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Choices and context effects



Discrete choices are everywhere
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6.33 Fl Oz (Pack of 18)
31

$279° ($4.60/0unce)
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Best Western University Inn

& Expedia

Black Friday / Cyber Monday Deals Now

Free Shuttle Transportation, Grab & Go Breakfast, WiFi & Parking. Pet friendly, Outdoor
Pool, Fitness Center. Sanitizing Daily $63

Breakfast included per night

) $71 total
3.9/5 Good (999 rewews) Includes taxes & fees

Quality Inn Ithaca - University Area
Ithaca

Black Friday / Cyber Monday Deals Now

Complimentary Breakfast. Free Airport Shuttle, WiFi & parking. Close to
Ithaca College & Cornell University. Pets welcome. 559

Member Price available

Breakfast included per night

) $66 total
3.6/5 Good (694 reviews) Includes taxes & fees

Hotel Ithaca

Ithaca

Member Price available

$94

per night
) $106 total
4.0/5 Very Good (842 reviews) Includes taxes & fees
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The classic model: multinomial logit (MNL)

(McFadden, Frontiers in Econometrics 1973)

Assume item i has utility i, C .’ ‘ e 6
. exp(u;)
PI‘(Z ‘ C) — m U, 1 -1 0 2
jec =P Pr(i| C) .24 .03 .09 .64
Unique choice model satisfying Pr(i | C) Pr(i | C")

Independence of irrelevant alternatives (lI1A): -_— =
(Luce, Individual Choice Behavior 1959) PI’(] ‘ C ) PI‘(] ‘ C ,)
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Problem for MNL: context effects

The choice set influences preferences.

Compromise Similarity

(Simonson, 1989) (Tversky, 1972)

2,462,617 49.7%

2,374,519 47.9

IIA violations:
Pr(i | C) b Pr(i | C)
Pr(j| C) Pr(j| C)

1,273,214 25.9

980,454 20.0
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Natural context effect model: CDM

(Seshadri, Peysakhovich, & Ugander, ICML 2019)

ltem ;] exerts pull 1. on item 1, item utility is sum of pulls:

Y

cX Z U a oo
p ( kEC\l lk) : 1,617,035 32.9%
1,273,214 25.9

]EC eXp ( Zke C\l I/t]k) &' Doug Collins 980,454 20.0

U| oeffler, Collins < U
UCollins, Loeffler < 0

Pr(i | C) =

Assumes no higher-order effects
(i.e., context effects decompose additively into effects of items)
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Choice models with item features

So far, models have per-item parameters

— can’t generalize to new items not in training set

— hard to learn utilities for rare items

— 100 many parameters with many items

Use item features:

THE

e SURVIVOR):: o 8
84 QUEEN'S gea 5> (1 ‘l'l
*¥n GAMBIT ourias .»-'lllh H |
!l ]Ill il
NEW EPISODES 1 LSl
genre: drama, genre: comedy, genre: drama, genre: reality,
in_top_10: True, in_top_10: False, in_top_10: True, in_top_10: True,
has_new_episodes: True, has_new_episodes: False, has_new_episodes: False, has_new_episodes: False,

producer: Netflix producer: NBC producer: Netflix producer: Banijay
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MNL with item features: conditional logit

Feature vector x; € | ¥ for each item |

Preference vector 6 € R?
MNL: Conditional logit:
Pr(i | C) = L(ui) — 5 (i]1C) = exp(8 X;)
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MNL with item features: conditional logit

Feature vector x. € R for each item i

Preference vector 0 € R
MNL: Conditional logit:
PR | €)= =P = oy o PO
2 ieC exp(u;) ZJ,E - exp(0” x;)

Preference coefficient ¢, is easy to interpret: importance of the kth feature

10
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Incorporating feature context effects into conditional logit

Conditional logit utility: 11, = 6”x, = Contextual utility: u; ~ = [0 + F(C)]" x,

Simplifying assumptions on F((C'):

1. Additivity: F(C) Z f(xj) for some function /

jeC
2. Dilution: F(C) =—— ) f(x)
| C\
jeC
3. Linearity: [(x;) = Ax; for some matrix A € | axd
|
= Ui c= (0 + AxC)Txl. (X = W X; Is the mean feature vector)

jel

11
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T
Pr(i | C) = exp(l0 + Ax.]" x;)

J

— convex negative log-likelihood

— (J): base preference coefficients

> - €xp([0 + Axc]"x))
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The Linear Context Logit (LCL)

exp(l0 + Ax,] Txl-)

Zje ~exp([0 + Ax(] I'x;)

Pr(i | C) =

— convex negative log-likelihood

— (J): base preference coefficients
— qu > (): when ¢ 1s high in the choice set, p is more preferred

— qu < 0: when ¢ 1s high in the choice set, p is less preferred

12
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LCL example: restaurant selection
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item features:

- price

- service speed
- wine selection

mean choice set price
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LCL identifiability, fully characterized

model is identifiable from dataset & if no two parameter
values result in the same probabillity distribution

