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ABSTRACT

Individuals are constantly making choices—purchasing products,

consuming Web content, making social connections—so under-

standing what contributes to these decisions is crucial in many

settings. A major interest is understanding context effects, which

occur when the set of available options itself affects an individual’s

relative preferences. These violate traditional rationality assump-

tions but are commonly observed in human behavior. At the same

time, identifying context effects from choice data remains a chal-

lenge; existing models posit a specific context effect a priori and

then measure its effect from (often effect-targeting) data. Here, we

develop discrete choice models that capture a broad range of context

effects, which are learned from choice data rather than baked into

the model. Our models yield intuitive, interpretable, and statistically

testable context effects, all while being simple to train. We evaluate

our model on several empirical choice datasets, discovering, e.g.,

that people are more willing to book higher-priced hotels when

presented with options that are on sale. We also provide the first

analysis of context effects in online social network growth, finding

that users forming connections place relatively more emphasis on

shared neighbors when popular users are an option.

CCS CONCEPTS

• Mathematics of computing→ Probabilistic inference prob-

lems; • Applied computing→ Economics; • Information sys-

tems→ Social networks.
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1 DISCRETE CHOICE & CONTEXT EFFECTS

In a discrete choice setting, an individual chooses between a finite

set of available items called a choice set. This general framework
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describes a host of important scenarios, including purchasing [2],

transportation decisions [59], voting [14], and the formation of

new social connections [21, 43]. Discovering and understanding

the factors that contribute to the choices people make has broad

applications in, e.g., recommender systems [53, 67],Web search [24],

online dating platforms [9], and policy design [8].

Two popular models of human choice are the Plackett–Luce [36,

48] and conditional logit (CL) [39] models. Both of these obey the

axiom of independence of irrelevant alternatives (IIA) [36], that rela-
tive preferences between items are unaffected by the choice set—if

someone prefers 𝑥 to 𝑦, they should still do so when 𝑧 is also an

option. However, experiments on human decisions [23, 55, 56, 60]

as well as direct measurement on choice data [6, 54, 57] have found

that this assumption often does not hold in practice. These “IIA

violations” are termed context effects [49, 50]. Examples include

the attraction effect [23], where including an inferior item makes a

better option more attractive, and the similarity effect [61], where
similar items split the preferences of the chooser.

The ubiquity of context effects has driven the development of

more nuanced models capable of capturing them. In machine learn-

ing, the goal is typically to design models for better predictions

via learned context effects [7, 10, 11, 47, 51, 53, 54]. However, the

effects accounted for by models using neural networks or item em-

beddings [11, 47, 51] are difficult to interpret. Other models learn

context effects at the level of individual items [10, 42, 53, 54], pre-

venting generalization to items not in the training set and making

it difficult to discover context effects coming from item features

(e.g., price). Within behavioral economics, context effect models

tend to be engineered for specific effects and are often only applied

to controlled special-purpose datasets [38, 50, 62].

Here, we provide methods for learning a wide class of context ef-

fects from large, pre-existing choice datasets in a variety of domains.

The key advantage of our approach is that we can take a choice

dataset collected in any domain (possibly collected passively), effi-

ciently train a model, and directly interpret the learned parameters

as intuitive context effects. For example, we find in a hotel booking

dataset that users presented with more hotels on sale showed in-

creased willingness to pay. This lets us hypothesize that “on sale”

tags on hotels exerts a context effect on the user, making them

feel better about selecting a more expensive option. Context effects

extracted by our methods could then motivate further experimental

work such as A/B testing, or choice set design to steer behavior. We

focus on the setting where items are described by a set of features

(e.g., for hotels: price, star rating) and where the utility of each item

is a function of its features. This setup has two major benefits, as

it enables (i) making predictions about new items not observed in

training data, and (ii) learning generalizable and testable effects

that can inform marketing, advertising, or recommendation.
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We define feature context effects that describe changes in impor-

tance of features when determining choice as a function of features

of the choice set. For instance, suppose a diner has two choice

sets on two different occasions, one consisting of fast food chains

and the other of high-end restaurants. In the choice set with lower

prices, the diner could value service speed relatively more, and in

the choice set with higher prices, the diner might place more weight

on wine selection. We introduce two models, the linear context logit

(LCL) and decomposed linear context logit (DLCL), to learn these

types of feature context effects directly from choice data.

We perform an extensive analysis of choice datasets using our

models, showing that statistically significant feature context ef-

fects occur in empirical data and recovering intuitive effects. For

example, we find evidence that people pick more expensive hotels

when their choice sets have high star ratings, that people offered

more oily sushi showmore aversion to oiliness (a possible similarity

effect), and that when deciding whose Facebook wall to post on,

people care more about mutual connections when choosing from

popular friends.
1
Accounting for feature context effects also im-

proves prediction accuracy in many datasets, although our primary

focus is learning interpretable context effects. Additionally, we

show to statistically test for effects and how sparsity-encouraging

regularization can identify the most influential context effects.

Our empirical study is split into two parts. First, we examine

datasets collected to understand preferences, covering a variety

of choices including sushi, hotel bookings, and cars. Second, we

apply our methods to social network analysis, where we demon-

strate context effects in competing theories of triadic closure, the of

new friendships to form among friends-of-friends [15, 19]. Discrete

choice models have recently found compelling use in analyzing

social network dynamics [16, 21, 43, 44]. Here, we find new insights

by incorporating context effects.

1.1 Additional related work

Within machine learning, our LCL model is similar in spirit to

the context-dependent random utility model (CDM) [54] in that

we consider pairwise contextual interactions, but with the impor-

tant distinction that our model operates on features rather than

on items, allowing for the discovery of general, non-item-specific

effects. Our framework for context-dependent utilities is related to

set-dependent weights [51] and FETA [47]; these methods are opti-

mized for prediction accuracy and are difficult to interpret. Other

models for context effects include the blade-chest model [10, 11]

for pairwise comparisons and the salient features model [7], which

considers different subsets of features in each choice set.

Recent research has framed network growth (the formation of

new connections in, e.g., communication or friendship networks)

as discrete choice and have suggested context effects as a means for

more flexible modeling [43]. The models we introduce are a step in

this direction, and we find context effects useful for both improved

predictions and gaining new social insights. Other research has

explored mixed [21] and de-mixed [44] choice models for network

growth, but these approaches do not reveal if or how the features

of items in each choice set affect the preferences of choosers.

1
By necessity, these are all correlative rather than causal claims; we discuss this more

in the results section.

2 DISCRETE CHOICE BACKGROUND

We briefly review the discrete choice modeling framework (see the

book by Train [59] for a thorough treatment). In a discrete choice

setting, an individual selects one item from a set of available items,

the choice set. We use U to denote the universe of all items and

𝐶 ⊆ U the choice set in a particular choice instance. A choice

dataset D is a set of 𝑛 pairs (𝑖,𝐶), where 𝑖 ∈ 𝐶 is the item selected.

Each item 𝑖 is described by a vector of 𝑑 features 𝑦𝑖 ∈ R𝑑 that

determine the preferences of the chooser.

Random utility models [37] (RUMs) are of particular interest

and are based on the idea that individuals try to maximize their

utility, but can only do so noisily. In a RUM, an individual draws a

random utility for each item (where each item has its own utility

distribution) and selects the item with maximum observed utility.

