Distance Measures for Tumor Evolutionary Trees

Zach DiNardo*1, Kiran Tomlinson*1, Anna Ritz², and Layla Oesper¹

¹Department of Computer Science, Carleton College ²Department of Biology, Reed College *Joint first author

May 3, 2019

Clonal Theory (Nowell 1976)

Clonal Theory (Nowell 1976)

Clonal Tree Inference

Clonal Tree Inference

How do we compare two clonal trees?

Introduction

- Many Trees
- Uses for Distance Measures
- Existing Distance Measures

2 Methods

Multiple Inference Methods

Inter-Patient Comparison

Intra-Patient Comparison

Uses

Comparing/evaluating inferred trees

Uses

- Ocomparing/evaluating inferred trees
- Olustering trees

Uses

- Comparing/evaluating inferred trees
- Olustering trees
- S Inference/consensus methods (e.g., Govek et al. 2018)

Existing Distance Measures

Phylogenetic trees

- Robinson-Foulds distance (Robinson & Foulds 1981)
- Quartet distance (Estabrook et al. 1985)
- Triplet distance (Critchlow et al. 1996)

Existing Distance Measures

Phylogenetic trees

- Robinson-Foulds distance (Robinson & Foulds 1981)
- Quartet distance (Estabrook et al. 1985)
- Triplet distance (Critchlow et al. 1996)

Clonal trees

Existing Distance Measures

Phylogenetic trees

- Robinson-Foulds distance (Robinson & Foulds 1981)
- Quartet distance (Estabrook et al. 1985)
- Triplet distance (Critchlow et al. 1996)

Clonal trees

- MLTED (Karpov et al. 2018)
- A-D distance (Govek et al. 2018)
- Rearrangement distance (Bernardini et al. 2019)

Methods

- Definitions
- CASet
- DISC

Results

Definition

A *clonal tree* is a multi-labeled tree with unique labels.

Clonal trees:

Definition

A *clonal tree* is a multi-labeled tree with unique labels.

Definition

An *m*-clonal tree is a clonal tree with labels $1, \ldots, m$.

Clonal trees:

7-clonal trees:

Ancestral and Common Ancestor Sets

Ancestral and Common Ancestor Sets

Ancestral and Common Ancestor Sets

Common Ancestor Set

Given a clonal tree T_k and two mutations i, j,

```
C_k(i,j) = A_k(i) \cap A_k(j).
```

$$\mathsf{Jacc}(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}, \qquad \mathsf{Jacc}(\emptyset, \emptyset) = 0$$

$$\mathsf{Jacc}(A,B) = 1 - rac{|A \cap B|}{|A \cup B|}, \qquad \mathsf{Jacc}(\emptyset, \emptyset) = 0$$

Theorem (e.g., Gilbert 1972)

Jaccard distance is a metric on sets.

Average over all values \rightarrow CASet(T_1, T_2) = 0.39

Average over all values \rightarrow CASet(T_1, T_2) = 0.39

CASet Distance (Common Ancestor Set)

Given two *m*-clonal trees T_k , T_ℓ ,

$$\mathsf{CASet}(\mathit{T}_k, \mathit{T}_\ell) = \frac{1}{\binom{m}{2}} \sum_{\{i,j\} \subseteq [m]} \mathsf{Jacc}(\mathit{C}_k(i,j), \mathit{C}_\ell(i,j)).$$

Distinctly Inherited Sets

Distinctly Inherited Sets

Distinctly Inherited Sets

Given a clonal tree T_k and two mutations i, j,

 $D_k(i,j) = A_k(i) \setminus A_k(j).$

DISC Distance (Distinctly Inherited Set Comparison)

Given two *m*-clonal trees T_k, T_ℓ ,

$$\mathsf{DISC}(T_k, T_\ell) = \frac{1}{m(m-1)} \sum_{\substack{(i,j) \in [m]^2 \\ i \neq j}} \mathsf{Jacc}(D_k(i,j), D_\ell(i,j)).$$

Metric Properties

$$= \frac{1}{\binom{m}{2}} \sum_{\{i,j\}\subseteq [m]} \operatorname{Jacc}(C_k(i,j), C_\ell(i,j))$$

$\mathsf{DISC}(T_k, T_\ell)$

$$= \frac{1}{m(m-1)} \sum_{\substack{(i,j) \in [m]^2 \\ i \neq j}} \operatorname{Jacc}(D_k(i,j), D_\ell(i,j))$$

Metric Properties

Theorem

CASet and DISC are metrics on m-clonal trees.

Different Label Sets: Union

Different Label Sets: Union

Different Label Sets: Intersection

Different Label Sets: Intersection

Overview of Distance Measures

Outline

Simulated Data

OncoLib (El-Kebir Group 2018)

Simulated Data

Intra-Family Structure

Family E

- Triple negative breast cancer (Wang et al. 2014)
 - Single-cell seq. at $72 \times$ coverage
 - Bulk deep seq. at $118,743 \times$ coverage
- Breast cancer xenograft (Eirew et al. 2015)
 - Whole-genome seq. at 35-72× coverage
 - MiSeq targeted deep seq.

TNBC Tree Inference Analysis

DiNardo et al. (Carleton College)

TNBC Tree Inference Analysis

Xenoengraftment Tree Inference Analysis

DiNardo et al. (Carleton College)

May 3, 2019 29 / 31

Xenoengraftment Tree Inference Analysis

LICHeE inference

- Oistance measures are important for tumor tree analysis
- We introduced two novel distance metrics, CASet and DISC
- OASet clusters trees more clearly than existing measures
- OCASet and DISC have high resolution on simulated and real data

- Distance measures are important for tumor tree analysis
- We introduced two novel distance metrics, CASet and DISC
- OASet clusters trees more clearly than existing measures
- CASet and DISC have high resolution on simulated and real data

- Distance measures are important for tumor tree analysis
- We introduced two novel distance metrics, CASet and DISC
- OASet clusters trees more clearly than existing measures
- CASet and DISC have high resolution on simulated and real data

- Oistance measures are important for tumor tree analysis
- We introduced two novel distance metrics, CASet and DISC
- O CASet $_{\cup}$ clusters trees more clearly than existing measures
- CASet and DISC have high resolution on simulated and real data

- This project is supported by the NSF and Elledge, Eugster, and Class of '49 Fellowships from Carleton College (to LO).
- Thank you to the Carleton College Computer Science Department, Layla Oesper, Anna Ritz, Rosa Zhou, and Thais Del Rosario Hernandez.

Availability

```
Implementations of CASet and DISC are available at
https://bitbucket.org/oesperlab/stereodist.
Preprint available at
https://www.biorxiv.org/.
```