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Abstract— The cyclic cellular automaton (CCA) model of
excitable media displays remarkable spiral wave behavior
and evolves through distinct phases. Previous work has
shown that the number of states k plays a pivotal role in
the long-term behavior of the system, but there has been no
systematic investigation into its phase lengths. We provide an
empirical method for determining phase start and end points
and describe the dependence of CCA phase lengths on k.
We find that the length of each phase exhibits a distinctive
power-law relation with k in a manner independent of lattice
size. In addition, we perform bootstrapping and parameter
sensitivity analysis to determine the uncertainty in the power
law exponents and coefficients.
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1. Introduction
Excitable media are dynamical systems in which excited

regions transmit their energetic state to their neighbors, but

can only do so periodically. In two dimensions, excitable

systems can form spiral waves [1]. Canonical examples of

spiral wave excitable media include the oscillating Belousov-

Zhabotinsky reaction [2], chemical signals in Dictyostelium
amoebae [3], and electrical signals in the heart [4]. These

systems are governed by complex physical and chemical

processes—as such, their dynamics are difficult to study

directly. Cellular automata are widely used to model dynam-

ical systems due to their simplicity and complex emergent

behavior, and several cellular automaton models of spiral

wave excitable media have been proposed [5], [6], [7].

The cyclic cellular automaton (CCA) is one such model,

originally described in [5].

For a wide range of parameters, the CCA model undergoes

a sequence of distinct phases that eventually culminate in a

stable spiral wave regime. These phases can be clearly seen

in CCA visualizations (Fig. 1). Previous work on the CCA

has described the range of parameters for which these phases

develop [8], [9], [10], the shapes of spirals generated by dif-

ferent neighborhoods [11], and the self-organizing properties

of the model [12]. However, no systematic investigation of

phase lengths in the CCA model has yet been made.

In this paper, we present new computer simulation results

describing the relationship between the number of states k
and the lengths of CCA phases under two different neigh-

borhoods. To do so, we describe a method of identifying

phase transition points in the CCA. These empirical results

are robust to grid size and provide new insight into the

behavior of the CCA model. In addition, the method we

use to determine phase transition points from noisy data can

be applied to other models that exhibit distinct phases.

1.1 CCA definition
Like other cellular automata, the CCA exists on a 2-

dimensional integer lattice and consists of cells that occupy a

finite number of states (also called types or colors). Formally,

let ζt : Z2 → {0, . . . , k − 1} denote the state of a cell at

step t. We assign ζ0(x) uniformly at random for all cells x
and the system evolves according to the update rule:

N+

t (x) = {y ∈ N (x) | ζt(x) + 1 ≡ ζt(y) (mod k)} (1)

ζt+1(x) =

{
(ζt(x) + 1) mod k if |N+

t (x)| ≥ θ

ζt(x) otherwise
(2)

We use N (x) to denote the set of neighbors of cell x,

N+

t (x) the neighbors of x in the state one higher at time

t, and θ the threshold number of such neighbors required

to increment x’s state. We focus on the θ = 1 case and

on the two neighborhoods most widely used in cellular

automata, the von Neumann and Moore neighborhoods.

The former consists of the four cells that share an edge

with x and the latter also includes the four diagonals. In

theoretical discussions, the entire lattice Z2 is considered [5],

[8]. However, practical implementations and experimental

analyses restrict the system to a finite lattice, most often

with periodic boundary conditions [10], [11], [12], a practice

which we follow.

1.2 CCA phases
The cyclic cellular automaton progresses through a se-

quence of phases, named the debris, droplet, defect, and

demon phases [5]. As long as k is not too small [10] (or

too large, on a finite lattice), every CCA run follows the

same pattern. See Fig. 1 for images of each phase.

Debris. In the first phase, the random grid goes through a

short burst of activity during which neighboring cells with

consecutively initialized states are promoted according to the

update rule. After a brief flurry of updates, most of the grid

is covered by inactive and disorganized debris.