The workhorse RUM using item features is the conditional logit

(CL) [39], which has interpretable parameters that are readily esti-

mated from data (the CL is sometimes called the multinomial logit).
In the CL model, the observed utility of each item 𝑖 is the random

quantity 𝜃𝑇𝑦𝑖 +𝜖 , where the latent parameter 𝜃 ∈ R𝑑 (the preference
vector) stores the relative importance of each feature (the preference
coefficients) and the random noise term 𝜖 follows a standard Gumbel

distribution with CDF 𝑒−𝑒
−𝑥
. This noise distribution is chosen so

that the CL choice probabilities have a simple closed form [59]:

a softmax over the utilities. Under a CL, the probability that 𝑖 is

chosen from the choice set 𝐶 , denoted Pr(𝑖,𝐶), is

Pr(𝑖,𝐶) = exp(𝜃𝑇𝑦𝑖 )∑
𝑗 ∈𝐶 exp(𝜃𝑇𝑦 𝑗 )

. (1)

The CL model famously obeys the axiom of independence of irrel-
evant alternatives (IIA) [36], stating that relative choice probabilities
are unaffected by the choice set. Formally, a model satisfies IIA if

for any two choice sets 𝐶,𝐶 ′ and items 𝑖, 𝑗 ∈ 𝐶 ∩𝐶 ′,
Pr(𝑖,𝐶)
Pr( 𝑗,𝐶) =

Pr(𝑖,𝐶 ′)
Pr( 𝑗,𝐶 ′) .

As we have discussed, this assumption is often violated in prac-

tice due to context effects. One model that can account for (some)

context effects is the mixed logit. The DLCL model that we will

introduce is related to a discrete mixed logit, so we briefly describe

it here. In a discrete mixed logit, there are𝑀 populations, each of

which has its own preference vector 𝜃𝑚 . The mixing parameters

𝜋1, . . . , 𝜋𝑀 , with

∑𝑀
𝑚=1 𝜋𝑚 = 1, describe the relative sizes of the

populations. This results in choice probabilities

Pr(𝑖,𝐶) =
𝑀∑︁

𝑚=1

𝜋𝑚
exp(𝜃𝑇𝑚𝑦𝑖 )∑

𝑗 ∈𝐶 exp(𝜃𝑇𝑚𝑦 𝑗 )
. (2)

While mixed logit can produce IIA violations, it does so by hy-

pothesizing populations each with their own context-effect-free

preferences, meaning that context effects only appear in the aggre-

gate data. In contrast, our models are designed to identify context

effects in individual preferences.

3 MODELS OF FEATURE CONTEXT EFFECTS

In order to capture context effects at the individual level, the choice

set itself needs to influence the preferences of a chooser. In the

most general extension of the CL, we could replace 𝜃 with 𝜃 + 𝐹 (𝐶),



where 𝐹 : P(U) → R𝑑 is an arbitrary function of the choice set

(this is analogous to the set-dependent weights model [51], but

framed as a RUM). This allows each feature to exert an arbitrary

influence on the base preference coefficient of each other feature.

We say that a feature context effect occurs when 𝐹 (𝐶) ≠ 0.

We make two simplifying assumptions on the choice set effect

function 𝐹 (𝐶) that will aid interpretability. The first is that the effect
of a choice set additively decomposes into effects of its items, i.e.,

𝐹 (𝐶) is proportional to ∑
𝑗 ∈𝐶 𝑓 (𝑦 𝑗 ) for some function 𝑓 : U → R𝑑 .

While in principle higher-order interactions are possible, the num-

ber of such interactions is exponential in the size of the choice set.

This makes it difficult to extract such effects from typical choice

datasets that do not contain observations from every possible choice

set; moreover, higher-order interactions are usually sparse [3]. Sec-

ond, we assume that the effect of each item is diluted in large choice

sets and we model this with a proportionality constant of 1/|𝐶 | so
that 𝐹 (𝐶) = 1/|𝐶 |∑𝑗 ∈𝐶 𝑓 (𝑦 𝑗 ).

3.1 Linear Context Logit

In principle, features could exert arbitrary influences on each other,

but we focus on the case when context effects are linear, which

makes inference tractable and, crucially, preserves interpretability.

We use 𝑦𝐶 = 1/|𝐶 |∑𝑗 ∈𝐶 𝑦 𝑗 to denote the mean feature vector of

the choice set 𝐶 . For 𝑓 linear, we can write 𝑓 (𝑦 𝑗 ) = 𝐴𝑦 𝑗 for some

matrix 𝐴 ∈ R𝑑×𝑑 , and the choice set context function 𝐹 is

𝐹 (𝐶) = 1

|𝐶 |
∑︁
𝑗 ∈𝐶

𝑓 (𝑦 𝑗 ) =
1

|𝐶 |
∑︁
𝑗 ∈𝐶

𝐴𝑦 𝑗 = 𝐴𝑦𝐶 .

We call this model the linear context logit (LCL), and it produces

choice probabilities

Pr(𝑖,𝐶) = exp( [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦𝑖 )∑
𝑗 ∈𝐶 exp( [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦 𝑗 )

. (3)

In the LCL, 𝐴𝑝𝑞 specifies the effect of feature 𝑞 on the coefficient

of feature 𝑝 . If 𝐴𝑝𝑞 is positive (resp. negative), then higher values

of 𝑞 in the choice set result in a higher (resp. lower) preference

coefficient for 𝑝 . If 𝐴 = 0, then the LCL reduces to CL.

When analyzing data in Section 6, we often see large diagonal

entries of𝐴. The signs of the diagonal entries of𝐴 can be explained

by known context effects. The case of 𝐴𝑝𝑝 > 0 relates to the attrac-

tion effect (high values of a feature amplify fine-grained differences

along that dimension), and the case of 𝐴𝑝𝑝 < 0 is consistent with

the similarity effect (high values of a feature devalue it),

Just as in the CL, we can derive the closed form in (3) if choosers

have random utilities [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦𝑖 +𝜖 , where 𝜖 follows a standard
Gumbel distribution and the random variable samples are i.i.d. If

we want a more parsimonious model, we can impose sparsity on

𝐴 through 𝐿1 regularization (we do this in our empirical analysis)

or we could use a low-rank approximation of 𝐴. A constant-rank

approximation makes the number of parameters linear in 𝑑 .

3.2 Decomposed Linear Context Logit

The LCL implicitly assumes that the intercepts of all linear context

effects exerted by one feature are the same (we have 𝑑2 slopes in 𝐴,

but only𝑑 intercepts in 𝜃 ). Motivated by varying intercepts in empir-

ical data (Figure 1), we develop a second model that decomposes the

LCL into context effects exerted by each feature, which we call the

decomposed linear context logit (DLCL). In the language of choice set

effect functions, we now have 𝑑 context effect functions 𝐹1, . . . , 𝐹𝑑
where 𝐹𝑘 only depends on the values of feature 𝑘 . We also replace 𝜃

with 𝑑 base preference vectors 𝐵1, . . . , 𝐵𝑑 (which we combine into a

𝑑×𝑑 matrix 𝐵; subscripts index columns) that provide varying inter-

cepts. This gives us 𝑑 contextual utilities 𝐵1 +𝐹1 (𝐶), . . . , 𝐵𝑑 +𝐹𝑑 (𝐶)
that we combine in a mixture model.

