
Distance Measures for Tumor Evolutionary Trees

Zach DiNardo∗1, Kiran Tomlinson∗1, Anna Ritz2, and Layla Oesper1

1Department of Computer Science, Carleton College
2Department of Biology, Reed College

∗Joint first author

May 3, 2019

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 1 / 31



Clonal Theory (Nowell 1976)

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 2 / 31



Clonal Theory (Nowell 1976)

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 2 / 31



Clonal Theory (Nowell 1976)

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 2 / 31



Clonal Tree Inference

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

How do we compare two clonal trees?

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 3 / 31



Clonal Tree Inference

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

How do we compare two clonal trees?

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 3 / 31



Outline

1 Introduction
Many Trees
Uses for Distance Measures
Existing Distance Measures

2 Methods

3 Results

4 Conclusions

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

Sequencing Inference

Method A

Method B

Patient 1

Patient 2

Patient 3

Sample 1

Sample 2

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 4 / 31



Multiple Inference Methods
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sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see

9
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Need for Distance Measures
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Existing Distance Measures
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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(Bernardini et al. 2019)
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.

1"

2"

9" 7" 5,10"

6"

2"

4"

8"

T1# 1"

2"

6" 8" 3"

7"

5"

10"

4,"9"

T2#

Ja
cc

(C
1(

i,j
), 

C
2(

i,j
))

 

Unordered mutation pairs 

… {4,6} {4,7} {4,8} … 

1.0 

0.67 0.67 
0.75 

{1,2} 
0.0 

{9,10} 
0.0 

CASet(T1,T2) = 0.40 

Ja
cc

(D
1(

i,j
), 

D
2(

i,j
))

 

Ordered mutation pairs 

… (4,6) (4,7) (4,8) … 

1.0 

0.67 0.67 

1.0 

(1,2) 

0.0 

(10,9) 

0.33 

(7,4) 
0.0 

0.67 

(7,5) … 

DISC(T1,T2) = 0.53 

(A)" (B)" (C)"

Average"over"all"values"Average"over"all"values"

Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|

|A[B| and
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)

4
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets
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allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
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of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)

4

1

2 5

86 3

7 4,9

T1 1

5 2

6 3,8

7,9 4

T21

2 5

86 3

7 4,9

T1 1

5 2

6 3,8

7,9 4

T2

1

2 5

86 3

7 4,9

T1 1

5 2

6 3,8

7,9 4

T2

1

2 5

86 3

7 4,9

T1 1

5 2

6 3,8

7,9 4

T2

1010 10 10

1010

1010

CASet DISC

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 12 / 31



Tree Differences

Cell

Heterogeneous tumor Clonal tree

Mutation

Time

Tumor population

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

Mutations

15;17 5;7 6;14

4 2;8;12;13;16

3 9;11

0

1 10

11

2

3 5 10;12

6 4;9

7

8

0

1

10;14;19

7;9

20

15

11;13

0;1;2;3;4

6;8 5;18

12;16;17

11

6

12

13

3

8;9

4;5

0;1;2

7;10

21

24 23

22

5;6;9;10;14;15;16;17

18;20

0;1;2

A

B

C

D

E

OncoLib 

(El-Kebir Group 2018)

Simulate tumor evolution

Modified AncesTree

(El-Kebir et al. 2015, Tomlinson & Oesper 2018)

Simulate sampling and sequencing

Enumerate compatible trees

Family A 15;17 5;7 6;14

4 2;8;12;13;16

3 9;11

0

1 10

11

2

3 5 10;12

6 4;9

7

8

0

1

10;14;19

7;9

20

15

11;13

0;1;2;3;4

6;8 5;18

12;16;17

B
C
D
E

11

6

12

13

3

8;9

4;5

0;1;2

7;10

21

24 23

22

5;6;9;10;14;15;16;17

18;20

0;1;2

0

1 10 15,17 3 4 7,5 14,6 11,9

12,13,16,8,2

…
…
…
…
…

{ }
{ } 
{ } 
{ } 
{ } 

(50 trees each) 

VAF matrices

0.3 0.2

0.3 0.4
…

...

…

A B C D E

Sample

… … …

1,2

3,4 5

6 7

1 2 3

1,2

3

56 4,7

1

3 5

6

1,2

3 4 5 6

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.

