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The classic model: multinomial logit (MNL)
(McFadden, Frontiers in Econometrics 1973)

Assume item  has utility 
i ui

Pr(i ∣ C) =
exp(ui)

∑j∈C exp(uj)
1 -1 0 2ui

C

Pr(i ∣ C) .24 .03 .09 .64

independence of irrelevant alternatives (IIA):
Pr(i ∣ C)
Pr( j ∣ C)

=
Pr(i ∣ C′ )
Pr( j ∣ C′ )

Unique choice model satisfying

(Luce, Individual Choice Behavior 1959)
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The choice set influences preferences.

Pr(i ∣ C)
Pr( j ∣ C)

≠
Pr(i ∣ C′ )
Pr( j ∣ C′ )

IIA violations:

(Simonson, 1989)
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(Seshadri, Peysakhovich, & Ugander, ICML 2019)

Item  exerts pull  on item , item utility is sum of pulls:
j uij i

Pr(i ∣ C) =
exp (∑k∈C∖i uik)

∑j∈C exp (∑k∈C∖i ujk)

Assumes no higher-order effects  
(i.e., context effects decompose additively into effects of items) 

 uLoeffler, Collins < 0
 uCollins, Loeffler < 0
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So far, models have per-item parameters

→ can’t generalize to new items not in training set

→ hard to learn utilities for rare items 

→ too many parameters with many items

Use item features:

genre: comedy,

in_top_10: False,

has_new_episodes: False,

producer: NBC

genre: drama,

in_top_10: True,

has_new_episodes: True,

producer: Netflix

genre: drama,

in_top_10: True,

has_new_episodes: False,

producer: Netflix

genre: reality,

in_top_10: True,

has_new_episodes: False,

producer: Banijay
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MNL:


Pr(i ∣ C) =
exp(ui)

∑j∈C exp(uj)

Conditional logit:


Pr(i ∣ C) =
exp(θTxi)

∑j∈C exp(θTxj)

Feature vector  for each item 
Preference vector 

xi ∈ ℝd i
θ ∈ ℝd

Preference coefficient  is easy to interpret: importance of the th feature θk k
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Conditional logit utility: ui = θTxi Contextual utility: ui,C = [θ + F(C)]Txi

Simplifying assumptions on :F(C)

1. Additivity:  for some function F(C) ∝ ∑
j∈C

f(xj) f

2. Dilution:  F(C) =
1

|C | ∑
j∈C

f(xj)

3. Linearity:  for some matrix f(xj) = Axj A ∈ ℝd×d

→                 (  is the mean feature vector) ui,C = (θ + AxC)Txi xC =
1

|C | ∑
j∈C

xj
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Pr(i ∣ C) =
exp([θ + AxC]Txi)

∑j∈C exp([θ + AxC]Txj)

→ convex negative log-likelihood

→ : base preference coefficientsθ

→ : when  is high in the choice set,  is more preferredApq > 0 q p

→ : when  is high in the choice set,  is less preferredApq < 0 q p
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item features: 
- price 
- service speed 
- wine selection
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mean choice set price 

speed wine selection
importance of:

A

[
0 0 0

−1 0 0
1 0 0]
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LCL identifiability, fully characterized

14

model is identifiable from dataset  if no two parameter 
values result in the same probability distribution 

𝒟

( : unique choice sets in , : Kronecker product) 𝒞𝒟 𝒟 ⊗

intuition: need varied choice sets containing varied items 

→ important for inference and interpretation
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→ combines mixed logit with LCL


→ more flexible but harder to train (expectation-maximization)

Pr(i ∣ C) =
d

∑
k=1

πk
exp([Bk + Ak(xC)k]Txi)

∑j∈C exp([Bk + Ak(xC)k]Txj)

→ see paper for details
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Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
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Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9

 

http://bit.ly/lcl-data


LCL can test individual effects for significance

20

Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

�������� 5376 27 2
�������������� 5376 6 2
����� 5000 6 10
������� 276593 5 38
����� 2675 4 2
����� 2206 5 2
������� 4654 21 6

are evaluated on the held-out test set. We use d (the number of
features) components for mixed logit to provide a fair comparison
against DLCL (which always uses d components).

