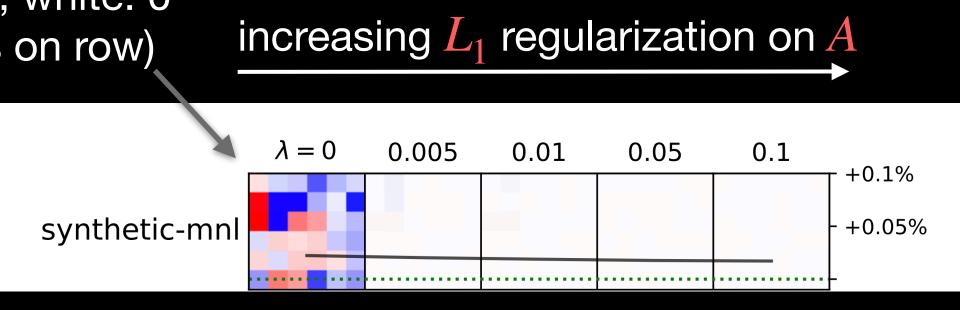
context effect matrix *A* red: +, blue: -, white: 0 (column acts on row)



Node features (left-right, top-bottom)

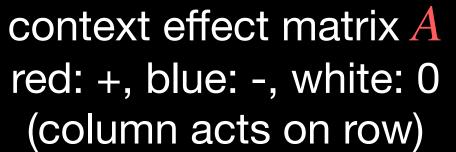
- 1. in-degree
- 2. shared neighbors
- 3. reciprocal weight
- 4. send recency
- 5. receive recency
- 6. reciprocal recency

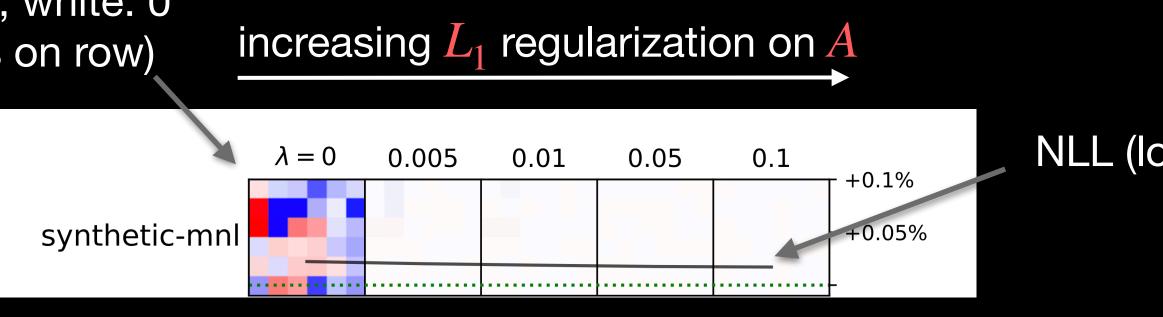




Node features (left-right, top-bottom)

- in-degree 1.
- shared neighbors 2.
- 3. reciprocal weight
- 4. send recency
- 5. receive recency
- 6. reciprocal recency

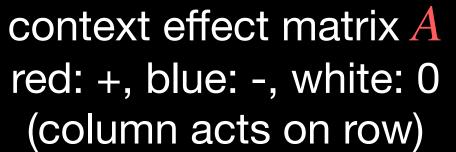


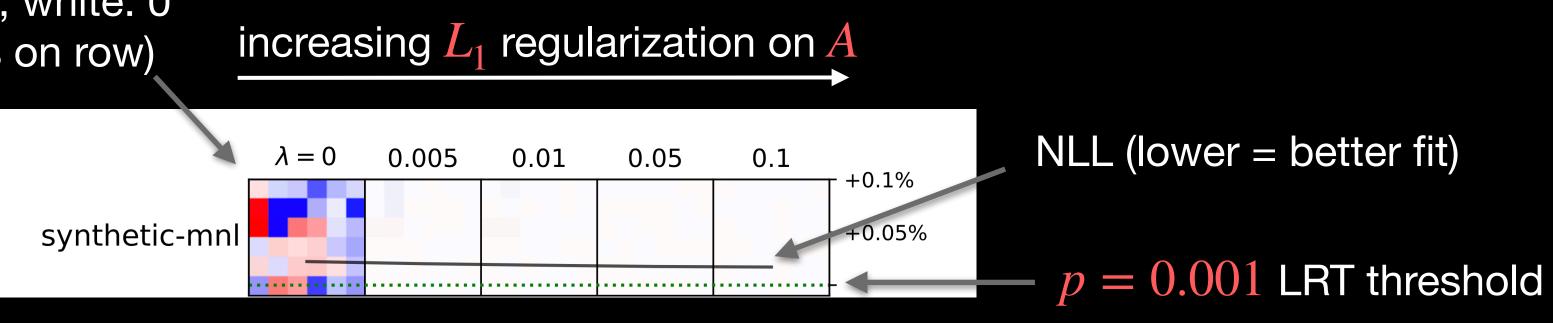


Node features (left-right, top-bottom)