Making the same assumptions as for the LCL, we decompose

each choice set effect function 𝐹𝑘 (𝐶) = 1

|𝐶 |
∑

𝑗 ∈𝐶 𝑓𝑘 ((𝑦 𝑗 )𝑘 ) (here,
𝑓𝑘 is a function of only the 𝑘th feature, (𝑦 𝑗 )𝑘 ). Assuming linearity

(and storing context effects exerted by feature 𝑘 in the 𝑘th column

of 𝐴), we arrive at

𝐹𝑘 (𝐶) =
1

|𝐶 |
∑︁
𝑗 ∈𝐶

𝑓𝑘 ((𝑦 𝑗 )𝑘 ) =
1

|𝐶 |
∑︁
𝑗 ∈𝐶

𝐴𝑘 (𝑦 𝑗 )𝑘 = 𝐴𝑘 (𝑦𝐶 )𝑘 .

We use mixture weights 𝜋1, . . . , 𝜋𝑑 with

∑𝑑
𝑘=1

𝜋𝑘 = 1 to describe

the relative strengths of effects exerted by each feature. The DLCL

is then a mixture of 𝑑 logits, where each component captures the

context effects from a single feature. The choice probabilities are

Pr(𝑖,𝐶) =
𝑑∑︁

𝑘=1

𝜋𝑘
exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦𝑖

)∑
𝑗 ∈𝐶 exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦 𝑗

) . (4)

Each component corresponds to an LCL with the constraint that all

columns of 𝐴 except the 𝑘th are zero. The matrix 𝐴 has the same

interpretation as in the LCL, while 𝐵𝑝𝑞 represents the importance

of feature 𝑝 when feature 𝑞 is zero (i.e., the intercept of the linear

context effect exerted on 𝑝 by 𝑞).

4 IDENTIFIABILITY OF THE LCL

Identifiability is a key feature ofmodels that ensureswe can uniquely

learn parameters and thus interpret them meaningfully. We pro-

vide three results characterizing the identifiability of the LCL. Most

significantly, we prove a necessary and sufficient condition that

exactly determines when the model is identifiable (Theorem 4.1).

However, the condition is somewhat hard to reason about, so we

also prove a simple necessary condition (Proposition 4.2) and a sim-

ple sufficient condition (Proposition 4.3). These results give further

insight into the main theorem. Proofs are in Appendix A.

Following Seshadri et al. [54], we use CD to denote the set of

unique choice sets appearing in the dataset D, and we say that an

LCL is identifiable from a dataset if there do not exist two distinct

sets of parameters (𝜃,𝐴) and (𝜃 ′, 𝐴′) that produce identical proba-
bility distributions over every choice set 𝐶 ∈ CD . In the following,

⊗ denotes the Kronecker product.

Theorem 4.1. A 𝑑-feature linear context logit is identifiable from
a dataset D if and only if

span

{[
𝑦𝐶
1

]
⊗ (𝑦𝑖 − 𝑦𝐶 ) | 𝐶 ∈ CD , 𝑖 ∈ 𝐶

}
= R𝑑

2+𝑑 . (5)

Theorem 4.1 says that identification requires enough choice

sets with sufficiently different mean features containing enough

sufficiently different items (with coupling between the two require-

ments). The condition of Theorem 4.1 is often satisfied in practice

if there are no redundant features (18 out of 22 that we analyze

uniquely identify the LCL).



To better understand the span condition, we provide a simple

necessary condition for indentifiability. Recall that a set of vectors

{𝑦0, . . . , 𝑦𝑑 } ⊂ R𝑑 is affinely independent if the set of vectors {𝑦1 −
𝑦0, . . . , 𝑦𝑑 − 𝑦0} is linearly independent.

Proposition 4.2. If a 𝑑-feature linear context logit is uniquely
identifiable from a dataset D, then the dataset must contain 𝑑 + 1
choice sets with affinely independent mean feature vectors.

This necessary condition stems from formulating item utility as

the affine transformation 𝜃 +𝐴𝑦𝐶 , which requires 𝑑 + 1 points to
be identified. The span condition in Theorem 4.1 is more difficult

to reason about because of the coupling between individual feature

vectors 𝑦𝑖 and mean feature vectors 𝑦𝐶 . We therefore provide a

simple sufficient condition for identifiability that decouples these

requirements and is optimal in the number of distinct choice sets.

Proposition 4.3. If a datasetD contains 𝑑 + 1 distinct choice sets
𝐶0, . . . ,𝐶𝑑 such that

i. the set of mean feature vectors {𝑦𝐶0
, . . . , 𝑦𝐶𝑑

} is affinely inde-
pendent (the necessary condition from Proposition 4.2) and

ii. in each choice set 𝐶𝑖 , there is some set of 𝑑 + 1 items with
affinely independent features,

then we can uniquely identify a 𝑑-feature LCL.

We leave characterization of DLCL identifiability for future work,

as even mixed logits have notoriously complex identifiability con-

ditions [12, 20, 70].

5 ESTIMATION

Given a dataset D consisting of observations (𝑖,𝐶), where 𝑖 was
selected from the choice set𝐶 , we wish to recover the parameters of

a model that best describe the dataset. In this section, we describe

estimation procedures for the LCL and DLCL. First, we show that

the likelihood function of the LCL is log-concave and simple to

optimize. On the other hand, the DLCL does not have a log-concave

likelihood, but we derive an expectation-maximization algorithm

that only requires optimizing convex subproblems.

We wish to find parameters that minimize the negative log-

liklihood (NLL) of a model, which is equivalent to maximizing the

likelihood. The NLL of the linear context logit is

−ℓ (𝜃,𝐴;D) = −
∑︁
(𝑖,𝐶) ∈D

log

exp( [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦𝑖 )∑
𝑗 ∈𝐶 exp( [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦 𝑗 )

(6)

=
∑︁
(𝑖,𝐶) ∈D

− (𝜃 +𝐴𝑦𝐶 )𝑇 𝑦𝑖 + log
∑︁
𝑗 ∈𝐶

exp( [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦 𝑗 ) .

(7)

This function is convex in 𝜃 and 𝐴 (equivalently, the likelihood

is log-concave). To see this, notice that the first term in the sum-

mand of (7) is a linear combination of entries of 𝜃 and 𝐴, so it is

jointly convex in 𝜃 and 𝐴. Meanwhile, log-sum-exp is convex and

monotonically increasing, so its composition with the linear func-

tions [𝜃 +𝐴𝑦𝐶 ]𝑇 𝑦 𝑗 is also convex. We then have that −ℓ (𝜃,𝐴;D)
is convex, as the sum of convex functions is convex. Moreover, the

second partial derivatives of the NLL function are all bounded (by

a constant depending on the dataset), so its gradient is Lipschitz

continuous. We can therefore use gradient descent to efficiently

find a global optimum of −ℓ (𝜃,𝐴;D).

On the other hand, the NLL of the DLCL (like that of the mixed

logit) is not convex, so we can only hope to find a local optimum

with gradient descent. To address this challenge, we develop an

expectation-maximization (EM) algorithm for DLCL estimation.

The algorithm mirrors the EM algorithm for estimating a mixed

logit [59], except that the M step updates estimates for𝐴 and 𝐵. (see

Appendix B). An advantage of EM for DLCL is that it only requires

optimizing convex functions with Lipschitz-continuous gradients,

and EM is guaranteed to improve the log-likelihood at each step.

While EM may still arrive at a local optimum, we find that for most

of our datasets, it finds better model parameters than stochastic

gradient descent on the likelihood.

