Introduction	Methods	Results	Discussion

Phase Lengths in the Cylic Cellular Automaton

Kiran Tomlinson

Department of Computer Science, Carleton College

CSC 2019

Introduction	Methods	Results	Discussion
●000000	00000	000	000
Outline			

- Cyclic cellular automaton (CCA)
- Phases in the CCA
- Measuring phase lengths
- Experimental design
- Sesults

Introduction	Methods	Results	Discussion
000000			

Spiral Wave Excitable Media

Figure from A. T. Winfree and S. H. Strogatz, "Organizing centres for three-dimensional chemical waves," *Nature*, vol. 311, pp. 611–615, 1984.

Introduction	Methods	Results	Discussion
000000	00000	000	000

/clic	Cell	ular	Automaton		CCA)
-------	------	------	-----------	--	-----	---

C

Introduction		Methods	Results	Discussion		
0000	0000		00000		000	000
~		<u> </u>		(00)		

Cyclic Cellular Automaton (CCA)

7	6	7	1	6
3	1	1	3	7
8	5	4	5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000	00000	000	000
Cuality Calleday Aut	(CCA)		

Cyclic Cellular Automaton (CCA)

7	6	7	1	6
3	1	1	3	7
8	5	4	5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000	00000	000	000
Cyclic Cellular Auto	omaton (CCA)		

 $\mathbf{t}
ightarrow t+1$

7	6	7	1	6
3	1	1	3	7
8	5	4	5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000	00000	000	000
Cyclic Cellular Auto	omaton (CCA)		

 $\mathbf{t}
ightarrow t+1$

7	6	7	1	6
3	1	1	3	7
8	5 +	- 4 -	→ 5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000	00000	000	000
Cyclic Cellular Auto	omaton (CCA)		

 $t
ightarrow {f t} + {f 1}$

7	6	7	1	6
3	1	1	3	7
8	5	5	5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000	00000	000	000
Cyclic Cellular Auto	omaton (CCA)		

Moore neighborhood

7	6	7	1	6
3	1	1	3	7
8	5	4	5	8
4	0	7	7	0
0	4	1	0	1

von Neumann neighborhood

7	6	7	1	6
3	1	1	3	7
8	5	4	5	8
4	0	7	7	0
0	4	1	0	1

Introduction	Methods	Results	Discussion
000000			
Formal Definition			

Notation

$$\zeta_t(x) \in \{0, 1, \dots, k-1\}$$
 state of cell x at time t
 $\mathcal{N}(x)$ neighbors of cell x
 $\mathcal{N}_t^+(x)$ promoters of cell x at time t

Update Rule

$$\mathcal{N}_t^+(x) = \{y \in \mathcal{N}(x) \mid (\zeta_t(x) + 1) \mod k = \zeta_t(y)\}$$

$$\zeta_{t+1}(x) = \begin{cases} (\zeta_t(x) + 1) \mod k & \text{if } |\mathcal{N}_t^+(x)| \ge 1 \\ \zeta_t(x) & \text{otherwise} \end{cases}$$

Introduction	Methods	Results	Discussion
0000000	00000	000	000
CCA Phases			

Introduction	Methods	Results	Discussion
0000000	00000	000	000
Prior CCA Work			

- Classifying behavior in parameter space (Fisch, Gravner, & Griffeath, 1991), (Durrett & Griffeath, 1993), (Hawick, 2013)
- Effects of neighborhood on spiral shape (Reiter, 2010)
- Quantifying self-organization (Shalizi & Shalizi, 2003)

Introduction	Methods	Results	Discussion
0000000	00000	000	000
Prior CCA Work			

- Classifying behavior in parameter space (Fisch, Gravner, & Griffeath, 1991), (Durrett & Griffeath, 1993), (Hawick, 2013)
- Effects of neighborhood on spiral shape (Reiter, 2010)
- Quantifying self-organization (Shalizi & Shalizi, 2003)

Introduction	Methods	Results	Discussion
0000000	00000	000	000
Prior CCA Work			

- Classifying behavior in parameter space (Fisch, Gravner, & Griffeath, 1991), (Durrett & Griffeath, 1993), (Hawick, 2013)
- Effects of neighborhood on spiral shape (Reiter, 2010)
- Quantifying self-organization

(Shalizi & Shalizi, 2003)

Introduction	Methods	Results	Discussion
000000			

How does the number of cell types affect phase lengths?

Figure from R. Fisch, J. Gravner, and D. Griffeath, "Cyclic cellular automata in two dimensions," in *Spatial Stochastic Processes*. Springer, 1991, pp. 71–185.