1"

2"

9" 7" 5,10"

6"

2"

4"

8"

T1# 1"

2"

6" 8" 3"

7"

5"

10"

4,"9"

T2#

Ja
cc

(C
1(

i,j
), 

C
2(

i,j
))

 

Unordered mutation pairs 

… {4,6} {4,7} {4,8} … 

1.0 

0.67 0.67 
0.75 

{1,2} 
0.0 

{9,10} 
0.0 

CASet(T1,T2) = 0.40 

Ja
cc

(D
1(

i,j
), 

D
2(

i,j
))

 

Ordered mutation pairs 

… (4,6) (4,7) (4,8) … 

1.0 

0.67 0.67 

1.0 

(1,2) 

0.0 

(10,9) 

0.33 

(7,4) 
0.0 

0.67 

(7,5) … 

DISC(T1,T2) = 0.53 

(A)" (B)" (C)"

Average"over"all"values"Average"over"all"values"

Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree

11

3.2 Results on Real Datasets

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,
MAP2K7,NTRK1,

AFF4

MAP3K4 ECM1

PPP2R1A,SYNE2,
AURKA CHRM5

TGFB2

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4

SYNE2

AURKA

TGFB2

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,

MAP2K7

NTRK1,AFF4

CHRM5 ECM1

TGFB2 PPP2R1A,
SYNE2 CBX4 TNC

AURKA

T1#

T2#

T3# CASet(T1#,#T2)(=(0.15((
CASet(T1#,#T3)(=(0.26((

CASet(T2#,#T3)(=(0.36((

DISC(T1#,#T2)(=(0.21((
DISC(T1#,#T3)(=(0.25((

DISC(T2#,#T3)(=(0.35((

MLTED(T1#,#T2)(=(0.18((
MLTED(T1#,#T3)(=(0.0((

MLTED(T2#,#T3)(=(0.18((

Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.

1"

2"

9" 7" 5,10"

6"

2"

4"

8"

T1# 1"

2"

6" 8" 3"

7"

5"

10"

4,"9"

T2#

Ja
cc

(C
1(

i,j
), 

C
2(

i,j
))

 

Unordered mutation pairs 

… {4,6} {4,7} {4,8} … 

1.0 

0.67 0.67 
0.75 

{1,2} 
0.0 

{9,10} 
0.0 

CASet(T1,T2) = 0.40 

Ja
cc

(D
1(

i,j
), 

D
2(

i,j
))

 

Ordered mutation pairs 

… (4,6) (4,7) (4,8) … 

1.0 

0.67 0.67 

1.0 

(1,2) 

0.0 

(10,9) 

0.33 

(7,4) 
0.0 

0.67 

(7,5) … 

DISC(T1,T2) = 0.53 

(A)" (B)" (C)"

Average"over"all"values"Average"over"all"values"

Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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We apply our distance measures to two different
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CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
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ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
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While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
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of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
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CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.
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Common Ancestor Set

Given a clonal tree Tk and two mutations i , j ,

Ck(i , j) = Ak(i) ∩ Ak(j).
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A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
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Comparing Sets

Jacc(A,B) = 1− |A ∩ B|
|A ∪ B| , Jacc(∅, ∅) = 0

Theorem (e.g., Gilbert 1972)

Jaccard distance is a metric on sets.
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree

11

3.2 Results on Real Datasets

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,
MAP2K7,NTRK1,

AFF4

MAP3K4 ECM1

PPP2R1A,SYNE2,
AURKA CHRM5

TGFB2

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4

SYNE2

AURKA

TGFB2

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,

MAP2K7

NTRK1,AFF4

CHRM5 ECM1

TGFB2 PPP2R1A,
SYNE2 CBX4 TNC

AURKA

T1#

T2#

T3# CASet(T1#,#T2)(=(0.15((
CASet(T1#,#T3)(=(0.26((

CASet(T2#,#T3)(=(0.36((

DISC(T1#,#T2)(=(0.21((
DISC(T1#,#T3)(=(0.25((

DISC(T2#,#T3)(=(0.35((

MLTED(T1#,#T2)(=(0.18((
MLTED(T1#,#T3)(=(0.0((

MLTED(T2#,#T3)(=(0.18((

Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree

11

always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|

|A[B| and
Jacc(;, ;) = 0.