6 DATA ANALYSIS

We apply our LCL and DLCL models to two collections of em-

pirical choice datasets. First, we examine datasets specifically col-

lected to understand preference in various domains, such as car

purchasing and hotel booking. The features describing items nat-

urally differ in these datasets. The second collection of datasets

comes from a particular choice process in social networks, namely

the formation of new connections. Here, we use graph proper-

ties as features (such as in-degree, a proxy for popularity [41]),

allowing us to compare social dynamics across email, SMS, trust,

and comment networks. In both dataset collections, we first es-

tablish that context effects occur and that our models better de-

scribe the data than traditional context-effect-free models, CL, and

mixed logit. We then show how the learned models can be inter-

preted to recover intuitive feature context effects. Our code, results,

and links to documented versions of every dataset are available at

https://github.com/tomlinsonk/feature-context-effects.

Estimation details. For prediction experiments, we use 60% of

samples for training, 20% for validation, and 20% for testing. When

testing model fit with likelihood-ratio tests, we estimate models

from the entire dataset. We use PyTorch’s Adam optimizer for max-

imum likelihood estimation, with batch size 128 and the amsgrad
flag. We run the optimizer for 500 epochs or 1 hour, whichever

comes first. For the whole-data fits, we use weight decay 0.001 and

search over learning rates of 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, se-

lecting the one that results in the highest likelihood. For our predic-

tion experiments, we perform a grid search over the weight decays

0, 0.0001, 0.0005, 0.001, 0.005, 0.01 and the same learning rates as

above, selecting the pair with the best likelihood on the validation

set. Predictions are evaluated on the held-out test set. We use 𝑑 (the

number of features) components for mixed logit to provide a fair

comparison against DLCL (which always uses 𝑑 components).

6.1 General Choice Datasets

We analyze six choice datasets from online and survey data (Ta-

ble 1) previously used in discrete choice research: sushi [28]; expe-

dia [27]; district and district-smart [7, 29]; car-a and car-b [1];

and car-alt [8, 40]. In all datasets, we standardize the features to

have zero mean and unit variance, which allows us to more mean-

ingfully compare learned parameters across datasets. The LCL is

identifiable in district-smart, expedia, and sushi, but not the

others. However, the 𝐿2 regularization we apply (via weight decay)

identifies the model in all cases.

https://github.com/tomlinsonk/feature-context-effects


Table 1: General choice datasets summary.

Dataset Choices Features Largest Choice Set

district 5376 27 2

district-smart 5376 6 2

sushi 5000 6 10

expedia 276593 5 38

car-a 2675 4 2

car-b 2206 5 2

car-alt 4654 21 6

6.2 Network Datasets

Recent work cast many network growth models in terms of discrete

choice [43]. In a directed graph, the formation of the edge 𝑢 → 𝑣

can be thought of as a choice by the node 𝑢 to initiate new contact

with 𝑣 (the graph might be a citation, communication, or friend-

ship network). The set from which𝑢 chooses can vary, including all

nodes in the graph or only a subset of “close” nodes. We focus specif-

ically on directed triadic closure [15, 19], where the node 𝑢 closes a

triangle 𝑢 → 𝑣 → 𝑤 by adding the edge 𝑢 → 𝑤 . This phenomenon

is used in many influential network growth models [22, 26, 63] and

real-world networks show evidence of triadic closure in the form

of high clustering coefficients [15] and closure coefficients [69].

Choices from temporal network data. Our network analysis

assumes that the graphs grow according to a multi-mode model that

combines triadic closure with a method of global edge formation. In

particular, we assume that at each step, an initiating node decides

to either form an edge to any node in the graph with probability 𝑟

or close a triangle with probability 1 − 𝑟 . This setup, also used by

the Jackson–Rogers model [25] and the (𝑟, 𝑝)-model [43], singles

out instances of triadic closure to study separately from global edge

formation. When a node 𝑢 chooses to close a triangle, we assume

𝑢 first picks one of its neighbors 𝑣 uniformly at random before

choosing one of 𝑣 ’s neighbors as a new connection.

Each time we observe a new edge𝑢 → 𝑤 closing a previously un-

closed triangle, we select a hypothesized intermediate 𝑣 uniformly

at random (𝑢 → 𝑤 can close multiple triangles at once through

different intermediates). We consider the choice set for the closure

to be the out-neighbors of 𝑣 that are not out-neighbors of 𝑢.

Node features. The features of each node in the choice set are

computed at the instant before the edge is closed (the features

evolve as the network grows). In our datasets, we have timestamps

on each edge and an edge may be observed many times (e.g., in

an email network, 𝑢 may send 𝑤 many emails). The number of

times an edge is observed is its weight; an edge not in the graph has

weight 0. We use six features to describe each node 𝑤 that could

be selected by the chooser 𝑢: (1) in-degree: the number of edges

entering the target node 𝑤 ; (2) shared neighbors: the number of

in- or out-neighbors of 𝑢 that are also in- or out-neighbors of 𝑤 ;

(3) reciprocal weight: the weight of the reverse edge 𝑢 ← 𝑤 ; (4)

send recency: the number of seconds since𝑤 initiated any outgoing

edge; (5) receive recency: the number of seconds since𝑤 received

any incoming edge; (6) reciprocal recency: the number of seconds

since the reverse edge 𝑢 ← 𝑤 was last observed.

Following Overgoor et al. [44], we log-transform features 1 and

2. We take log(1 + feature 3) to handle weight 0 (in-degree and

Table 2: Network datasets summary.

Dataset Nodes Edges Triangle closures

synthetic-cl 1000 391294 50000

synthetic-lcl 1000 380584 50000

email-enron 18592 53477 19900

email-eu 986 24929 19603

email-w3c 20082 33409 3271

sms-a 44430 68834 6311

sms-b 72146 100974 9376

sms-c 14433 23285 2732

bitcoin-alpha 3783 24186 8823

bitcoin-otc 5881 35592 12750

reddit-hyperlink 23499 91946 37115

wiki-talk 22067 81125 27505

facebook-wall 46952 274086 68776

mathoverflow 24818 239978 137455

college-msg 1899 20296 6267

shared neighbors are never 0, since 𝑣 is always a shared neighbor of

𝑢 and𝑤 ). Lastly, we transform the temporal features with log
−1 (2+

feature) and set them to 0 if the event has never occurred. This

ensures that (1) we can handle 0 seconds since the last event, (2)

higher values mean more recency, and (3) “no occurrence” results

in the lowest possible value of the transformed feature.

Network datasets. We examine 13 network datasets: three email

datasets (email-enron [4], email-eu [35, 68], email-w3c [5, 13]);

three SMS datasets (sms-a, sms-b, and sms-c [66]), two Bitcoin

trust datasets (bitcoin-alpha and bitcoin-otc [30, 32]), an online

messaging dataset (college-msg [45]), a hyperlink dataset (reddit-

hyperlink [31]), and three online forum datasets (facebook-wall

[64], mathoverflow [46], and wiki-talk [33, 34]). In addition, we

generate two synthetic networks, synthetic-cl and synthetic-

lcl. Specifically, we begin with 1000 isolated nodes. At each step,

we add an edge uniformly at random with probability 0.9. With

probability 0.1, we close a triangle by selecting a node 𝑢 and one

of its neighbors 𝑣 uniformly at random. We then use either a CL

(for synthetic-cl) or LCL (for synthetic-lcl) to choose which

triangle 𝑢 → 𝑣 → ? to close (if there are no triangles for 𝑢 to

close, we add a random edge). We use the same features as in the

empirical datasets, with Poisson-distributed simulated timestamp

gaps between successive edges until 50000 triangles are closed.

Table 2 summarizes the network data. Using Theorem 4.1, we

find that the LCL is uniquely identifiable in every network dataset.