Droplets. Some clusters of cells happen to border other

cells in the correct sequence of ascending states, allowing

the cluster to spread. These clusters, called droplets because

of their circular and liquid appearance, are dominated by a

small number of types that propagate through the droplet
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(a) Disorganized debris (t = 10) (b) Droplets spread (t = 120) (c) A defect appears (t = 210) (d) Spirals take over (t = 420)

Fig. 1: Snapshots of the CCA (256× 256 periodic grid, von Neumann N , k = 14)

in waves. As time progresses, droplets increase in size by

taking over the surrounding debris.

Defects. With high probability, a loop of updating cells

called a defect forms at the intersection of droplets, or at

the debris boundary of a droplet [5]. Defects then give rise

to spirals, which spread across the grid, wiping out any

remaining debris and droplets.

Demons. Some defects contain the correct number of cells

to generate period k spirals whose constituent cells update

at every step. These optimal spirals are known as demons.

Demons absorb longer period spirals, eventually dominating

the entire grid [5]. The system then stabilizes and the demons

continue to spiral ad infinitum.

These phases characterize the behavior of the CCA for a

wide range of neighborhoods and values of k [9]. Some basic

experimentation reveals that the lengths of the phases change

when when k is varied; this fact is apparent in figures from

[5], [10]. However, the exact nature of these relationships is

not immediately obvious because of the complexity of the

model’s emergent behavior.

In the following sections, we empirically identify the

dependence of phase lengths in the CCA model on the

number of states k under both the von Neumann and Moore

neighborhoods. In particular, we analyze the lengths of the

debris phase, the droplet phase, and defect phase.

2. Methods
We implemented the CCA in Python [13] using NumPy

[14] and ran 1024 independent 500-step trials of the model

for each parameter setting we considered. Specifically, we

ran simulations on periodic lattices of size 256×256, 512×
512, and 1024×1024 with both the Moore and von Neumann

neighborhoods and with k ranging from 7 to 20. The vital

part of our analysis is the extraction of phase length data

from these simulations.

2.1 Identifying phase transitions
In order to determine the lengths of CCA phases, we

need to be able to determine the steps at which phase

transitions occur. This is accomplished by measuring the

number of cells whose states change between consecutive

lattice configurations ζt−1 and ζt, which we denote Δ(t):

Δ(t) =
∑
x∈C

(ζt(x)− ζt−1(x) mod k) (3)

where C is the set of cells in the lattice. A similar quantity,

the open bond proportion, is discussed in [5]. They call

a bond between two neighboring cells x and y open at

step t if ζt(x) − ζt(y) ∈ {−1, 1} mod k. By the update

rule, the lesser of the two must then be promoted in step

t + 1. The open bond proportion differs slightly from the

cell update count Δ(t) since a cell update may be due to

more than one open bond. We found it more straightforward

to measure Δ(t), and the resulting plots are qualitatively

identical (compare our Fig. 2 with Fig. 9 in [5]).

As seen in Fig. 2, the slope of Δ(t) is characteristic of

the current phase. This key observation allows us to identify

CCA phase transitions. In the debris phase, the initial flurry

of updates rapidly dies down and most local regions become

static. The global minimum of Δ(t) marks the end of the

debris phase and the beginning of the droplet phase. Then,

Δ(t) increases steadily as droplets expand and become more

active. Once the first defect forms, the curve takes an upward

turn as the spiral begins to spread. This marks the end of the

droplet phase and the beginning of the defect phase. Once

spirals have taken over the grid, the Δ(t) curve levels off,

signaling the end of the defect phase. From this point, any

period k spirals slowly take over the grid.

Based on these observations, the end of the debris phase

can be identified as the step at which Δ(t) reaches its

minimum. The ends of the droplet and defect phase are

more difficult to identify. They occur in the bends between

the roughly linear segments of the Δ(t) curve. It is then

natural to identify the phase transition points as the steps

when the curvature of the Δ(t) curve is highest—that is, at

local extrema of the Δ′′(t). However, the second derivative

of the discrete data points is extremely noisy. Fortunately,

differentiating noisy data is a well-studied problem [15].
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Fig. 2: Δ(t) (top) and Δ′′(t) (bottom) curves from a single

trial (k = 13, von Neumann N , 512×512 grid). The Δ′′(t)
curve is shown with (black) and without (blue) the Savitzky-

Golay filter. The three phase transition points are marked on

the Δ(t) plot. The Δ′′(t) curve is cut off on the left due to

the large spike around the debris phase.