Ancestral*set!A1(6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1* 1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1* 1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Ancestral*set!A1(4)! Common*Ancestor**
set!C1(4,6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Dis2nctly*Inherited**
set!D1(4,6)!

1!

2!

6! 8! 3!

7!

5!

10!

4,!9!

T1*

Dis2nctly*Inherited**
set!D1(6,4)!

Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
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Distinctly Inherited Sets

Given a clonal tree Tk and two mutations i , j ,

Dk(i , j) = Ak(i) \ Ak(j).
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Metric Properties

CASet(Tk ,T`)

=
1(
m
2

) ∑
{i,j}⊆[m]

Jacc(Ck (i, j), C`(i, j))

DISC(Tk ,T`)

=
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∑
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i 6=j

Jacc(Dk (i, j),D`(i, j))

Theorem

CASet and DISC are metrics on m-clonal trees.

DiNardo et al. (Carleton College) Tumor Tree Distances May 3, 2019 19 / 31



Metric Properties

CASet(Tk ,T`)

=
1(
m
2

) ∑
{i,j}⊆[m]

Jacc(Ck (i, j), C`(i, j))

DISC(Tk ,T`)

=
1

m(m − 1)

∑
(i,j)∈[m]2

i 6=j

Jacc(Dk (i, j),D`(i, j))

Theorem

CASet and DISC are metrics on m-clonal trees.
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sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
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Overview of Distance Measures
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
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not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets
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It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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While it may be useful to evaluate the similarity of
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evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
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of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
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�
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Jacc(Ck(i, j), C`(i, j)) (3)

and
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3.2 Results on Real Datasets
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|

|A[B| and
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
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Jacc(Ck(i, j), C`(i, j)) (3)

and
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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in contrast to MLTED [30], which considers these
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While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
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the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Clustering OncoLib Trees

sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
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2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

1,2

3 4

1

3

4,5

1,2

3 4

1

3

4,5

1,2

3 4

1

3

4,5

Reference

genome

Tumor reads

Normal reads

Mutations
Method A

Method B

3.2 Results on Real Datasets

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,
MAP2K7,NTRK1,

AFF4

MAP3K4 ECM1

PPP2R1A,SYNE2,
AURKA CHRM5

TGFB2

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4

SYNE2

AURKA

TGFB2

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,

MAP2K7

NTRK1,AFF4

CHRM5 ECM1

TGFB2 PPP2R1A,
SYNE2 CBX4 TNC

AURKA

T1#

T2#

T3# CASet(T1#,#T2)(=(0.15((
CASet(T1#,#T3)(=(0.26((

CASet(T2#,#T3)(=(0.36((

DISC(T1#,#T2)(=(0.21((
DISC(T1#,#T3)(=(0.25((

DISC(T2#,#T3)(=(0.35((

MLTED(T1#,#T2)(=(0.18((
MLTED(T1#,#T3)(=(0.0((

MLTED(T2#,#T3)(=(0.18((

Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
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We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion
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phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Clustering OncoLib Trees

sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree

11

3.2 Results on Real Datasets

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,
MAP2K7,NTRK1,

AFF4

MAP3K4 ECM1

PPP2R1A,SYNE2,
AURKA CHRM5

TGFB2

CDH6

TBX3

MAP3K4

JAK1

AKAP9

SETBP1

PTEN

ARAF

NOTCH2

ECM2

MAP2K7

NOTCH3

NTRK1

AFF4

ATRNL1 CHRM5

PPP2R1A TNC CBX4

SYNE2

AURKA

TGFB2

PTEN,TBX3,
SETBP1,JAK1,
CDH6,AKAP9

ECM2,NOTCH3,
ARAF,NOTCH2,

MAP2K7

NTRK1,AFF4

CHRM5 ECM1

TGFB2 PPP2R1A,
SYNE2 CBX4 TNC

AURKA

T1#

T2#

T3# CASet(T1#,#T2)(=(0.15((
CASet(T1#,#T3)(=(0.26((

CASet(T2#,#T3)(=(0.36((

DISC(T1#,#T2)(=(0.21((
DISC(T1#,#T3)(=(0.25((

DISC(T2#,#T3)(=(0.35((

MLTED(T1#,#T2)(=(0.18((
MLTED(T1#,#T3)(=(0.0((

MLTED(T2#,#T3)(=(0.18((

Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Clustering OncoLib Trees

sets, as are present in the different OncoLib tree families. We note that we normalized the A-D distance
by dividing by the total number of possible ancestral relationships, so that all distances were in the interval
[0, 1].