Whereas we split the general choice datasets into training, vali-

dation, and testing sets uniformly at random, we instead split the

network datasets temporally so that future edges are predicted

based on parameters estimated from past edges.

6.3 Results

Our analysis focuses on two issues: whether significant linear fea-

ture context effects appear in practice and if so, how we can identify

and interpret them using our models.

Binned CLs for visualizing feature context effects. As a first

step towards identifying whether linear context effects occur, we
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Figure 1: Learned preference coefficients of CLs trained on

samples binned bymean choice set feature. Each point shows

the preference coefficient of the shared neighbors feature in

choice sets with varying mean in-degree (left column) and

shared neighbor counts (right column). These coefficients

were found by splitting observations into 100 bins accord-

ing to their mean feature values and learning a CL for each

bin separately. The area of each point is proportional to the

square root of the number of observations in its bin. The red

lines are weighted least squares fits.

bin the samples of each dataset according to the mean feature val-

ues in the choice set. We then fit CLs within each bin, examining

whether the preference coefficients of features vary with the mean

choice set features. Figure 1 shows two clear linear (with the respect

to the log-transformed feature) context effects in mathoverflow:

(1) as the mean in-degree of the choice set increases, so does the

shared neighbors preference coefficient and (2) the shared neigh-

bors coefficient decreases in choice sets with higher mean shared

neighbors. Colloquially, (1) close ties are a stronger predictor of new

connections when selecting between a set of popular individuals

and (2) common connections matter less when choosing from a

closely connected group. The different intercepts of these two ef-

fects in mathoverflow also motivate decomposing the LCL to the

DLCL. The figure also shows some evidence of non-linear context

effects in email-enron, which is of interest for future work.

Evaluating model fit. With our evidence that context effects are

worth capturing, we compare our LCL and DLCL models to the

traditional choice models they subsume (CL and mixed logit) with

likelihood-ratio tests. To correct for multiple hypotheses, we use

𝑝 < 0.001 as our significance threshold.

Table 3 shows the total NLL of every dataset under the four

models, along with markers indicating the significant likelihood-

ratio tests. In the empirical network datasets, all likelihood-ratio

tests are significant (all with 𝑝 < 10
−9
), indicating that feature

Table 3: Dataset negative log-likelihoods. Bolded entries in-

dicate the highest likelihood for a dataset.

CL LCL

Mixed

logit

DLCL

district 3313 3130 3258 3206

district-smart 3426 3278
∗

3351 3303
†

expedia 839505 837649
∗

839055 837569
†

sushi 9821 9773
∗

9793 9764

car-a 1702 1694 1696 1692

car-b 1305 1295 1297 1284

car-alt 7393 6733
∗

7301 7011
†

synthetic-cl 210473 210486 210503 210504

synthetic-lcl 140279 137232
∗

139539 137937
†

wiki-talk 99608 97748
∗

95761 95134
†

reddit-hyperlink 135108 132880
∗

133766 132473
†

bitcoin-alpha 19675 19190
∗

19093 18877
†

bitcoin-otc 26968 26101
∗

25768 25348
†

sms-a 8252 8056
∗

8239 8154
†

sms-b 13153 12823
∗

13147 12975
†

sms-c 4988 4880
∗

4928 4871
†

email-enron 73015 70061
∗

71450 69254
†

email-eu 53025 51822
∗

51988 51431
†

email-w3c 11012 10677
∗

9898 9758
†

facebook-wall 118208 116062
∗

117210 116328
†

college-msg 14575 14120
∗

13849 13712
†

mathoverflow 500537 479999
∗

440482 435932
†

∗
Significant likelihood-ratio test vs. CL (𝑝 < 0.001)

†
Significant likelihood-ratio test vs. mixed logit (𝑝 < 0.001)

context effects are occurring. In the general choice datasets, expedia

(𝑝 < 10
−16

), district-smart (𝑝 < 10
−16

), sushi (𝑝 = 1.6 × 10−7),
and car-alt (𝑝 < 10

−16
) have significant tests for the LCL.

Evaluating predictive power. The likelihood-ratio tests provide

strong evidence for the presence of feature context effects. A related

question is whether our methods improve out-of-sample predic-

tions. To address this question, we measure the mean relative rank

of the true selected item in the output ranking of each method. We

define the relative rank of an item 𝑖 to be its index when the choice

set𝐶 is sorted in descending probability order (with ties resolved by

taking the mean of all possible indices), divided by |𝐶 |−1. The mean

relative rank is a measure of how good the model’s predictions are,

from 0 (best) to 1 (worst). We use this rather than mean reciprocal

rank because the choice sets have variable sizes [18]. Figure 2 shows

that LCL and DLCL make better predictions than CL and mixed

logit across many datasets. In some cases, the improvement are

quite large; for example, in bitcoin-otc, the mean relative rank is

24% better in LCL than in CL.

Interpreting learned models on general choice datasets. The

previous analyses of model fit and predictive power indicate that

linear context effects are indeed a significant factor. We now in-

vestigate what these effects are and show how our models can be

interpreted to discover choice behaviors. We focus on the LCL be-

cause of its simpler structure and convex objective. For the general

choice datasets, we select two datasets for detailed examination:
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Figure 2: Mean relative rank of predictions on held-out test data (lower is better). Error bars show standard error of the mean.

Table 4: Five largest context effects in sushi.

Effect (𝑞 on 𝑝) 𝐴𝑝𝑞 (std. err.) 𝑝-value

popularity on popularity −0.28 (0.15) 0.066

availability on is maki 0.24 (0.14) 0.087

oiliness on oiliness −0.20 (0.08) 0.0089

popularity on availability 0.19 (0.14) 0.16

availability on oiliness −0.18 (0.10) 0.064

expedia and sushi. The five context effects with largest magnitude

in each dataset are shown in Tables 4 and 5. Note that features are

all standardized, so picking the largest entries of 𝐴 is meaningful.

Using the asymptotic normality of the maximum likelihood es-

timator [65], we can compute standard errors for the parameter

estimates and 𝑝-values for the null hypothesis that a particular con-

text effect is zero. This procedure is inexpensive: we need a single

pass over the dataset after training to estimate the Fisher informa-

tion matrix, from which standard errors can be directly computed

(this is a standard procedure in statistical inference [65]).
2

First, we examine sushi, which has randomly chosen choice

sets. The most significant effect is that respondents given more

oily sushi options showed more aversion to oily sushi (Table 4).

The randomization of choice sets allows us to hypothesize that

this is causal: too much oiliness on the menu makes oily foods less

appealing, which could be an example of the similarity effect. The

other context effects with largest magnitude in𝐴 are not significant.

In expedia, all five of the largest-magnitude effects are statis-

tically significant (Table 5). The largest effect in the full model is

a decrease in willingness to pay (i.e., cheaper options are more

preferred) when the mean location score of the choice set is high.

Additionally, if many of the options are marked as “on promotion,”

people seemmorewilling to book higher priced hotels. Interestingly,

when the available hotels tend to be well-reviewed by other Expedia

users, people are more price-averse, but they are less price-averse

when the available hotels tend to have high star ratings. This may

be because people searching for five-star hotels are not looking for

the cheapest options, whereas people searching for well-reviewed

2
Another useful (but more computationally expensive) approach is to constrain 𝐴

to zero in all but one entry of interest. This preserves NLL convexity, still allows for

likelihood ratio tests, and can be used to determine the effect size of a context effect.

Table 5: Five largest context effects in expedia.

