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Abstract—A number of methods have recently been proposed
to reconstruct the evolutionary history of a tumor from noisy
DNA sequencing data. We investigate when and how well these
histories can be reconstructed from multi-sample bulk sequencing
data when considering only single nucleotide variants (SNVs).
We formalize this as the Enumeration Variant Allele Frequency
Factorization Problem and provide a novel proof for an upper
bound on the number of possible phylogenies consistent with a
given dataset. In addition, we propose and assess two methods for
increasing the robustness and performance of an existing graph
based phylogenetic inference method. We apply our approaches
to noisy simulated data and find that low coverage and high noise
make it more difficult to identify phylogenies. We also apply our
methods to both chronic lymphocytic leukemia and clear cell
renal cell carcinoma datasets.

Index Terms—Cancer genomics, tumor phylogeny, evolution.

I. INTRODUCTION

Cancer is a disease originating from somatic mutations
in a single founder cell and characterized by the runaway
proliferation of that cell’s aberrant descendants. The clonal
theory of cancer [1] posits that new somatic mutations will
continue to arise in descendants of the founder cell, driving
the progression of the disease. As a result, a tumor may
be a heterogeneous mix of different tumor cell populations,
or clones, each with their own set of somatic mutations. A
number of recent studies have highlighted the prevalence of
such intra-tumor heterogeneity [2], [3]. Characterization of
the particular clones appearing in a specific tumor and how
they evolved has important implications for understanding and,
ultimately, treating the disease [4], [5].

In recent years there has been increased interest in com-
putational methods that use noisy DNA sequencing data to
reconstruct the evolutionary history of a tumor in terms of an-
cestral relationships between somatic mutations. Some recent
approaches have focused on using single-cell sequencing data
to reconstruct tumor phylogenies [6], [7], [8]. However, despite
significant technological advances, single-cell sequencing re-
mains error-prone and, in many cases, prohibitively expensive.
Therefore, we focus here on the data from more econom-
ical bulk sequencing, in which a collection of potentially
heterogeneous cells are sequenced together, obfuscating the
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relationships between mutations. Furthermore, there are many
other sources of error in the data, including the sequencing
process, read alignment, and variant calling algorithms. Thus,
specialized methods are required to robustly analyze such
noisy bulk sequencing data.

A number of recent computational methods have been de-
veloped to infer tumor phylogenetic trees using multi-sample
bulk sequencing data. Many methods restrict attention to single
nucleotide variants (SNVs) [9], [10], [11], [12], [13] and use
observations about the observed frequencies of each mutation
to identify possible ancestral relationships. Specifically, these
methods make this problem more tractable by using the infinite
sites assumption (ISA) which states that any locus in the
genome mutates at most once during the history of tumor. For
example, AncesTree [9] creates a graph called the ancestry
graph from mutation frequencies and then identifies spanning
trees of that graph adhering to the ISA. Reports that the ISA
is often violated in tumors [14] have led to the investigation
of the removal of the ISA in limited contexts [8], [15]. A
few other methods also consider structural variants or copy
number aberrations [16], [17], [18], [19] in addition to SNVs,
but this has proven challenging. Finally, a few methods make
note that multiple tumor evolutionary trees may be consistent
with a given sequencing dataset and attempt to enumerate
these trees [10], [18], [19]. In this vein, a recent paper [20]
observed that multiple such trees typically exist in noise free
simulations. However, it is unclear how the conclusions from
that work are affected by the multiple sources of noise present
in bulk sequencing data and to what extent they transfer to real
sequencing data.

In this paper, we investigate when and how well clonal
evolutionary trees can be reconstructed from multi-sample
bulk sequencing data using the ancestry graph approach of
[9], which relies on the ISA. In particular, we focus on the
performance of this method when applied to noisy data. We
describe a relaxation of the ancestry graph approach that
makes it more robust to noise and introduce a method of
simplifying the ancestry graph to reduce computational cost.
We show the effects of coverage, noise, and other parameters
in reconstructing clonal trees in noisy simulated data and
apply our methods to cancer sequencing datasets from two
studies [21], [22].
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Fig. 1. Overview of the clonal tree inference process. From left to right: several samples are taken from a heterogeneous tumor, either from different parts
of the tumor or from different time points; the samples are sequenced, the resulting reads are aligned to a reference genome, and variants are identified in the
aligned reads of each sample; the variant and reference read counts are used to build the VAF matrix; we construct the ancestry graph of the VAF matrix;
each spanning tree of the ancestry graph adhering to the sum condition is a possible clonal tree, two of which are displayed. Note that the second tree shown
would be eliminated if we could determine the coincidence of mutations, since the dark blue mutation always appears with the green mutation in the tumor.