Figure 6 shows heatmaps of all pairwise tree distances for the five tree families A–E and the average
silhouette score for five clusters, which all but one method identified as the optimal hierarchical clustering
cut (CASet\ had an optimal cut at three clusters). The silhouette scores for different cluster counts are also
shown in Fig. 7. When cut at five clusters, all six distance measures correctly clustered the trees, but they did
so with varying degrees of tightness. CASet[ performed best in distinguishing trees belonging to different
datasets, with an average silhouette score of 0.81 over the five tree families. While it performs worse at
separating different families, CASet\ identifies that the pairs A, B and D, E have strong agreement about
ancestral relationships among their shared mutations (see Figure A.6). This highlights the different useful
features of CASet[ and CASet\. In comparison, MLTED did a worse job of separating trees from different
groups, with an average silhouette score of 0.54 over the five tree families. At the same time, it also does
not recognize that the relationships between mutations shared by the D and E tree families are very similar.

(a) CASet[ (0.81) (b) CASet\ (0.57) (c) DISC[ (0.70)

(d) DISC\ (0.62) (e) MLTED (0.54) (f) A-D (0.74)

Figure 6: Inter-dataset distance heatmaps of five tree families in the OncoLib dataset. The color of each
cell represents the distance between two trees. Average silhouette scores for five clusters are displayed in
parentheses to quantify clustering tightness and separation. Note that while the normalized A-D distances
are all relatively small (less than 0.4), the families still exhibit clear clustering.

3.1.4 Intra-family Clustering Structure

Figures 3e and 6 show that tree family E from the OncoLib dataset might have internal structure. There-
fore we took a closer look at the internal clustering structure for this tree family (see Figure 8). In this
dataset, CASet, DISC, and MLTED all identify two primary clusters of trees, but CASet and DISC are
both able to resolve more complex substructure. In particular, CASet distinguishes between eight strongly
defined subfamilies, with an average silhouette score of 0.94. The same eight subfamilies are visible in the
DISC heatmap along with a finer-grained resolution within each of these clusters. In contrast, the MLTED
heatmap shows less resolution within the two primary categories. For a similar set of plots of family A, see
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.

1"

2"

9" 7" 5,10"

6"

2"

4"

8"

T1# 1"

2"

6" 8" 3"

7"

5"

10"

4,"9"

T2#

Ja
cc

(C
1(

i,j
), 

C
2(

i,j
))

 

Unordered mutation pairs 

… {4,6} {4,7} {4,8} … 

1.0 

0.67 0.67 
0.75 

{1,2} 
0.0 

{9,10} 
0.0 

CASet(T1,T2) = 0.40 

Ja
cc

(D
1(

i,j
), 

D
2(

i,j
))

 

Ordered mutation pairs 

… (4,6) (4,7) (4,8) … 

1.0 

0.67 0.67 

1.0 

(1,2) 

0.0 

(10,9) 

0.33 

(7,4) 
0.0 

0.67 

(7,5) … 

DISC(T1,T2) = 0.53 

(A)" (B)" (C)"

Average"over"all"values"Average"over"all"values"

Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
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as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.
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of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.
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phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
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always the case that D(i, j) 6= D(j, i). When we have more than one tree, we use subscripts to distinguish
between them. For instance, Ak(i), Ck(i, j), and Dk(i, j) all refer to Tk. See Figure 1 for examples of
ancestral sets, common ancestor sets, and distinctly inherited sets of a tree T1. Given two sets of mutations
A and B, we note that the Jaccard distance between them is defined as Jacc(A, B) = |A[B|�|A\B|
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Figure 1: Examples of ancestral sets, common ancestor sets and distinctly inherited sets on one tree.

2.3.2 Common Ancestor Set Distance

Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolutionary tree distance measure called
Common Ancestor Set distance (CASet) that computes a distance between Tk and T`. Informally, CASet
distance is the average Jaccard distance between all corresponding common ancestor sets in Tk and T`.
Equation (1) gives a formal definition of CASet distance.