Effect (𝑞 on 𝑝) 𝐴𝑝𝑞 (std. err.) 𝑝-value

location score on price −0.47 (0.05) < 10
−16

on promotion on price 0.27 (0.03) < 10
−16

review score on price −0.19 (0.03) 1.4 × 10−9
star rating on price 0.15 (0.04) 6.7 × 10−5
price on star rating 0.10 (0.00) < 10

−16

hotels are looking for good deals. (The dataset does not include

this information, only the location, length of stay, booking window,

adult/children count, and room count of the search.) Finally, people

choosing between more expensive hotels placed more weight on

high star rating. When interpreting these effects, it is important to

keep in mind that the choice sets in expedia may be influenced by

user preferences to begin with, so we cannot determine whether

the effects are causal. Nonetheless, the learned LCL model could

motivate a randomized controlled trial aimed at determining causal

effects. It also illustrates an important point to keep in mind when

using choice data from recommender systems: choice sets are not

necessarily independent from preferences.

Interpreting learnedmodels on network growth datasets. We

take a different approach to examine context effects in the network

datasets, showcasing another useful application of the LCL. To visu-

alize what context effects influence choice in the network datasets,

we apply 𝐿1 regularization of varying strength to the LCL matrix 𝐴

during training, which encourages sparsity. Figure 3 visualizes the

learned 𝐴 matrices. Recall that a column of 𝐴 corresponds to the

feature exerting an effect and a row to the influenced feature.

Figure 3 reveals several effects shared by multiple datasets. For

example, in mathoverflow, facebook-wall, sms-a, sms-b, and

reddit-hyperlink, feature 1 (in-degree) has a positive effect on

feature 2’s coefficient (shared neighbors). This suggests that close

connections matter more when choosing from a popular group.

And in email-enron and email-w3c, there is a negative effect of

feature 6 (reciprocal recency) on feature 1 (in-degree): high-volume

email recipients are less likely to be targeted when the sender’s

inbox has recent messages from other potential targets.

In both of these examples, when increasing regularization causes

those entries of 𝐴 to go to 0, we see a jump in the likelihood,
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Figure 3: Effect of 𝐿1 regularization on the LCL context effect

matrix. The parameter 𝜆 (increasing left to right) controls the

strength of regularization. Each box visualizes the learned

matrix 𝐴 (blue = negative, red = positive, white = zero; consis-

tent color scales within but not between rows) at the given

𝜆 value. Features in 𝐴 are in the order from Section 6.2, top-

down and left-right. The black line tracks the total NLL of

the LCL (the % on the y-axes is relative to the NLL of the best

model plotted for that dataset). The dotted green line is the

significance threshold of a likelihood-ratio test against a CL

(𝑝 < 0.001; black line below the threshold means the LCL is a

significantly better fit than CL).

indicating that these are important effects to capture (note that

we plot NLL, so lower is better). Additionally, we see in the top

row how a dataset with no context effects (synthetic-cl) behaves:

𝐴 immediately goes to 0 when any 𝐿1 regularization is applied,

without any worsening of the likelihood.

7 DISCUSSION

Discovering intuitive context effects from choice data using our

models has a number of potential applications. In recommender

systems, insight into context effects could inform the set of options

suggested to the user. Our models can also produce hypotheses for

more controlled investigation in economics or psychology. A key

contribution is showing how intuitive and general context effects

can be automatically recovered from observed choices and tested

for significance. While we focused on linear context effects for

simplicity, some datasets (e.g., email-enron in Figure 1) show evi-

dence of non-linearity. Capturing these more complex effects while

retaining ease of training and interpretation would be valuable.

Our network analysis revealed several context effects in network

growth, which can aid modeling within network science and social

network analysis. We focused on triadic closure, where context

effects can be observed in small choice sets. Incorporating context

effects in other modes of network growth (such as connections with

unrelated nodes) is an interesting avenue for future research. A chal-

lenge is that global modes of edge formation have large choice sets,

requiring negative sampling for effective estimation [44], which

seems difficult to adapt for models with context effects.

A limitation of our approach is that the generalizability of iden-

tified effects is constrained by correlations in the data. For example,

choice sets arising from recommender systems (such as expedia)

are correlated with the preferences of their users by design. This

makes it difficult to distinguish between how a user’s preferences

are affected by the choice set and how the user’s preferences in-

fluence the choice set. Our recent research adapts causal inference

methods to the discrete choice setting to address this issue [58].

In other situations, we might have random choice sets (as in

sushi) or we might have no information about how choice sets are

determined. In the latter case, our approach could also be used to

find evidence of choice sets targeted at chooser preferences: if we

observe many positive self-effects (i.e., preference for star-rating is

higher in sets with high star-rating), this could mean that choice

sets are being catered to people’s preferences. In some cases, this

could be undesirable (e.g., if the party presenting individuals with

options is supposed to be impartial), and our methods could provide

a mechanism for identifying unwanted interventions.

Another challenging direction for futureworkwould be amethod

of discovering more complex relational context effects from choice

data. The feature context effects we study describe the influence

of one feature on another, but some of the traditional context ef-

fects studied in economics and psychology (e.g., the compromise

effect) are based on the relationship between the features of several

items. These effects are typically studied with targeted models that

are hand-crafted to capture the desired effect. A general method

of encoding and learning relational context effects could enable

the discovery of new complex effects not yet envisioned by choice

theorists, but nonetheless appear in choice data.
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A PROOFS

The proof of Theorem 4.1 relies on three lemmas.

Lemma A.1 ([54], Appendix A). For any choice set 𝐶 , there is a
bijection between the choice probabilities {Pr(𝑖,𝐶) | 𝑖 ∈ 𝐶} and the
log probability ratios {𝛽𝑖,𝐶 | 𝑖 ∈ 𝐶} defined by

𝛽𝑖,𝐶 = log

©« Pr(𝑖,𝐶)[∏
𝑗 ∈𝐶 Pr( 𝑗,𝐶)

] 1

|𝐶 |

ª®¬ . (8)

Proof. We can compute 𝛽𝑖,𝐶 given all choice probabilities in

𝐶 as defined above. To obtain probabilities given log probability

ratios, take

exp(𝛽𝑖,𝐶 )∑
𝑗 ∈𝐶 exp(𝛽 𝑗,𝐶 )

=

Pr(𝑖,𝐶)

(∏ℎ∈𝐶 Pr(ℎ,𝐶))
1

|𝐶 |∑
𝑗 ∈𝐶

Pr( 𝑗,𝐶)

(∏ℎ∈𝐶 Pr(ℎ,𝐶))
1

|𝐶 |

=
Pr(𝑖,𝐶)∑

𝑗 ∈𝐶 Pr( 𝑗,𝐶)
= Pr(𝑖,𝐶). □

This means we can prove identifiability from the 𝛽s rather than

from choice probabilities. We can also get a simple form for 𝛽𝑖,𝐶
under the LCL.

Lemma A.2. In the LCL, 𝛽𝑖,𝐶 = (𝜃 +𝐴𝑦𝐶 )𝑇 (𝑦𝑖 − 𝑦𝐶 ).

Proof. Define 𝜃𝐶 = 𝜃 +𝐴𝑦𝐶 for brevity.