II. METHODS

We first describe the ancestry graph method [9] and then
formalize the problem of using this approach to enumerate
all tumor phylogenies consistent with a given dataset. We
also provide a novel proof of an upper bound on the number
of possible trees consistent with this approach, present a
relaxation that allows the method to be more robust to noise,
and introduce a simplification that improves computational
efficiency.

A. Problem Formalization

1) Definitions: Let s be the number of samples sequenced
from a tumor and let n be the total number of observed
mutations across all samples. Mutations are labeled 1, . . . , n.
The s×n variant allele frequency (VAF) matrix F stores in Fij

the fraction of reads from sample i that contain mutation j. A
clonal tree T (or tumor phylogeny) is a rooted tree on n nodes
with each node labeled by a distinct mutation. More generally,
nodes may be labeled with disjoint sets of mutations, with a
corresponding decrease in the number of nodes. Each node
represents a cell population containing all mutations along its
root-node path. The infinite sites assumption guarantees that a
clonal tree is a perfect phylogeny, so we can also store the tree
as an n×n clonal matrix B, where B`j = 1 if cell population
` contains mutation j and 0 otherwise. Finally, samples from
the tumor contain mixtures of cell populations: the s×n usage
matrix U stores in Ui` the frequency of cells from population
` in sample i.

2) The VAFFP and the Ancestry Graph: The authors of [9]
formalized the Variant Allele Frequency Factorization Problem
(VAFFP), also called the Perfect Phylogeny Mixture Problem
in [20], as follows:

Given: A VAF matrix F .
Find: A usage matrix U and a clonal matrix B such that:

F =
1

2
UB (1)

The factor of 1/2 arises because all mutations are assumed
to be heterozygous SNVs. The VAFFP is known to be NP-
complete [9], but in practice, many datasets are small enough
that finding solutions is feasible.

In [9], the authors present an approach for solving the
VAFFP using the ancestry graph of F (see Fig. 1 for a visual

overview of this method). When necessary to avoid confusion,
we will refer to the ancestry graph as the strict ancestry
graph. The ancestry graph GF contains n nodes, one labeled
by each mutation. Additionally, GF includes a directed edge
from node j to node k if Fij ≥ Fik ∀i ∈ {1, . . . , s}. These
edges encode the ancestry condition: under the infinite sites
assumption, an ancestral mutation must be more frequent than
a descendant mutation. The possible clonal trees are exactly
the set of directed spanning trees of GF that adhere to the sum
condition (2). Using C(j) to denote the children of mutation
j in a clonal tree T , the sum condition requires that:

∑

k∈C(j)

Fik ≤ Fij ∀i ∈ {1, . . . , s} (2)

That is, the sum of observed frequencies of children mutations
in a clonal tree cannot exceed the frequency of their parent
mutation in any sample.

Each spanning tree T of GF adhering to the sum condition
yields a solution to VAFFP (see the rightmost part of Fig. 1
for examples). We can construct the clonal matrix B from T
by tracing node labels along each root-node path. We can then
efficiently compute U without back-substitution [9]:

Uij = 2
(
Fij −

∑

k∈C(j)

Fik

)
(3)

3) The Enumeration Variant Allele Frequency Factorization
Problem (E-VAFFP): Here, we define the focus of our work,
the enumeration version of the VAFFP.

Given: A VAF matrix F .
Find: The set T (GF ) of all trees that span the ancestry

graph GF and adhere to the sum condition.
When T (GF ) 6= ∅, we say that an E-VAFFP solution exists

or that F admits an E-VAFFP solution. In this paper, we
explore the relationship between T (GF ) and the underlying
tumor evolutionary tree and investigate relaxations and exten-
sions to the E-VAFFP.

B. Finding and Counting E-VAFFP Solutions

To solve the E-VAFFP, we use the same method employed
in [11], [18], [20], a modified version of the Gabow-Myers
algorithm [23]. This algorithm recursively constructs all span-
ning trees of a graph through a structured depth-first search.
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It is straightforward to modify the Gabow-Myers algorithm to
avoid execution branches violating the sum condition.