6.1 General Choice Datasets
We analyze six choice datasets coming from online and survey
data (Table 1). The classic ����� dataset [34] includes surveys in
which each respondent ranked 10 sushi (randomly selected from
a set of 100 options) from favorite to least favorite. We consider
the top ranked sushi to be the choice from the set of 10 options.
The ������� dataset [33] comes from online hotel booking. It con-
tains user searches, displayed results, and which hotel was booked.
We consider the set of search results to be the choice set and the
booked hotel to be the choice. The �������� dataset [10, 35] contains
pairwise comparisons between US congressional district shapes,
with geometric properties as features. Survey respondents were
asked to select which district was more “compact” (towards an
understanding of anti-gerrymandering laws). The ��������������
dataset is identical, but contains the subset of features identi�ed by
the authors of [35] as “good predictors of compactness.” The ����
� and ����� datasets [1] contain pairwise comparisons between
hypothetical cars described by features such as body type (SUV,
sedan) and transmission (manual, automatic). ������� [11, 54] is
similar, but has choice sets of six hypothetical cars and focuses on
alternative-fuel vehicles (e.g., electric, compressed natural gas).

In all datasets, we standardize the features to have zero mean
and unit variance, which allows us to more meaningfully compare
learned parameters across datasets. Appendix A has more details
about the dataset features and preprocessing steps. The LCL is iden-
ti�able in ��������������, �������, and �����, but not the other
general choice datasets (Appendix B.1). However, the L2 regular-
ization we apply (in the form of Adam weight decay) identi�es the
model in all cases.

6.2 Network Datasets
The general choice datasets above come with their own specialized
set of features. For this reason, it is not possible to compare feature
context e�ects across them. However, �nding common patterns
across datasets is one key step in showing that these e�ects are
worth studying for their insight into human behavior as well as for
their theoretical interest or use in prediction. To this end, we also
study a collection of temporal social network datasets, where the
choices are which edge to form and item features are graph prop-
erties of the nodes. This setting allows us to examine comparable
context e�ects across thirteen datasets. In addition to providing

datasets with identical features, this social network study is also of
interest for insight into sociological processes and highlights how
our models can be applied to a particular domain.

Recent work [59] showed that many models of network growth
can be viewed through the lens of discrete choice. In a directed
graph, the formation of the edge u ! � can be thought of as a
choice by the node u to initiate new contact with � (the graph
might be a citation, communication, or friendship network, for
example). The set from which u chooses can vary, including all
nodes in the graph or perhaps only a subset of closely available
nodes. We focus speci�cally on (directed) triadic closure [19, 22, 68],
where the node u closes a triangle u ! � ! w by adding the edge
u ! w . This phenomenon is used in many in�uential network
growth models [27, 32, 90] and real-world networks show evidence
of triadic closure in the form of high clustering coe�cients [26, 93]
and closure coe�cients [98, 100].
Identifying choices from temporal network data. Our net-
work analysis assumes that the graphs grow according to a multi-
mode model that combines triadic closure with a method of global
edge formation. In particular, we assume that at each step, an initi-
ating node either decides to form an edge to any node in the graph
with probability r or decides to close a triangle with probability
1 � r . This is the same setup used by the Jackson–Rogers model
[27, 31] and the more general (r ,p)-model [59]. We focus only on
the instances where a node decided to close a triangle, and assume
that the node u �rst picks one of its neighbors � uniformly at ran-
dom before choosing one of �’s neighbors as a new connection to
initiate.

With this setup, we can reconstruct choice sets for each trian-
gle closure in a directed temporal network dataset. In our setup,
each time we observe a new edge u ! w that closes at least one
previously unclosed triangle, we model this as �rst selecting an
intermediate � uniformly at random through which the triangle
was closed (note that u ! w can close multiple unclosed triangles
u ! � ! w and u ! � 0 ! w). We then consider the choice
set for that triangle closure to be the out-neighbors of � that are
not out-neighbors of u. For example, in a friendship network, this
triangle closure could occur by u attending a party hosted by �
at which they choose which of �’s friends to become friends with
themselves. Since we do not know from the network data whose
party u attended, we model the selection among possible intermedi-
aries�s uniformly at random, conditioned on observing the triangle
closure u ! w . (One could model the intermediary selection of �
di�erently, say by weighting recent connections more heavily, but
we do not do this here.)
Node features. The features of each node in the choice set are
computed at the instant before the edge is closed (the features we
consider evolve as the network grows over time). In our network
datasets, we have timestamps on each edge and an edge may be
observed many times (e.g., in an email network,u may sendw many
emails). The number of times an edge is observed is its weight; an
edge not appearing in the graph has weight 0. We use six features
to describe each nodew that could be selected by the chooser u:

(1) in-degree: the number of edges entering the target nodew ,
(2) shared neighbors: the number of in- or out-neighbors of u

that are also in- or out-neighbors ofw ,
9
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Concluding thoughts
Key takeaways 
Feature context effects extend item-level effects 
LCL offers an interpretable and tractable way to reveal them 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Future work 
Non-linear context effects 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Discovering relational effects 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