Introduction	Methods	Results	Discussion
0000000	●0000	000	000
Identifying Phase 7	Fransitions		

 \implies transitions at local extrema of $\Delta''(t)$

Introduction	Methods	Results	Discussion
0000000	o●ooo	000	000
Noise Amplificatio	on		

 $\Delta(t)$ curve (k = 13, von Neumann neighborhood)

Savitzky-Golav	Differentiation		
Introduction	Methods	Results	Discussion
0000000	00●00	000	000

Pick window width around point

- ② Fit low-degree polynomial to data in window
- Take derivative of fitted polynomial at point

Introduction	Methods	Results	Discussion
0000000	00●00	000	000
Savitzky-Golay	Differentiation		

- Pick window width around point
- It low-degree polynomial to data in window
- Take derivative of fitted polynomial at point

Introduction	Methods	Results	Discussion
0000000	00●00	000	000
Savitzky-Golay	Differentiation		

- Pick window width around point
- It low-degree polynomial to data in window
- Take derivative of fitted polynomial at point

000000	00000	000	000
Identifying Phase	Transitions		

 $\Delta(t)$ curve (k = 13, von Neumann neighborhood)

000000	00000	000	000
Identifying Phase	Transitions		

 $\Delta(t)$ curve (k = 13, von Neumann neighborhood)

Introduction	Methods	Results	Discussion
0000000	0000●	000	000
Simulation Procedu	ure		

• 1024 trials of 500 steps for each setting

- 3 grid sizes
- 2 neighborhoods
- k between 7 and 20

Introduction	Methods	Results	Discussion
0000000	oooo●	000	000
Simulation Procedu	ure		

- 1024 trials of 500 steps for each setting
- 3 grid sizes
- 2 neighborhoods
- k between 7 and 20

Introduction	Methods	Results	Discussion
0000000	0000●	000	000
Simulation Procedu	ure		

- 1024 trials of 500 steps for each setting
- 3 grid sizes
- 2 neighborhoods
- k between 7 and 20

Introduction	Methods	Results	Discussion
0000000	0000●	000	000
Simulation Procedu	ure		

- 1024 trials of 500 steps for each setting
- 3 grid sizes
- 2 neighborhoods
- k between 7 and 20

Introduction	Methods	Results	Discussion
0000000	00000	●00	000
Phase Length D	Dependence on <i>k</i>		

- Compute phase lengths in each trial
- Average over trials

Introduction	Methods	Results	Discussion
0000000	00000	●00	000
Phase Length I	Dependence on <i>k</i>	k	

- Compute phase lengths in each trial
- Average over trials

Introduction	Methods	Results	Discussion
0000000	00000	●00	000
Phase Length D	Dependence on	k	

- Compute phase lengths in each trial
- Average over trials

Phase Length	Dependence on k	,	
Introduction	Methods	Results	Discussion
0000000	00000		000

- Compute phase lengths in each trial
- Average over trials

Phase Length	Dependence on k	,	
Introduction	Methods	Results	Discussion
0000000	00000		000

- Compute phase lengths in each trial
- Average over trials

$$\log L = a + b \log k$$
$$L = ak^b$$

Phase Length	Dependence on k	,	
Introduction	Methods	Results	Discussion
0000000	00000		000

- Compute phase lengths in each trial
- Average over trials

 $\log L = a + b \log k$ $L = ak^{b}$

Dowor Low F	Exponents and Co	officients	
0000000	00000	000	000
Introduction	Methods	Results	Discussion

Power Law Exponents and Coefficients

Table 1: Phase length power law exponents

(a) von Neumann \mathcal{N}

	256×256	512×512	1024×1024	Mean
Debris	2.55 ± 0.01	2.55 ± 0.01	2.57 ± 0.00	2.56 ± 0.01
Droplet	4.81 ± 0.08	4.89 ± 0.22	4.75 ± 0.23	4.81 ± 0.07
Defect	3.08 ± 0.10	3.16 ± 0.11	3.24 ± 0.11	3.15 ± 0.06

(b) Moore \mathcal{N}

	256×256	512×512	1024×1024	Mean
Debris	2.52 ± 0.01	2.57 ± 0.01	2.60 ± 0.01	2.56 ± 0.01
Droplet	4.34 ± 0.06	4.32 ± 0.07	4.37 ± 0.07	4.34 ± 0.03
Defect	2.88 ± 0.13	2.82 ± 0.09	2.77 ± 0.10	2.81 ± 0.06