We can place an upper bound on |T (GF )| by counting
the number of spanning trees of GF . Tutte’s Matrix-Tree
Theorem [24] provides a polynomial-time method of counting
the spanning trees of a directed graph from the graph’s
Laplacian matrix. The Laplacian matrix of a graph is obtained
by subtracting its adjacency matrix from its in-degree matrix.

Theorem 1 (Tutte’s Matrix-Tree Theorem): The number of
spanning trees of a directed graph G rooted at r is det(L̂r),
where L̂r is obtained by removing the rth row and column
from the Laplacian matrix of G.

In some cases, it is possible to avoid calculating the deter-
minant: Pradhan and El-Kebir [20] proved that if G is acyclic
with a unique root r, then the number of spanning trees of G
rooted at r is the product of in-degrees of all nodes v 6= r
in G. Their proof uses a bijection between spanning trees and
a set of functions of known size. We rephrase Pradhan and
El-Kebir’s theorem in a way that makes more direct use of
Theorem 1 and invites a novel proof.

Theorem 2: If G is a directed acyclic graph, then the number
of spanning trees of G rooted at r is the product of the diagonal
elements of L̂r.

Proof: Using Theorem 1, it suffices to show that det(L̂r)
is the product of its diagonal when G is acyclic. We proceed by
induction on the size of L̂r. If L̂r is 1×1, then its determinant
is indeed the lone diagonal element. Now suppose L̂r is n×n.
Since G is acyclic, there must exist a node in G − {r} with
no incoming edges. Equivalently, L̂r must contain a column i
with all off-diagonal elements zero. By performing a cofactor
expansion along column i, we see that det(L̂r) is the product
of its ith diagonal element with the determinant of the (n−1)×
(n−1) minor resulting from the removal of column i and row
i. Note that this minor still has the same vital property as L̂r:
it stores the adjacency of an acyclic forest in its off-diagonal
elements. We could thus perform the same cofactor expansion
on the minor, allowing us to conclude that the determinant
of the minor is the product of its diagonal by the inductive
hypothesis. Therefore the determinant of L̂r is also the product
of its diagonal.

Since the diagonal product of L̂r is precisely the product of
in-degrees of all nodes v 6= r in G, Theorem 2 is equivalent
to Pradhan and El-Kebir’s.

We can guarantee that GF is acyclic by merging any
mutations with equal frequencies. Then, all spanning trees of
GF must share the same root r. This allows us to place an
upper bound on |T (GF )| using Theorem 2: it cannot exceed
the diagonal product of L̂r. While this bound is computable
in polynomial time, determining the exact size of this set is
NP-hard and is conjectured to be #P-complete [20].

C. Pruning Transitive Edges

Theorem 2 allows us to see that the number of spanning
trees of an n-node DAG grows exponentially with n when
the average in-degree is held constant. Even with only 20
mutations, the number of spanning trees of GF can exceed

a) b) c) d)

3-transitive
2-transitive

Fig. 2. Example of partial transitive reduction. a) An ancestry graph GF .
b) The transitive edges in GF . The red edges are 3-transitive and the blue
edges are 2-transitive. c) The 3-PTR of GF . d) The transitive reduction of
GF ; equivalently, the 2-PTR of GF .

1017, dramatically slowing down the identification of clonal
trees. In order to reduce the number of spanning trees while
preserving core ancestral relationships, we explore removing
transitive edges from the ancestry graph (see Fig. 2). This
approach may be especially useful if we expect that the tumor
has a branching, rather than a linear topology.

For a directed acyclic graph G, we define an edge (u, v) ∈
G to be k-transitive if there exists a path from u to v of
length k (see Fig. 2b). We say that an edge is ≥ k-transitive
if it is i-transitive for some i ≥ k. By pruning G of ≥ k-
transitive edges for a chosen k, we can reduce the number of
spanning trees while maintaining the general structure of G.
We call the graph resulting from removing all ≥ k-transitive
edges the k partial transitive reduction (k-PTR) of G. Note
that the 2-PTR is the standard transitive reduction [25] of a
graph (see Fig. 2d). To construct the k-PTR of G, we first
find the transitive reduction R of G using Hsu’s algorithm
[26]. Then, we can easily identify if (u, v) is ≥ k-transitive
by checking the path length from u to v in R. This may be
done efficiently by pre-computing the all-pairs shortest path
matrix of R with n breadth-first searches.