2.2 Smooth differentiation
We use a Savitzky-Golay filter to differentiate Δ(t)

without compromising the signal-to-noise ratio [16], [17].

To process a data point Δ(t∗), the Savitzky-Golay filter

fits a low-degree polynomial using linear least-squares to

the points in a window around t∗ and reports the desired

derivative of this polynomial at t∗. For the CCA data, we

use polynomials of degree 3, which allows us to compute the

second derivative using the Savitzky-Golay filter. The widths

of the windows were chosen manually such that the data

was sufficiently smoothed without introducing unwanted

distortion. The need to choose this parameter by hand is

the primary drawback of the Savitzky-Golay filter [16]. To

account for any systematic bias introduced by this manual

choice, we perform a sensitivity analysis by varying all

window widths randomly by up to ±50% and measuring

the effect on our results.

From the smoothed Δ′′(t) data, we can then easily iden-

tify the local maximum that signifies the upward turn of Δ(t)
at the droplet-defect transition and the local minimum that

signifies the downward turn at the defect-demon transition.

Once these transition points are identified, the phase lengths

can be found directly. By performing this on every one of

1024 trials, we can then find the mean phase lengths along

with the associated variance.

3. Results
We found that all phase lengths in the cyclic cellular

automaton exhibit a power law dependence on k. That is,

we find that the length L of a phase is well described by

L = akb, for constants a and b. Taking the logarithms of

both sides allows us to find a and b by linear regression:

logL = b log k + log a. (4)

Table 1: Phase length power law exponents

(a) von Neumann N
256 × 256 512 × 512 1024 × 1024 Mean

Debris 2.55 ± 0.01 2.55 ± 0.01 2.57 ± 0.00 2.56 ± 0.01

Droplet 4.81 ± 0.08 4.89 ± 0.22 4.75 ± 0.23 4.81 ± 0.07

Defect 3.08 ± 0.10 3.16 ± 0.11 3.24 ± 0.11 3.15 ± 0.06

(b) Moore N
256 × 256 512 × 512 1024 × 1024 Mean

Debris 2.52 ± 0.01 2.57 ± 0.01 2.60 ± 0.01 2.56 ± 0.01

Droplet 4.34 ± 0.06 4.32 ± 0.07 4.37 ± 0.07 4.34 ± 0.03

Defect 2.88 ± 0.13 2.82 ± 0.09 2.77 ± 0.10 2.81 ± 0.06

Table 2: Phase length power law log coefficients

(a) von Neumann N
256 × 256 512 × 512 1024 × 1024 Mean

Debris −3.99 ± 0.02 −4.00 ± 0.02 −4.05 ± 0.01 −4.03 ± 0.01

Droplet −7.58 ± 0.20 −7.80 ± 0.57 −7.42 ± 0.59 −7.59 ± 0.18

Defect −3.88 ± 0.23 −4.05 ± 0.29 −4.25 ± 0.29 −4.03 ± 0.15

(b) Moore N
256 × 256 512 × 512 1024 × 1024 Mean

Debris −5.02 ± 0.03 −5.14 ± 0.02 −5.24 ± 0.01 −5.20 ± 0.01

Droplet −8.31 ± 0.16 −8.25 ± 0.16 −8.38 ± 0.20 −8.30 ± 0.10

Defect −4.76 ± 0.34 −4.59 ± 0.25 −4.45 ± 0.26 −4.58 ± 0.16

The exponent b captures the degree of the impact k has

on each phase length. See Fig. 3 for the linear regressions

and Tables 1 and 2 for the experimentally observed values

of b and log a. We estimate the uncertainty in b and log a
through a combination of bootstrapping and perturbing the