— important for inference and interpretation

Theorem 1. A d-feature linear context logit is identifiable from a
dataset P if and only if

span{ xlc R (xi —xc) | Ce€Cqp,i € C} _ Ra+d, (6)

(€'c,: unique choice sets in 4, @: Kronecker product)

Intuition: need varied choice sets containing varied items
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LCL extension: Decomposed LCL (DLCL)

— combines mixed logit with LCL

— more flexible but harder to train (expectation-maximization)

d I
Pr(i | C) = Z T, eXp(LBy + Alxc)il” x)

J

— see paper for details

15



Results on choice data




Choice datasets

Dataset

DISTRICT
DISTRICT-SMART
SUSHI

EXPEDIA

CAR-A

CAR-B

CAR-ALT

Choices

3376
5376
5000
276593
2675
2206
4654

Features

27

Largest Choice Set

2
2
10
33



http://bit.ly/lcl-data

Choice datasets

favorite sushi types

Dataset

DISTRICT
DISTRICT-SMART
SUSHI

EXPEDIA

CAR-A

CAR-B

CAR-ALT

Choices

3376
5376
5000
276593
2675
2206
4654

Features

27

Largest Choice Set

2
2
10
33



http://bit.ly/lcl-data

Choice datasets

favorite sushi types

hotel bookings

Dataset

DISTRICT
DISTRICT-SMART
SUSHI

EXPEDIA

CAR-A

CAR-B

CAR-ALT

Choices

3376
5376
5000
276593
2675
2206
4654

Features

27

Largest Choice Set

2
2
10
33
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LCL improves model fit

whole-dataset negative log-likelihood (lower = better)

CL pc, Mixed DLCL
logit
DISTRICT 3313 3130 3258 3206
DISTRICT-SMART 3426 3278* 3351 33037

EXPEDIA 839505  837649" 839055 837569"

SUSHI 9821 9773" 9793 9764

CAR-A 1702 1694 1696 1692
CAR-B 1305 1295 1297 1284
CAR-ALT 7393 6733* 7301 70117

*significant likelihood ratio test vs MNL (p < 0.001)
nood ratio test vs mixed logit (p < 0.001)

fsignificant like
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LCL can improve out-of-sample prediction performance

C CL
LCL
Mixed logit
DLCL

Figure 2: Mean relative rank of predictions on held-out test data (lower is better). Error bars show standard error of the mean.
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LCL can test individual effects for significance

Compute std. errs. (and z-scores) for each parameter
estimate using MLE asymptotic normality

Table 4: Five largest context effects in susHI.

Effect (g on p) Apq (std. err) p-value

popularity on popularity —0.28 (0.15) 0.066
availability on is maki 0.24 (0.14) 0.087
oiliness on oiliness —0.20 (0.08)
popularity on availability 0.19 (0.14)
availability on oiliness —0.18 (0.10)
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LCL can test individual effects for significance

Compute std. errs. (and z-scores) for each parameter
estimate using MLE asymptotic normality

Table 5: Five largest context effects in EXPEDIA.

Table 4: Five largest context effects in SusHI.
Effect (g on p) Apg (std. err.)  p-value Effect (g on p) Apg (std. err.) p-value

popularity on popularity —0.28 (0.15) 0.066 location score on price  —0.47 (0.05 < 10716

availability on is maki 0.24 (0.14) 0.087 on promotion on price 0.27 (0.03 < 10716
oiliness on oiliness —0.20 (0.08) review score on price ~-0.19 (0.03) 1.4%x 107’
popularity on availability 0.19 (0.14) star rating on price 0.15 (0.04) 6.7 X 107>
availability on oiliness —0.18 (0.10) price on star rating 0.10 (0.00) < 10716
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Social network application
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Preferential attachment Homophily
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“Choosing to grow a graph”

so far:

chooser choice set

Key usage

Timestamped edges
— meaningful choice sets

Infer relative importance of edge
formation mechanisms from data

in network growth: I o
chooser e:- . >0
aq

choice set

feature context effects:
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Choosing to close triangles

Triadic closure offers small choice sets
— tractable inference
— varied choice sets

° 0\

/ /

chooser choice set

w1, wa,

}

Our data
Timestamped edges
(including repeats)

Node features

2R

choice

iIn-degree of w

# shared neighbors of u, w
weight of edge w—u

time since last edge into w
time since last edge out of w

. time since last w—u edge
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Context matters in triadic closure
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LCL reveals interpretable feature context effects
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LCL reveals interpretable feature context effects
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LCL reveals interpretable feature context effects
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Code: bit.ly/lcl-code

Concluding thoughts Glides: bit Iy/1cl-kad<lides

Key takeaways
Feature context effects extend item-level effects
LCL offers an interpretable and tractable way to reveal them

Future work Causal context effects?
Non-linear context effects See our other KDD 21 paper:
Negative sampling “Choice Set Confounding in Discrete Choice”

Discovering relational effects
Submit to our NeurlPS 21 workshop!

bit.ly/WHMD2021
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