- in-degree 1.
- shared neighbors 2.
- 3. reciprocal weight
- send recency 4.
- 5. receive recency
- 6. reciprocal recency

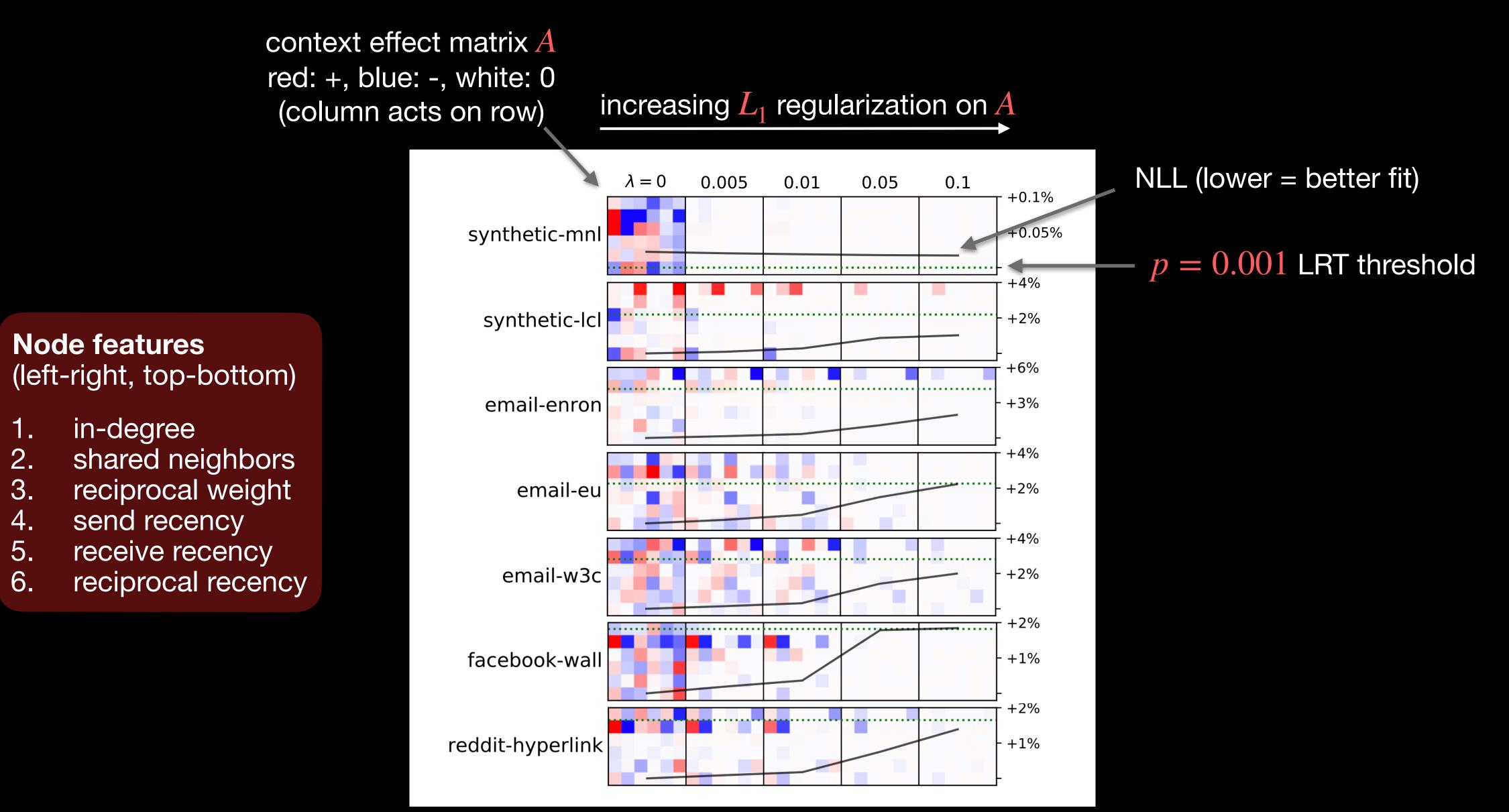
NLL (lower = better fit)