Savitzky-Golay parameters. First, we split the 1024 trials

into 8 independent samples and separately perform the

linear regression on each sample. We then calculate 95%

confidence intervals from the standard error of the regression

results. In addition, we redo the analysis 8 times with

Savitzky-Golay window widths multiplied by random scalars

drawn uniformly from [0.5, 1.5]. We again find the 95%

confidence interval on these new regression results. This

allows us to account for potential bias in the manual choice

of these window widths. A conservative uncertainty estimate

is then found by adding the sizes of the confidence intervals;

these are the uncertainties reported in Tables 1 and 2. We

use inverse-variance weighting to find the mean over grid

sizes and the associated uncertainty.

Rarely, noise in the data may cause the local maximum

and minimum of the Δ′′(t) curve to swap places, yielding

a spurious negative phase length. We filter out such trials.

This occurred in only 48 of 28,000 CCA runs, so it has a

negligible effect.

We find that the droplet phase is most sensitive to changes
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Fig. 3: Phase length dependences on k. Horizontal separation added to isolate data points from different grid sizes. Error

bars show the sample standard deviations.

in k, followed by the defect and debris phases. This ordering

is consistent between neighborhoods, and b is significantly

higher for the droplet and defect phase under the von

Neumann N . These relationships are independent of grid

size.

4. Discussion
We found that the lengths of the debris, droplet, and defect

phases exhibit power-law relations with k with characteristic

powers. These relationships have not been previously identi-

fied. We now briefly discuss intuitive interpretations of these

results.

4.1 Phase length sensitivities
These phase length observations square well with our

intuitive understanding of the model. As k increases, there

are several compounding factors that elongate the droplet

phase. First of all, it is known that defects can only form at

the boundary of a droplet or at the intersection of droplets

[5]. With a higher value of k, fewer droplets arise from the

debris. With fewer droplets on the lattice, we then have fewer

droplet collisions and a smaller total droplet perimeter. Both

of these factors therefore increase the expected time before

a defect forms and brings an end to the droplet phase. In

addition, in order for a droplet predominantly of type i to

spread, it must encounter a cell of type i+1 mod k on its

border. Then, as the i + 1 wave spreads across the droplet,

some part of it must encounter an i + 2 mod k cell on the

border, and so the process continues. When k is higher, each

wave must travel further before such a cell is encountered,

slowing the expansion of the droplet.

The defect phase begins when the first spiral is seeded

by a defect. The spiral then spreads out from this epicenter.

Like a droplet, a spiral must encounter a cell of the correct

type in order to absorb it. However, cells in spirals have

very low periods compared to cells in droplets, so spirals

spread much more quickly than droplets, with less extreme

dependence on k.

4.2 Other methods for finding phase transitions
Methods that do not involve Δ(t) could also be used to

identify phase transitions in the CCA. A more precise way to
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find the droplet-defect phase transition would be to identify

the exact step at which the first defect appears, since a defect

can be directly detected as a loop of cells of adjacent types

with a positive winding number [5]. To do this, we would

need an efficient method for finding such loops. Perhaps a

backtracking strategy could be used to eliminate the need to

search the entire grid for such a loop at each step: we could

play the history of the grid backward to narrow in on the

defect that generated the first spiral. For the defect-demon

phase transition, another approach would be to find the first

step at which every cell belongs to a spiral by measuring all

cell periods.

4.3 Conclusions
We found that the complex emergent behavior in the

CCA model of excitable media depends on simple power

law relationships with a key parameter, the number of cell

types k. These relationships are conserved across grid sizes,

showing that they are characteristic of the model itself.

The relative lengths of phases are also maintained between

neighborhoods. We presented a method for identifying phase

transitions in the CCA by applying Savitzky-Golay differ-

entiation to the Δ(t) curve. Future work could use alternate

methods of identifying phase transitions or apply the same

approach to other cellular automata. It is also possible that

these power laws could be derived analytically from the

probabilistic behavior of the CCA, although this appears to

pose a considerable challenge.
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