CASet(Tk, T`) =
1�
m
2

�
X

{i,j}✓[m]

Jacc(Ck(i, j), C`(i, j)) (1)

Observation 2.1. The running time to compute CASet(Tk, T`) is O(m3).

A proof of Observation 2.1 can be found in the appendix. We note that O used here is an upper bound
on the asymptotic running time. See Figure 2 for an example of CASet distance.

Observation 2.2. CASet distance is a metric on Tm.

Proof. If we pick some pair {i, j} ✓ [m], then every tree Tk 2 Tm has a unique common ancestor set
Ck(i, j). Because Jaccard distance is a metric on sets, Jacc(Ck(i, j), C`(i, j)) (where Tk, T` 2 Tm) is then
a metric on Tm. The scalar multiple of a sum of metrics is also a metric.

2.3.3 Distinctly Inherited Set Comparison

CASet distance compares the common ancestor sets of all pairs of mutations, which emphasizes differences
close to the root. However, we might also want to emphasize differences in more recently acquired muta-
tions. Given two m-clonal trees Tk, T` 2 Tm, we define a new tumor evolution distance measure between
Tk and T` called Distinctly Inherited Set Comparison distance (DISC) that accounts for mutation differ-
ences in the more recent tumor clones. Informally, DISC distance is the average Jaccard distance between
all corresponding distinctly inherited ancestor sets in Tk and T`. Equation (2) gives a formal definition of
the DISC distance.

DISC(Tk, T`) =
1

m(m � 1)

X

(i,j)2[m]2

i 6=j

Jacc(Dk(i, j), D`(i, j)) (2)
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Intra-Family Structure

Figure 7: Silhouette scores of clustering the 250 trees in the OncoLib dataset with different distance mea-
sures.

(a) CASet (b) DISC (c) MLTED (d) A-D

Figure 8: Clustering of dataset E. Note that the colormap range has been reduced to provide more contrast.

Figure A.8, but none of the other four tree families had internal structure as well-defined as family E under
any of the three distances.

10

Family E
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Real Datasets

1 Triple negative breast cancer (Wang et al. 2014)

Single-cell seq. at 72× coverage
Bulk deep seq. at 118, 743× coverage

2 Breast cancer xenograft (Eirew et al. 2015)

Whole-genome seq. at 35-72× coverage
MiSeq targeted deep seq.
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.

2.4 Extending CASet and DISC to Clonal Trees

Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:
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Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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Thus far, we have assumed that any two tumor evolutionary trees to be compared have the exact same set of
mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
share. Let Ik,` = M(Tk) \ M(T`) be the intersection of the sets of mutations labeling Tk and T`. Thus, we
can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.

Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.
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Conclusions

1 Distance measures are important for tumor tree analysis

2 We introduced two novel distance metrics, CASet and DISC

3 CASet∪ clusters trees more clearly than existing measures

4 CASet and DISC have high resolution on simulated and real data
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Conclusions

1 Distance measures are important for tumor tree analysis
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Figure 7: Silhouette scores of clustering the 250 trees in the OncoLib dataset with different distance mea-
sures.

(a) CASet (b) DISC (c) MLTED (d) A-D

Figure 8: Clustering of dataset E. Note that the colormap range has been reduced to provide more contrast.

Figure A.8, but none of the other four tree families had internal structure as well-defined as family E under
any of the three distances.
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Observation 2.3. The running time to compute DISC(Tk, T`) is O(m3).

Observation 2.4. DISC distance is a metric on Tm.

The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 2: (A) A pair of 10-clonal trees. (B) Example of CASet distance applied to the 10-clonal trees in part
(A). (C) Example of DISC distance applied to the 10-clonal trees in (A).

2.3.4 Algorithm Implementations

It is straightforward to implement these distance measures using set data structures to store all ancestor sets
in the two trees. However, under certain circumstances, it may be faster or more convenient to compute
CASet and DISC distances using matrix operations instead, which is described in Appendix A.2.
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mutation labels (that is, that they are both m-clonal). However, there are many scenarios in which this may
not be the case. For instance, some methods such as [2] may not use all available mutations when creating
a tumor evolutionary history tree. Further, different trees may be reconstructed from different data types for
the same tumor (e.g. single cell and bulk sequencing in [33]) that do not share the same set of observed
mutations. In this section, we present two extensions to both of our distance measures that allow for the
comparison of clonal trees with different sets of mutation labels.