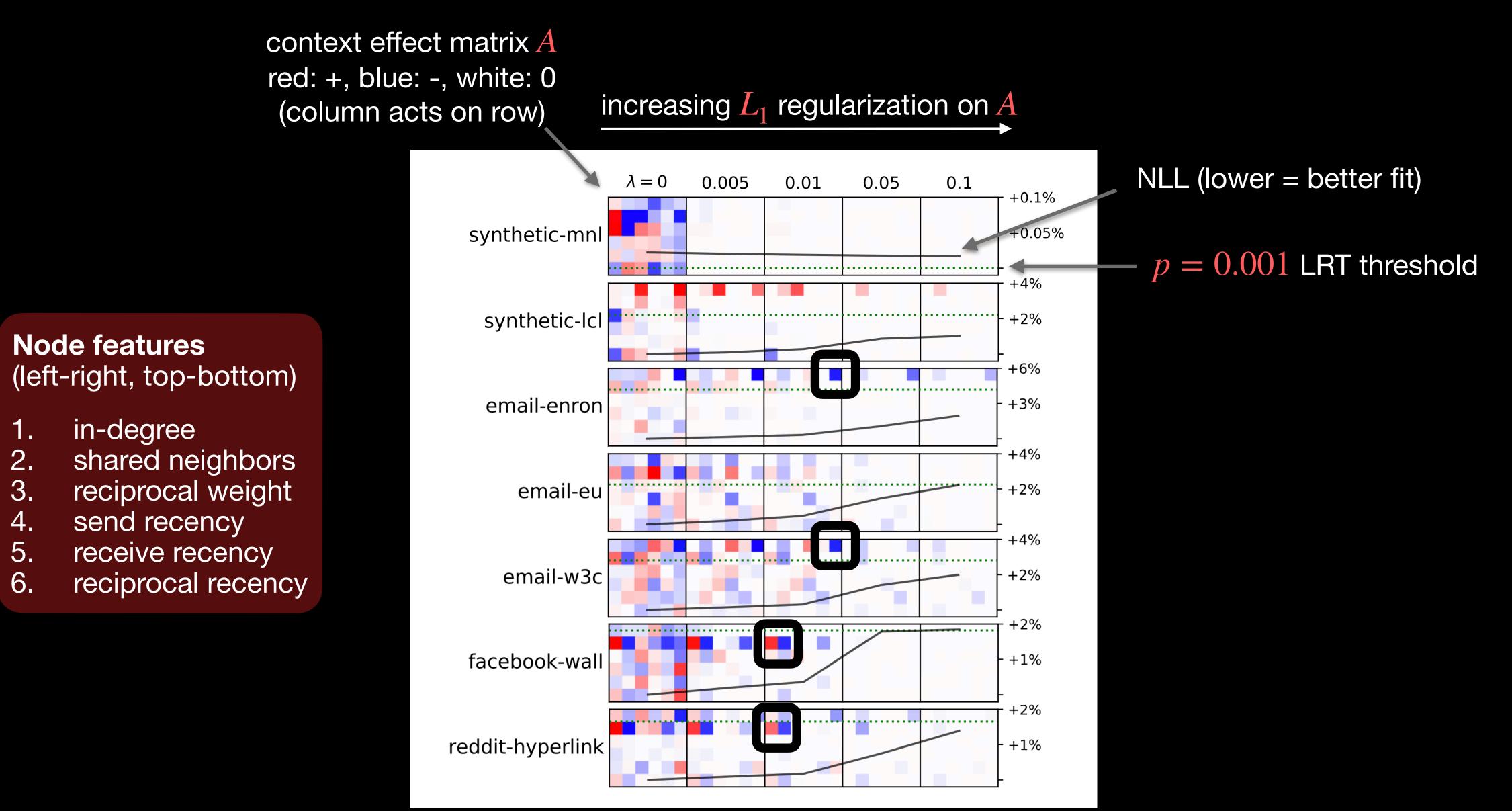


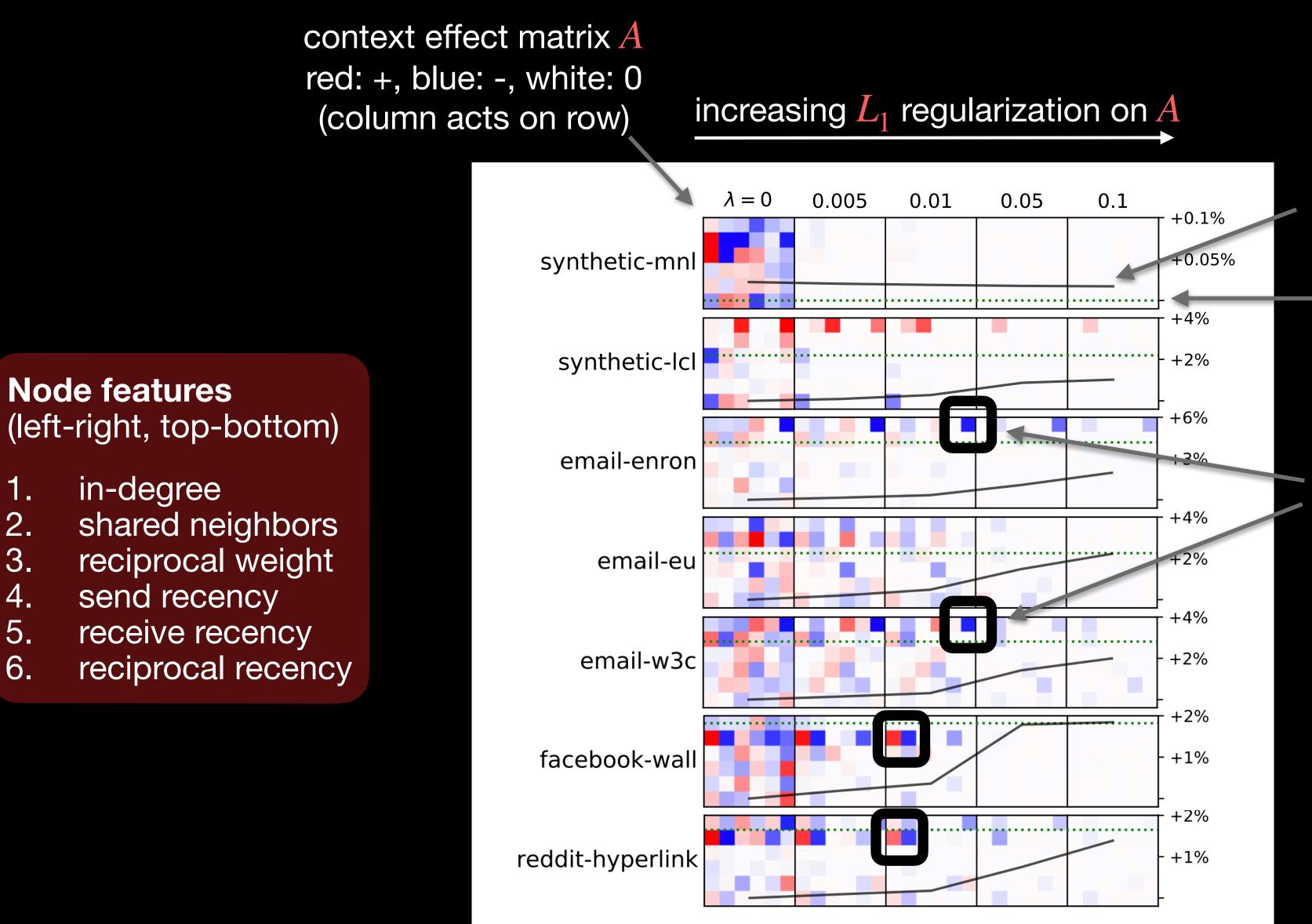


Node features (left-right, top-bottom)

- in-degree 1.
- shared neighbors 2.
- 3. reciprocal weight
- send recency 4.
- 5. receive recency
- 6. reciprocal recency