𝛽𝑖,𝐶 = log

(
Pr(𝑖,𝐶)

(∏ℎ∈𝐶 Pr(ℎ,𝐶))
1

|𝐶 |

)

= log

©«
exp

(
𝜃𝑇
𝐶
𝑦𝑖

)
∑

𝑗 ∈𝐶 exp

(
𝜃𝑇
𝐶
𝑦 𝑗

) / ©«
∏
ℎ∈𝐶

exp

(
𝜃𝑇
𝐶
𝑦ℎ

)
∑

𝑗 ∈𝐶 exp

(
𝜃𝑇
𝐶
𝑦 𝑗

) ª®®¬
1

|𝐶 | ª®®®¬
= log

©«
exp

(
𝜃𝑇
𝐶
𝑦𝑖

)
[∏

ℎ∈𝐶 exp

(
𝜃𝑇
𝐶
𝑦ℎ

)] 1

|𝐶 |

ª®®®¬
= 𝜃𝑇𝐶𝑦𝑖 −

1

|𝐶 |
∑︁
ℎ∈𝐶

𝜃𝑇𝐶𝑦 𝑗

= 𝜃𝑇𝐶 (𝑦𝑖 − 𝑦𝐶 ). □

Let vec(𝐴) denote the vectorization of the matrix 𝐴 (the vector

formed by stacking the columns of 𝐴).

Lemma A.3 (Special case of the vec trick, [52]). For any
vectors 𝑥 ∈ R𝑚, 𝑦 ∈ R𝑛 and matrix 𝐴 ∈ R𝑚×𝑛 , 𝑥𝑇𝐴𝑦 = (𝑦 ⊗
𝑥)𝑇 vec(𝐴).

Proof.

𝑥𝑇𝐴𝑦 =

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑦 𝑗 =

𝑛∑︁
𝑗=1

𝑦 𝑗

𝑚∑︁
𝑖=1

𝐴𝑖 𝑗𝑥𝑖

=


𝑦1𝑥

𝑦2𝑥

.

.

.

𝑦𝑛𝑥


𝑇

vec(𝐴)

= (𝑦 ⊗ 𝑥)𝑇 vec(𝐴) . □

With these facts in hand, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Consider the log probability ratio of an

item 𝑖 appearing in choice set 𝐶:

𝛽𝑖,𝐶 = (𝑦𝑖 − 𝑦𝐶 )𝑇 (𝜃 +𝐴𝑦𝐶 ) (by Lemma A.2)

= (𝑦𝑖 − 𝑦𝐶 )𝑇
[
𝐴 𝜃

] [
𝑦𝐶
1

]
=

( [
𝑦𝐶
1

]
⊗ (𝑦𝑖 − 𝑦𝐶 )

)𝑇
vec

( [
𝐴 𝜃

] )
. (by Lemma A.3)

Let𝑚 = |{(𝑖,𝐶) | 𝐶 ∈ CD , 𝑖 ∈ 𝐶}| be the number of distinct (item,

choice set) pairs in the dataset. Index these pairs from 1 to𝑚. We

construct the following𝑚 × (𝑑2 + 𝑑) linear system by stacking all

the 𝛽𝑖,𝐶 equations:

( [
𝑦𝐶1

1

]
⊗ (𝑦𝑖1 − 𝑦𝐶1

)
)𝑇

.

.

.( [
𝑦𝐶𝑚

1

]
⊗ (𝑦𝑖𝑚 − 𝑦𝐶𝑚

)
)𝑇


vec

( [
𝐴 𝜃

] )
=


𝛽𝑖1,𝐶1

.

.

.

𝛽𝑖𝑚,𝐶𝑚

 .
Supposing the choice probabilities are generated according to the

LCL, this system is consistent (although it is highly overdetermined

with a large dataset). Any solution to this system is a setting of the

parameters 𝜃,𝐴 that results in the observed log probability ratios

(and therefore choice probabilities, by Lemma A.1). Since we know

the system is consistent, it has a unique solution (i.e., the LCL is

identifiable) if and only if the rows of the matrix span R𝑑
2+𝑑

. □

Proof of Proposition 4.2. Suppose that 𝑦𝐶1
, . . . , 𝑦𝐶𝑘

(𝑘 < 𝑑 +
1) is a maximal set of affinely independent mean feature vectors

appearing in the dataset D. In each one of these choice sets 𝐶𝑖 , the

choice probabilities are determined by 𝜃𝐶𝑖
= 𝜃 + 𝐴𝑦𝐶𝑖

. However,

since 𝑘 < 𝑑 + 1, there are infinitely many affine transformations

𝜃 +𝐴𝑦𝐶𝑖
that map every 𝑦𝐶𝑖

to its corresponding 𝜃𝐶𝑖
. For any other

choice set𝐶 ′ ∉ {𝐶1, . . . ,𝐶𝑘 }, we can express its mean feature vector

as an affine combination 𝑦𝐶′ =
∑𝑘
𝑖=1 𝛼𝑖𝑦𝐶𝑖

, where

∑𝑘
𝑖=1 𝛼𝑖 = 1.

We then have 𝜃𝐶′ = 𝜃 + 𝐴(∑𝑘
𝑖=1 𝛼𝑖𝑦𝐶𝑖

) = ∑𝑘
𝑖=1 𝛼𝑖 (𝜃 + 𝐴𝑦𝐶𝑖

) =∑𝑘
𝑖=1 𝛼𝑖𝜃𝐶𝑖

, so any of the infinitely many affine transformations that

correctly map 𝑦𝐶𝑖
to 𝜃𝐶𝑖

will also map 𝑦𝐶′ to 𝜃𝐶′ . This means there

are infinitely many parameter settings 𝜃 and 𝐴 that would result in

the same choice probabilities, so the LCL is not identifiable. □

Proof of Proposition 4.3. We will use differences in log prob-

ability ratios to first identify the choice set dependent utilities



Algorithm 1 EM algorithm for estimating DLCL parameters.

1 Input:𝑚 observations D, 𝑑 features

2 𝐴(0) , 𝐵 (0) ← 𝑑 × 𝑑 randomly initialized matrices

3 𝜋 (0) ← 𝑑-dimensional vector with all entries equal to
1

𝑑
4 𝑡 ← 0

5 while not converged do

6 𝑝ℎ𝑘 ←
exp

(
[𝐵 (𝑡 )

𝑘
+𝐴(𝑡 )

𝑘
(𝑦𝐶 )𝑘 ]𝑇 𝑦𝑖

)∑
𝑗∈𝐶 exp

(
[𝐵 (𝑡 )

𝑘
+𝐴(𝑡 )

𝑘
(𝑦𝐶 )𝑘 ]𝑇 𝑦 𝑗

)
for each (𝑖,𝐶) = Dℎ and 𝑘 = 1, . . . , 𝑑

7 𝑟ℎ𝑘 ←
𝜋
(𝑡 )
𝑘

𝑝ℎ𝑘∑𝑑
𝑔=1 𝜋

(𝑡 )
𝑔 𝑝ℎ𝑔

for each ℎ = 1, . . . ,𝑚 and 𝑘 = 1, . . . , 𝑑

8

𝑄 (𝐴, 𝐵 | 𝜃 (𝑡 ) ) ←
∑︁

(𝑖,𝐶)=Dℎ

𝑑∑︁
𝑘=1

𝑟ℎ𝑘

[
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦𝑖

− log
∑︁
𝑗 ∈𝐶

exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦 𝑗

) ]
9 Find a minimizer 𝐴∗, 𝐵∗ of −𝑄 (𝐴, 𝐵 | 𝜃 (𝑡 ) ) using gradient

descent

10 𝐴(𝑡+1) ← 𝐴∗, 𝐵 (𝑡+1) ← 𝐵∗

11 𝜋
(𝑡+1)
𝑘

← 1

|D |
∑ |D |
ℎ=1

𝑟ℎ𝑘 for each 𝑘 = 1, . . . , 𝑑

12 𝑡 ← 𝑡 + 1
13 return 𝐴(𝑡 ) , 𝐵 (𝑡 ) , 𝜋 (𝑡 )

𝜃𝐶 = 𝜃 + 𝐴𝑦𝐶 in each choice set and then combine those to de-

termine 𝜃 and 𝐴.