D. Relaxations of the E-VAFFP

1) Approximate Ancestry Graph: Real sequencing data is
rife with noise, but the E-VAFFP assumes F is measured
precisely. In real datasets, there are often no spanning trees
of GF . To handle less idealized data, we use a method based
on the probabilistic approach from [9]. This approach defines
the approximate ancestry graph of F : a complete n-node
directed graph with nodes labeled by mutations and edges
(j, k) weighted by the probability that mutation j is ancestral
to mutation k given their observed frequencies. To calculate
this probability, we model the VAF of mutation j in sample
i with the beta-distributed random variable Xij , as in [9].
If Xij ≥ Xik, then this provides evidence that mutation j
is ancestral to mutation k. The overall probability that j is
ancestral to k is defined based on the sample with the weakest
evidence:

Pr[j ancestral to k] := min
i

Pr[Xij ≥ Xik] (4)



39

The probabilities on the right hand side of (4) can be directly
calculated from the read counts that generate F [27].

Just as with the strict ancestry graph, we can use the Gabow-
Myers algorithm [23] to enumerate all spanning trees of the ap-
proximate ancestry graph whose observed frequencies satisfy
the sum condition. Once these are found, the most probable
(i.e. max weight) tree can be selected. Alternatively, if there
are too many spanning trees to enumerate exhaustively, we
can use an algorithm of Camerini, Fratta, and Maffioli [28] to
enumerate weighted spanning trees in descending weight order
until one satisfying the sum condition is found. Unlike Gabow-
Myers, this algorithm does not offer a simple sum condition
modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [28] is that it
is much slower when no solutions exist, since it is forced to
explore the entire space of spanning trees rather than just those
satisfying the sum condition.

Note that the approximate ancestry graph does not admit
more E-VAFFP solutions than the strict ancestry graph. This is
because any tree violating the sum condition in the strict graph
will necessarily violate it in the approximate graph as the sum
condition only relies on F . Additionally, any spanning tree of
the approximate graph that does not exist in the strict graph
must violate the ancestry condition (and therefore violates the
sum condition), since it includes an edge not present in the
strict graph.

The key benefits of the approximate ancestry graph are that
it provides an ordering on solutions and that it allows the
exploration of novel tree topologies not present in the strict
graph. To make use of these topologies, however, we need to
weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ε, we can relax the
sum condition to require that:

∑

k∈C(j)

Fik ≤ Fij + ε ∀i ∈ {1, . . . , s} (5)

We then can identify the smallest ε that allows one valid
spanning tree to be found in the approximate ancestry graph.
This is equivalent to finding the spanning tree whose maximal
violation of the sum condition is minimal.

III. RESULTS

We investigated E-VAFFP solutions in simulated noisy
data and comparatively assessed the strict and approximate
ancestry graph approaches on two real datasets of 3 chronic
lymphocytic leukemia (CLL) patients from [21] and 8 clear
cell renal cell carcinoma (ccRCC) patients from [22]. In
particular, we examined the effect of noise on the existence
of E-VAFFP solutions and on the degree to which trees in
T (GF ) reflect the underlying evolutionary tree. In addition to
the findings presented here, we also simulated error-free data
and reproduced the relationships between n, s, and the size of
T (GF ) reported in [20].

A. Simulated Data

On simulated data, we present findings on the existence
and quality of strict and approximate E-VAFFP solutions in
noisy DNA sequencing data. We also separately evaluate the
usefulness of pruning transitive edges from the ancestry graph.
We first describe our data simulation procedure.

1) Simulating Noisy VAF Data: Our data simulation pro-
cess consists of four steps: (1) randomly generating an evolu-
tionary tree topology, (2) choosing the cellular frequencies,
(3) determining the mutation frequencies, and (4) drawing
variant reads from a binomial distribution, allowing direct
computation of F . We also describe our method of varying
noise levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average sequencing coverage c, we generate a random
tumor phylogenetic tree T and an s×n VAF matrix consistent
with T . For simplicity, we say that each clone contains a single
new mutation not shared by its parent, so we interchangeably
refer to n as the number of clones. Making no assumptions
about the topology of tumor phylogenies, T is constructed
iteratively by adding each mutation as the child of a random
node already in T . From T , we can construct the clonal matrix
B as in Section II-A2. We then choose the frequency of each
of the n clones in the simulated tumor. Clone i is assigned
frequency ui such that

∑
i ui = 1. To choose u1, . . . , un, we

sample uniformly from the standard simplex, the set of points
in Rn whose coordinates are non-negative and have sum 1,
using a method described in [29].