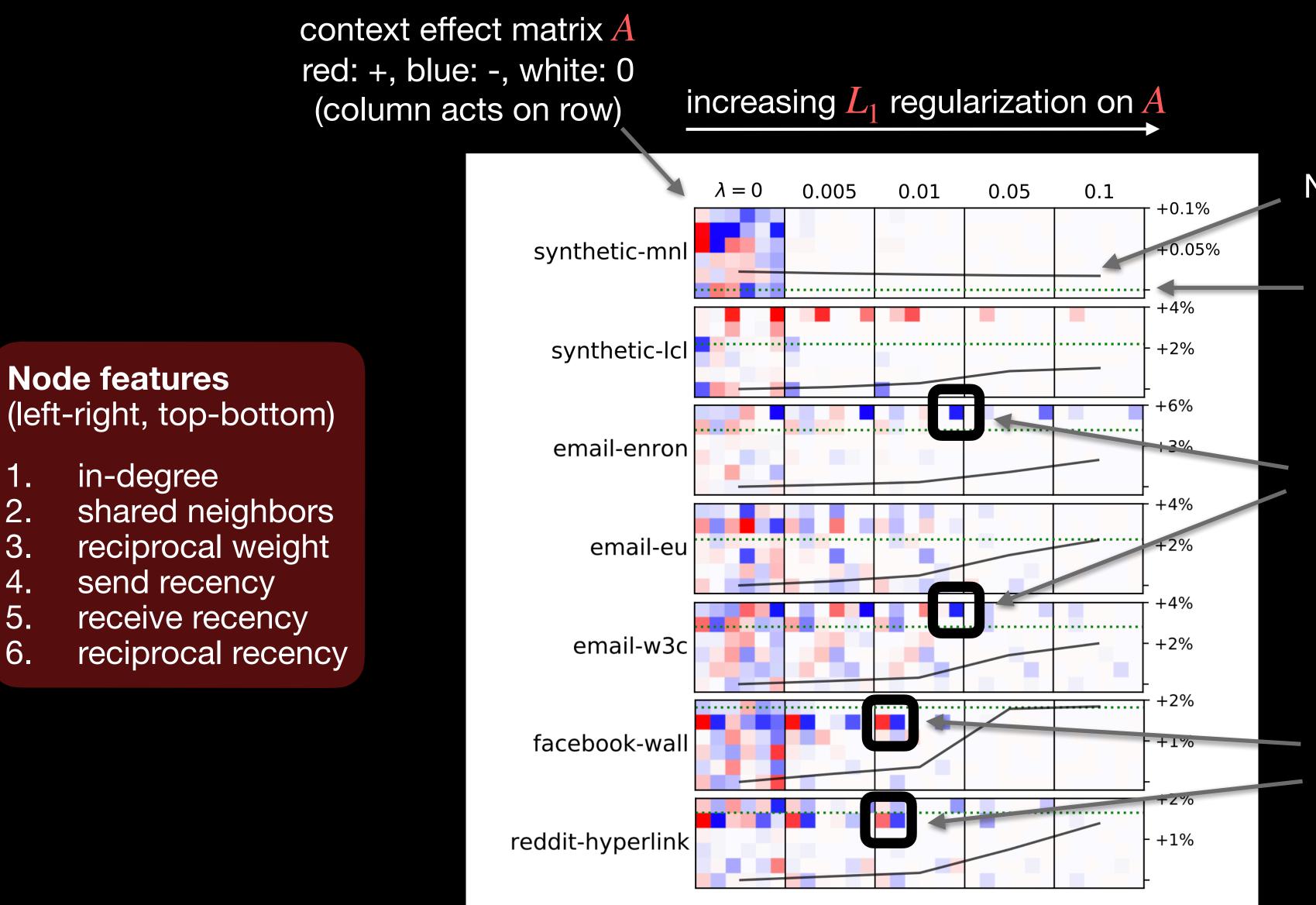


NLL (lower = better fit)

p = 0.001 LRT threshold

"cluttered inbox"

high choice set reciprocal recency \rightarrow in-degree less important



NLL (lower = better fit)

p = 0.001 LRT threshold

"cluttered inbox"

high choice set reciprocal recency → in-degree less important

red: "cocktail party introduction" high choice set in-degree → shared neighbors more important

blue: "familiarity saturation" high choice set shared neighbors → shared neighbors less important

Concluding thoughts

Key takeaways Feature context effects extend item-level effects LCL offers an interpretable and tractable way to reveal them

Future work Non-linear context effects Negative sampling Discovering relational effects

Causal context effects? See our other KDD '21 paper: "Choice Set Confounding in Discrete Choice"

Thank you!

More questions or ideas? Email me: <u>kt@cs.cornell.edu</u>

@kiran_tomlinson

Code: bit.lv/lcl-code Data: bit.ly/lcl-data Slides: bit.ly/lcl-kdd-slides

Submit to our NeurIPS '21 workshop! bit.ly/WHMD2021

> Acknowledgments Funding from NSF, ARO

Thanks to Johan Ugander, Jan Overgoor, and Sophia Franco