Table 2: Phase length power law log coefficients

(a) von Neumann \mathcal{N}

	256×256	512×512	1024×1024	Mean
Debris	-3.99 ± 0.02	-4.00 ± 0.02	-4.05 ± 0.01	-4.03 ± 0.01
Droplet	-7.58 ± 0.20	-7.80 ± 0.57	-7.42 ± 0.59	-7.59 ± 0.18
Defect	-3.88 ± 0.23	-4.05 ± 0.29	-4.25 ± 0.29	-4.03 ± 0.15

(b) Moore \mathcal{N}

	256×256	512×512	1024×1024	Mean
Debris	-5.02 ± 0.03	-5.14 ± 0.02	-5.24 ± 0.01	-5.20 ± 0.01
Droplet	-8.31 ± 0.16	-8.25 ± 0.16	-8.38 ± 0.20	-8.30 ± 0.10
Defect	-4.76 ± 0.34	-4.59 ± 0.25	-4.45 ± 0.26	-4.58 ± 0.16

Uncertainty	Estimation		
Introduction	Methods	Results	Discussion
0000000	00000	00●	000

Uncertainty	Fstimation		
Introduction	Methods	Results	Discussion
0000000	00000	00●	000

 \implies bootstrapping

Introduction	Methods	Results	Discussion
0000000	00000	00●	000
Uncertainty E	stimation		

 \implies bootstrapping

Bias from Savitzky-Golay window widths?

000000	00000	000	000
Uncertainty Est	imation		

 \implies bootstrapping

Bias from Savitzky-Golay window widths?

 \implies perturb widths

Introduction	Methods	Results	Discussion
0000000	00000	00●	000
Uncertainty E	stimation		

 \implies bootstrapping

Bias from Savitzky-Golay window widths?

 \implies perturb widths

Conservative estimate: add confidence intervals

Introduction	Methods	Results	Discussion
0000000	00000	000	●00
Different Phase Le	ngth Sensitivities		

Moore ${\cal N}$		von Neumann ${\cal N}$		
Phase	Exponent		Phase	Exponent
Debris	2.56 ± 0.01		Debris	2.56 ± 0.01
Droplet	4.34 ± 0.03		Droplet	4.81 ± 0.07
Defect	2.81 ± 0.06		Defect	3.15 ± 0.06

Introduction	Methods	Results	Discussion
0000000	00000	000	●00
Different Phase Le	ngth Sensitivities		

Moore ${\cal N}$		von Neumann ${\cal N}$		
Phase	Exponent		Phase	Exponent
Debris	2.56 ± 0.01	-	Debris	2.56 ± 0.01
Droplet	$\textbf{4.34} \pm 0.03$		Droplet	4.81 ± 0.07
Defect	2.81 ± 0.06		Defect	3.15 ± 0.06

• Smaller neighborhood \implies more sensitive to k?

Introduction	Methods		Results	Discussion
0000000	00000		000	●oo
Different	Phase Length	Sensitivities		

M	pore ${\cal N}$		von N	eumann ${\cal N}$
Phase	Exponent		Phase	Exponent
Debris	2.56 ± 0.01	-	Debris	2.56 ± 0.01
Droplet	$\textbf{4.34} \pm 0.03$		Droplet	$\textbf{4.81} \pm 0.07$
Defect	2.81 ± 0.06		Defect	3.15 ± 0.06

- Smaller neighborhood \implies more sensitive to k?
- Droplet phase most sensitive

Introduction	Methods	Results	Discussion
0000000	00000	000	0●0
Other Methods for	Finding Transition	ns	

4	3	4		
3		5		
2		6	5	4
1				5
0	8	7	7	6

Identify defects directly?

Introduction	Methods	Results	Discussion
0000000	00000	000	00•
Conclusions			

• CCA phase lengths depend on k via simple power laws

- Independent of grid size
- Exponent indicates sensitivity of phase to k

Introduction	Methods	Results	Discussion
0000000	00000	000	000
Conclusions			

• CCA phase lengths depend on k via simple power laws

- Independent of grid size
- Exponent indicates sensitivity of phase to k

Introduction	Methods	Results	Discussion
0000000	00000	000	000
Conclusions			

- CCA phase lengths depend on k via simple power laws
- Independent of grid size
- **③** Exponent indicates sensitivity of phase to k

Acknowledgmen	ts		
0000000	00000	000	000
Introduction	Mothoda	Poculto	Discussion

- Travel and conference funding from Carleton College
- Thanks to Frank McNally for feedback