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (6)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ∼ Poisson(c) reads, where c
is the mean coverage. The number of variant reads vij of
mutation j in sample i is drawn from a binomial distribution:
vij ∼ Binom(rij , fj). The s×n VAF matrix F then contains
entries Fij = vij/rij .

We simulate additional noise in the sampling and sequenc-
ing process by adding overdispersion to the binomial distri-
bution. We replace fj with a beta-distributed random variable
with mean fj . The parameters α and β of the beta distribution
are chosen to be:

α =
(1− ρ)
ρ

fj β =
(1− ρ)
ρ

(1− fj)

where ρ ∈ (0, 1) is the overdispersion parameter. This results
in a beta distribution with mean fj and with variance propor-
tional to ρ. By varying ρ, we can simulate sequencing data
with more or less noise. When we do not add overdispersion,
we denote it with the shorthand ρ = 0.
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Fig. 3. Parameter effects on E-VAFFP solution quality. An A-D improvement of 0 signifies that trees in T (GF ) are no better than random, while an
improvement close to 1 signifies that T (GF ) are nearly identical to the underlying evolutionary tree. Note that solution quality is measured only when
solutions exist, which may be rare.

2) Existence of E-VAFFP Solutions: Under this data sim-
ulation process, we find that in the majority of cases, no
spanning trees of GF satisfy the sum condition. The rarity
of E-VAFFP solutions is exacerbated by having many clones,
many samples, low coverage, and high noise. We ran 10000
trials of the data simulation and ancestry graph procedure
for each parameter setting (n from 3 to 12, s from 1 to
15, coverage from 50× to 200×, and ρ from 0 to 0.09)
and measured the fraction of trials with |T (GF )| ≥ 1. We
refer to these as solvable trials. Each parameter was tested
independently, using the default values n = 10, s = 5, 60×
coverage, and ρ = 0 for parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200× coverage.
Meanwhile, more mutations and samples both significantly
decreased the proportion of solvable trials, as did adding
overdispersion. At ρ = 0.09, E-VAFFP solutions existed
in only 89 of the 10000 trials. A high number of samples
exhibited a similarly strong effect, with just 103 solvable trials
at s = 15. We note that E-VAFFP solutions were also rare in
real datasets (see section III-B).

3) Existence of Approximate Solutions: Relaxing the sum
condition (5) dramatically increases the fraction of solvable
trials, even with small ε. There is a linear increase in the
proportion of solvable trials from 14% at ε = 0 to 64% at
ε = 0.05. This is accompanied by a dramatic increase in the
mean size of T (GF ), from 2000 to 69000. There is therefore a
trade off between lower computational effort and an increased
likelihood of finding a possible clonal tree.

4) E-VAFFP Solution Quality: To measure the quality of
clonal trees generated by the ancestry graph approach, we
calculate the mean ancestor-descendant (A-D) distance [30]
between each tree in T (GF ) and the underlying evolutionary
tree. Note that standard phylogenetic distance measures, such
as Robinson-Foulds [31], do not apply to clonal trees as their
internal nodes are labeled in addition to their leaves. To quan-
tify the useful information gained from E-VAFFP solutions,
we measure how much more similar trees in T (GF ) are to
the underlying tree than an equinumerous set of randomly
generated trees. Formally, with AD(S) denoting mean A-D

distance between trees in the set S and the underlying tree,
we define the A-D improvement to be:

AD(random)−AD(T (GF ))

AD(random)
(7)

This measure quantifies the decrease in incorrectly identified
ancestral relationships relative to the random baseline. For
example, an A-D improvement of 0 would indicate that trees in
T (GF ) are no better than random, while an A-D improvement
of 1 would mean that T (GF ) contains only the correct tree.

With default parameters, trees in T (GF ) exhibited a mean
A-D improvement of 0.64, showing that they accurately cap-
ture 64% of ancestral patterns in the data missed by the random
baseline. Increasing the number of mutations not only makes
solutions rarer, but also decreases the quality of solutions when
they are present. More samples, on the other hand, is a marked
benefit to the similarity of trees in T (GF ) to the underlying
tree. (See Fig. 3.) Our results regarding n and s agree with
those presented in [20] on error-free simulated data.