To remove a dependence on mean feature vectors, consider the

difference of two log probability ratios in the same choice set:

𝛽𝑖1,𝐶 − 𝛽𝑖2,𝐶 = 𝜃𝑇𝐶 (𝑦𝑖1 − 𝑦𝐶 ) − 𝜃
𝑇
𝐶 (𝑦𝑖2 − 𝑦𝐶 ) (by Lemma A.2)

= 𝜃𝑇𝐶 (𝑦𝑖1 − 𝑦𝑖2 ) .
In order to identify the vector 𝜃𝐶 , form the following linear system

from 𝑑 such differences, all in the same choice set 𝐶:
(𝑦𝑖1 − 𝑦𝑖0 )𝑇
(𝑦𝑖2 − 𝑦𝑖0 )𝑇

.

.

.

(𝑦𝑖𝑑 − 𝑦𝑖0 )𝑇


𝜃𝐶 =


𝛽𝑖1,𝐶 − 𝛽𝑖0,𝐶
𝛽𝑖2,𝐶 − 𝛽𝑖0,𝐶

.

.

.

𝛽𝑖𝑑 ,𝐶 − 𝛽𝑖0,𝐶


If the rows of the matrix are linearly independent, then we can

uniquely solve this system to find 𝜃𝐶 . For this to be the case, we

need the 𝑑 +1 feature vectors 𝑦𝑖0 , . . . , 𝑦𝑖𝑑 to be affinely independent.

In order to recover 𝜃 and 𝐴, we need to solve the affine system

𝜃 +𝐴𝑦𝐶 = 𝜃𝐶 for 𝜃 and 𝐴 given observations of 𝑦𝐶 and 𝜃𝐶 . Affine

transformations in 𝑑 dimensions are uniquely specified by their

action on a set of 𝑑 + 1 affinely independent vectors. So, if we have

𝑑 + 1 observed choice sets 𝐶0, . . . ,𝐶𝑑 whose mean feature vectors

𝑦𝐶0
, . . . , 𝑦𝐶𝑑

are affinely independent (and if we know 𝜃𝐶0
, . . . , 𝜃𝐶𝑑

),

then we can uniquely identify 𝜃 and 𝐴. As we have seen, we can

find 𝜃𝐶0
, . . . , 𝜃𝐶𝑑

if each of 𝐶0, . . . ,𝐶𝑑 has 𝑑 + 1 items with affinely

independent feature vectors. □

B EM ALGORITHM FOR DLCL ESTIMATION

Let Dℎ denote ℎth observation (𝑖,𝐶) and Δℎ ∈ {1, . . . , 𝑑} denote
the latent mixture component that the observation Dℎ comes from

(taking the view that each observation belongs to one component).

The EM algorithm (see [17] for a general treatment) is an itera-

tive procedure that begins with initial guesses for the parameters

𝜃 (0) = (𝐴(0) , 𝐵 (0) , 𝜋 (0) ) and updates them until convergence. In

the update step, we maximize the expectation of the log-likelihood

ℓ (𝐴, 𝐵;D,Δ) over the distribution of the unobserved variable Δ
conditioned on the observations D and the current estimates of

the parameters, denoted EΔ [ℓ (𝐴, 𝐵;D,Δ) | D, 𝜃 (𝑡 ) ]. The new esti-

mates 𝐴(𝑡+1) and 𝐵 (𝑡+1) are the maximizers of this function. The

new estimate of the mixture proportions 𝜋 (𝑡+1) has a closed form

based on the probability that each observation comes from each

mixture component according to the current estimates of 𝐴 and 𝐵.

See Algorithm 1 for the complete procedure. We derive the details

here, starting with a breakdown of the expectation function:

EΔ [ℓ (𝐴, 𝐵;D,Δ) | D, 𝜃 (𝑡 ) ]

=
∑︁

(𝑖,𝐶)=Dℎ

𝑑∑︁
𝑘=1

Pr(Δℎ = 𝑘 | 𝑖,𝐶, 𝜃 (𝑡 ) ) log Pr(𝑖,𝐶 | Δℎ = 𝑘,𝐴, 𝐵) .

(9)

We can compute the first part of the summand (the responsibilities)
using Bayes’ Theorem:

Pr(Δℎ = 𝑘 | 𝑖,𝐶, 𝜃 (𝑡 ) ) = Pr(𝑖,𝐶 | Δℎ = 𝑘, 𝜃 (𝑡 ) ) Pr(Δℎ = 𝑘 | 𝜃 (𝑡 ) )
Pr(𝑖,𝐶 | 𝜃 (𝑡 ) )

(10)

= 𝜋
(𝑡 )
ℎ

Pr(𝑖,𝐶 | Δℎ = 𝑘, 𝜃 (𝑡 ) )
Pr(𝑖,𝐶 | 𝜃 (𝑡 ) )

. (11)

The numerator of Equation (11) is the 𝑘th component of the DLCL

choice probability (with our estimates for 𝐴 and 𝐵):

Pr(𝑖,𝐶 | Δℎ = 𝑘, 𝜃 (𝑡 ) ) =
exp

(
[𝐵 (𝑡 )

𝑘
+𝐴(𝑡 )

𝑘
(𝑦𝐶 )𝑘 ]𝑇𝑦𝑖

)∑
𝑗 ∈𝐶 exp

(
[𝐵 (𝑡 )

𝑘
+𝐴(𝑡 )

𝑘
(𝑦𝐶 )𝑘 ]𝑇𝑦 𝑗

) .
(12)

Meanwhile, the denominator of Equation (11) is the sum of these

probabilities weighted by the mixture weight estimates:

Pr(𝑖,𝐶 | 𝜃 (𝑡 ) ) =
𝑑∑︁

𝑘=1

𝜋
(𝑡 )
𝑘

Pr(𝑖,𝐶 | Δℎ = 𝑘, 𝜃 (𝑡 ) ) . (13)

The last term in Equation (9) is a function of the parameters 𝐴, 𝐵

(not their estimates):

log Pr(𝑖,𝐶 | Δℎ = 𝑘,𝐴, 𝐵) = log

[
exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦𝑖

)∑
𝑗 ∈𝐶 exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦 𝑗

) ]
(14)

= [𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦𝑖 − log
∑︁
𝑗 ∈𝐶

exp

(
[𝐵𝑘 +𝐴𝑘 (𝑦𝐶 )𝑘 ]𝑇𝑦 𝑗

)
. (15)

Equation (15) is concave by the same reasoning that the LCL’s NLL

(Equation (7)) is convex. Thus, the expectation EΔ [ℓ (𝐴, 𝐵;D,Δ) |
D, 𝜃 (𝑡 ) ], being the sum of positively scaled concave functions, is

also concave. Its gradient is also Lipschitz continuous, just like

the LCL’s NLL. We can therefore find a global maximum using

gradient ascent (in practice, we use gradient descent to minimize

−𝑄 (𝐴, 𝐵 | 𝜃 (𝑡 ) )).
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