2.4.1 Intersection of Mutation Sets

In the first extension to clonal trees, we consider the intersection of the mutation sets for the input trees. This
allows us to compute a distance between two trees by only considering pairs of mutations that the two trees
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can modify both CASet and DISC distances as follows:

CASet\(Tk, T`) =
1�|Ik,`|
2

�
X

{i,j}✓Ik,`

Jacc(Ck(i, j), C`(i, j)) (3)

and
DISC\(Tk, T`) =

1

|Ik,`|(|Ik,`| � 1)

X

(i,j)2Ik,`
2

i 6=j

Jacc(Dk(i, j), D`(i, j)). (4)

5

Note that this range of summation is different from CASet, which only considers unordered pairs {i, j}.
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The proofs of Observation 2.3 and 2.4 are similar to the CASet proofs and can also be found in the
appendix. Figure 2 also contains an example DISC computation.
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Figure 9: Tumor evolutionary trees inferred by
PHiSCS [36] (T1), SciFit [14] (T2), and SCITE [11]
(T3) from a triple negative breast cancer patient [37]
as reported by [30] and corresponding pairwise dis-
tances.

We apply our distance measures to two different
breast cancer datasets [37, 38]. We first apply
CASet and DISC to the three potential tumor evo-
lutionary histories reported in [30] recovered using
different methods applied to single cell sequencing
data from a triple negative breast cancer patient [37]
(see Figure 9). Since CASet and DISC are designed
to evaluate the topology of trees in addition to their
labels and inheritance, both measures are able to
provide more granular information about the sim-
ilarity of the trees making it possible to conclude
that T2 is more similar to T1 than it is to T3. This is
in contrast to MLTED [30], which considers these
pairs of trees to have the same similarity, and, fur-
thermore, computes the distance between T1 and T3

as 0 since they can be clonally expanded to match.
While it may be useful to evaluate the similarity of
trees with regard to such clonal expansion, a tumor
evolutionary tree is categorized in part by subclonal
populations that represent the evolutionary patterns
of the tumor. Ignoring these does not fully take into
account the information represented in a tumor evo-
lutionary tree.

We also emphasize the importance of using quantitative measures when comparing reconstructed trees.
The authors of [9] introduced a new tree reconstruction method MIPUP, and when they compare their results
to those of another method, LICHeE [4], on breast cancer xenoengraftment data sample SA501 [38], they
use only qualitative analysis to claim their method produces phylogenies closer to those in the original
publication. We assessed this claim quantitatively by running CASet, DISC, and MLTED on the SA501
tree from [38] and the corresponding trees reconstructed by MIPUP and LICHeE, as shown in [9]. These
trees had around 180 SNV mutations each in 5-7 nodes with slightly different mutation sets between trees.
We found that the LICHeE tree was more similar to the phylogeny proposed by [38] than the MIPUP tree
according to both CASet and DISC. The CASet/DISC distances were 0.837/0.397 for the MIPUP tree and
0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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0.781/0.377 for the LICHeE tree. However, MLTED reports the opposite by a small margin, with distances
of 0.798 for the MIPUP tree and 0.811 for the LICHeE tree compared to the proposed phylogeny. We note
that with trees of this size, distances of this magnitude are more common than of the magnitudes represented
in the OncoLib dataset, for example. However, the purpose of this analysis is to determine the relative
distances of two trees to a ground truth tree and the raw distance is less relevant. Therefore, although
the MIPUP tree may be marginally more similar to the originally proposed tree from a tree edit distance
standpoint, it appears to be less similar when we account for the ancestral patterns of the disagreements.

4 Discussion and Conclusion

In this work, we argue that distance measures designed for tumor evolutionary trees are needed for assessing
phylogeny inference methods and for exploring the relationships between sets of evolutionary trees. To
this end, we introduce two new tumor evolution distance measures, CASet and DISC. By comparing the
common ancestors of all mutation pairs, CASet incorporates differences in both mutation labeling and tree
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