Conditioned on the existence of solutions, we find that
higher noise makes trees in T (GF ) more closely capture
ancestral relationships in the underlying tree (see Fig. 3).
Higher coverage has a slight negative impact on solution
quality as measured by A-D distance. At 50× coverage, the
A-D improvement was 0.65 and it decreased to 0.61 at 200×
coverage. Meanwhile, higher values of the overdispersion
parameter ρ also led to higher-quality trees, in the rare case
that any could be found at all. With no overdispersion, the
A-D improvement was 0.64 and it reached 0.72 at ρ = 0.09.
This could indicate that good E-VAFFP solutions are more
robust to noise than solutions dissimilar to the underlying tree.
Thus, when more noise is present, poor trees are preferentially
excluded from T (GF ), causing the mean A-D improvement to
increase. However, these parameters have such strong negative
impacts on the existence of solutions that the presence of
noise is still deleterious to our ability to infer phylogeny. For
instance, the total number of correctly reported ancestral rela-
tionships across all 10000 trials does decrease as ρ increases,
since there are so few trials with |T (GF )| ≥ 1 when ρ is high.

5) Approximate Solution Quality: Solution quality responds
in the same way to changes in s, coverage, and overdispersion
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Fig. 4. Difference in the relationship between n and A-D improvement with
the strict and approximate ancestry graph methods (with ε = 0). As the
number of mutations increases, both methods worsen, but the approximate
ancestry graph does so more rapidly.

in the approximate ancestry graph as in the strict ancestry
graph. However, we found an intriguing difference in the
response to number of mutations n. Choosing the max-weight
sum-constrained spanning tree of the approximate graph pro-
vides noticeably better solutions than the strict approach for
small n. However, the approximate method drops off more
sharply in quality as n grows, with the crossover point at n = 6
(see Fig. 4). We suspect this is due to inherent bias in high-
weight approximate spanning trees, since they become worse
than randomly sampled strict spanning trees as n grows. This
bias may arise because edges in the approximate graph are
weighted by the probability that one mutation is ancestral to
another, but that edges in fact represent parental rather than
ancestral relationships. As such, the root node is likely to
have high-weight edges to every other node, even though its
probability of being their direct parent may not be as high. We
also found that relaxing the sum condition caused a gradual
linear decrease in solution quality, from an A-D improvement
of 0.54 at ε = 0 to 0.51 at ε = 0.05 when the number of
mutations is n = 10.

6) Transitive Edge Pruning: We found partial transitive
reduction to be a viable method of reducing the number
of spanning trees in the ancestry graph without significantly
affecting the quality of solutions. We compared the existence
and quality of E-VAFFP solution trees resulting from partial
transitive reductions of the ancestry graph with those from the
non-reduced graph. Using Theorem 2, we also counted the
mean and maximum number of spanning trees of the reduced
ancestry graph across 10000 trials to quantify the benefit of
PTR (see Fig. 5). For this analysis, we used the same default
parameters as before.

The total transitive reduction proved to be too extreme. It
drastically reduced the mean number of spanning trees, but
also reduced the probability of solution existence down to
3%. Additionally, the trees identified from the total transitive
reduction were noticeably less similar to the underlying tree,
with a mean A-D improvement over random of 0.57 compared
to 0.64 for the unpruned ancestry graph (Fig. 5b).

At the other extreme, we found that the 6- and higher PTR
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Fig. 5. Effect of partial transitive reduction on (a) the number of ancestry
graph spanning trees and (b) the quality of clonal trees derived from PTRs
of the ancestry graph. ‘None’ represents the unpruned ancestry graph.

had a negligible impact on all measures, reflecting the rarity
of ≥ 6-transitive edges in 10-node ancestry graphs. The 4-
PTR and 5-PTR had no discernible impact on the the fraction
of solvable trials, but decreased the maximum number of
spanning trees by 43% and 62%, respectively. Meanwhile, the
impact on the mean A-D improvement was less than 0.01
for both. Removing 3-transitive edges had a stronger effect
on each of these measures. The max and mean number of
spanning trees shrank by factors of 9.6 and 7.7 compared
to the unpruned graph, while the fraction of solvable trials
dropped by two percentage points. In the 3-PTR, the mean
A-D improvement decreased slightly from 0.64 to 0.62.

