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(a) Disorganized debris (t = 10) (b) Droplets spread (t = 120) (c) A defect appears (t = 210) (d) Spirals take over (t = 420)

Fig. 1: Snapshots of the CCA (256 ⇥ 256 periodic grid, von Neumann N , k = 14)

in waves. As time progresses, droplets increase in size by
taking over the surrounding debris.

Defects. With high probability, a loop of updating cells
called a defect forms at the intersection of droplets, or at
the debris boundary of a droplet [5]. Defects then give rise
to spirals, which spread across the grid, wiping out any
remaining debris and droplets.

Demons. Some defects contain the correct number of cells
to generate period k spirals whose constituent cells update
at every step. These optimal spirals are known as demons.
Demons absorb longer period spirals, eventually dominating
the entire grid [5]. The system then stabilizes and the demons
continue to spiral ad infinitum.

These phases characterize the behavior of the CCA for a
wide range of neighborhoods and values of k [9]. Some basic
experimentation reveals that the lengths of the phases change
when when k is varied; this fact is apparent in figures from
[5], [10]. However, the exact nature of these relationships is
not immediately obvious because of the complexity of the
model’s emergent behavior.

In the following sections, we empirically identify the
dependence of phase lengths in the CCA model on the
number of states k under both the von Neumann and Moore
neighborhoods. In particular, we analyze the lengths of the
debris phase, the droplet phase, and defect phase.

2. Methods
We implemented the CCA in Python [13] using NumPy

[14] and ran 1024 independent 500-step trials of the model
for each parameter setting we considered. Specifically, we
ran simulations on periodic lattices of size 256⇥256, 512⇥
512, and 1024⇥1024 with both the Moore and von Neumann
neighborhoods and with k ranging from 7 to 20. The vital
part of our analysis is the extraction of phase length data
from these simulations.

2.1 Identifying phase transitions
In order to determine the lengths of CCA phases, we

need to be able to determine the steps at which phase

transitions occur. This is accomplished by measuring the
number of cells whose states change between consecutive
lattice configurations ⇣t�1 and ⇣t, which we denote �(t):

�(t) =
X

x2C

(⇣t(x) � ⇣t�1(x) mod k) (3)

where C is the set of cells in the lattice. A similar quantity,
the open bond proportion, is discussed in [5]. They call
a bond between two neighboring cells x and y open at
step t if ⇣t(x) � ⇣t(y) 2 {�1, 1} mod k. By the update
rule, the lesser of the two must then be promoted in step
t + 1. The open bond proportion differs slightly from the
cell update count �(t) since a cell update may be due to
more than one open bond. We found it more straightforward
to measure �(t), and the resulting plots are qualitatively
identical (compare our Fig. 2 with Fig. 9 in [5]).

As seen in Fig. 2, the slope of �(t) is characteristic of
the current phase. This key observation allows us to identify
CCA phase transitions. In the debris phase, the initial flurry
of updates rapidly dies down and most local regions become
static. The global minimum of �(t) marks the end of the
debris phase and the beginning of the droplet phase. Then,
�(t) increases steadily as droplets expand and become more
active. Once the first defect forms, the curve takes an upward
turn as the spiral begins to spread. This marks the end of the
droplet phase and the beginning of the defect phase. Once
spirals have taken over the grid, the �(t) curve levels off,
signaling the end of the defect phase. From this point, any
period k spirals slowly take over the grid.

Based on these observations, the end of the debris phase
can be identified as the step at which �(t) reaches its
minimum. The ends of the droplet and defect phase are
more difficult to identify. They occur in the bends between
the roughly linear segments of the �(t) curve. It is then
natural to identify the phase transition points as the steps
when the curvature of the �(t) curve is highest—that is, at
local extrema of the �00(t). However, the second derivative
of the discrete data points is extremely noisy. Fortunately,
differentiating noisy data is a well-studied problem [15].
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Spiral Wave Excitable Media

Figure from A. T. Winfree and S. H. Strogatz, “Organiz-
ing centres for three-dimensional chemical waves,” Nature,
vol. 311, pp. 611–615, 1984.
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Cyclic Cellular Automaton (CCA)

(Fisch, Gravner, & Griffeath, 1991)
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Cyclic Cellular Automaton (CCA)

(Fisch, Gravner, & Griffeath, 1991)

k = 9
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Cyclic Cellular Automaton (CCA)
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Cyclic Cellular Automaton (CCA)
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Cyclic Cellular Automaton (CCA)
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Cyclic Cellular Automaton (CCA)

(Fisch, Gravner, & Griffeath, 1991)

Moore neighborhood
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Formal Definition

Notation

ζt(x) ∈ {0, 1, . . . , k − 1} state of cell x at time t
N (x) neighbors of cell x
N+

t (x) promoters of cell x at time t

Update Rule

N+
t (x) = {y ∈ N (x) | (ζt(x) + 1) mod k = ζt(y)}

ζt+1(x) =

{
(ζt(x) + 1) mod k if |N+

t (x)| ≥ 1

ζt(x) otherwise
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CCA Phases

(Fisch, Gravner, & Griffeath, 1991)

Debris Droplet Defect Demon
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Prior CCA Work

1 Classifying behavior in parameter space
(Fisch, Gravner, & Griffeath, 1991), (Durrett & Griffeath, 1993), (Hawick, 2013)

2 Effects of neighborhood on spiral shape
(Reiter, 2010)

3 Quantifying self-organization
(Shalizi & Shalizi, 2003)
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Figure from R. Fisch, J. Gravner, and D. Griffeath, “Cyclic
cellular automata in two dimensions,” in Spatial Stochastic
Processes. Springer, 1991, pp. 71–185.

How does the number of cell types affect phase lengths?

12

7. Additional challenging problems

Our preliminary investigation of the c.c.a. rule on  suggests many challenging mathematical2

problems. In this final section we mention a few.

The early stages of c.c.a. dynamics are  To understand their quantitative aspects onemetastable.

should study finite systems of size , as and increase appropriately, along the lines of theL N L  2

asymptotic analysis for  presented in [1]. However the lack of monotonicity andbootstrap percolation

manifest complexity of cyclic systems make the corresponding agenda more challenging. We have

therefore collected some empirical data as a first step. Here we present only a sampling of our findings; a

more complete account will appear in [7].

Fig. 9.  Density of active bonds in c.c.a. (

Fig. 10.  Proportion of inert bonds in c.c.a. (
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Identifying Phase Transitions

∆(t) =
∑

x

(ζt(x)− ζt−1(x) mod k)

=⇒ transitions at local extrema of ∆′′(t)
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Identifying Phase Transitions

∆(t) =
∑

x
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Introduction Methods Results Discussion

Noise Amplification
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Savitzky-Golay Differentiation

(Savitzky & Golay, 1964)

1 Pick window width around point

2 Fit low-degree polynomial to data in window

3 Take derivative of fitted polynomial at point
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Identifying Phase Transitions
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Simulation Procedure
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Phase Length Dependence on k

For each parameter setting:

1 Compute phase lengths in each trial

2 Average over trials
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Power Law Exponents and Coefficients
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Different Phase Length Sensitivities

Moore N
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Droplet phase most sensitive
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Other Methods for Finding Transitions
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