In summary, the 3-, 4-, and 5-PTRs of 10-node ancestry
graphs simplify the ancestry graph with minimal impact on
solution existence and quality. An ancestry graph with fewer
spanning trees results in faster runtime, smaller memory foot-
print, and allows datasets with more mutations to be analyzed.
Selecting between these partial transitive reductions allows
for a trade-off between a simpler ancestry graph and higher
solution quality. In an ancestry graph with more or fewer
nodes, a different value of k would have to be chosen for the
desired trade-off. In addition, we note that removing transitive
edges disproportionately removes shallow, wide spanning trees
from the ancestry graph. If there is a biological reason to
suspect that the true evolutionary tree is of this form, PTR
may not be appropriate. On the other hand, if it is believed
that the underlying tree is likely to be deep and narrow, then
PTR becomes even more viable.

B. Real Data

We investigated the strict and approximate ancestry graph
approaches on data from patients with chronic lymphocytic
leukemia (CLL) [21] and clear cell renal cell carcinoma
(ccRCC) [22]. For the CLL patients, we analyzed VAFs from
both 100000× coverage targeted deep sequencing and 40×
coverage whole genome sequencing (WGS). The ccRCC data
was collected using amplicon sequencing with an average
coverage over 400× [22]. See Table I for a summary of these
datasets. For each dataset, we applied both the approximate
and strict ancestry graph methods to identify possible clonal
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TABLE I
DATASET SUMMARY

Patient Samples Mutationsa # Clusters |T (GF )|
CLL003 (deep) 5 15/20 4 0
CLL003 (WGS) 5 13/30 4 0
CLL006 (deep) 5 5/10 5 2
CLL006 (WGS) 5 6/16 5 0
CLL077 (deep) 5 12/16 4 1
CLL077 (WGS) 5 16/20 4 0
EV003 8 12/16 4, 5, 6 0
EV005 7 61/64 5, 6 0
EV006 9 52/57 5 0
EV007 8 54/56 4, 5 0
RK26 11 62/62 4, 5, 6 0
RMH002 5 48/48 5, 6 0
RMH004 6 126/126 5, 6 0
RMH008 8 69/71 5, 6 0

aAfter/before filtering out mutations with VAF above 0.5.

trees. When no solutions existed under the standard sum con-
dition, we employed the relaxed sum condition (5), choosing
ε as small as possible for one spanning tree to be valid. Before
constructing the ancestry graph, we used k-means to cluster
mutations by their frequencies across all samples, choosing the
number of clusters manually. When the number of mutation
clusters was unclear, we performed the analysis with several
possible values of k. To eliminate mutations that may have
suffered copy number aberrations, we discarded any mutation
with a VAF over 0.5.

1) Rarity of Strict Solutions: Of the 11 patients, only
CLL006 and CLL077 admitted E-VAFFP solutions, and only
in the 100000× coverage targeted sequencing data. EV003
also yielded a valid clonal tree, but only after we removed the
R9 sample, a perceived outlier. In all other cases, we had to use
the approximate ancestry graph and relax the sum condition in
order to find likely clonal trees. This pattern agrees with the
finding in simulated data that E-VAFFP solutions are rare and
reinforces the importance of coverage in solution existence.

For the datasets in which an E-VAFFP solution existed, we
observed one compatible tree in the two patients with four
clusters and two trees in the patient with five clusters. For
comparison, in simulated data, 19% of the n = 4 solvable
trials had one tree and 12% of the n = 5 solvable trials had
two trees.

2) WGS and Targeted Sequencing Agreement: In each of
the three CLL patients, the trees identified from WGS data
were topologically identical to the trees identified from the
deep sequencing data, regardless of whether we used the strict
or approximate approaches. The few differences in labeling
were due to mutations that were either absent or filtered in
one of the two datasets or that were clustered differently due
to noise in the WGS data. See Fig. 6 for the CLL077 variant
frequencies showing increased noise in the WGS data and see
Fig. 7 for the CLL077 trees derived from the deep (left) and
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Fig. 6. Variant frequencies over five samples for patient CLL077 in targeted
deep sequencing data (left) and whole genome sequencing (right) [21]. Colors
of arcs indicate which mutations were clustered together using k-means.
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Fig. 7. Clonal trees identified for patient CLL077 from deep sequencing (left)
and WGS (right) as the max-weight spanning trees of the respective approx-
imate ancestry graphs. Edge weights are the probability of the relationship
and color labels correspond to clusters in Fig. 6. The movement of OCA2 to
the root is due to different clustering as a result of noise (see Fig. 6). DDX1,
ZFHX4, and ZNF566 were not represented in the deep sequencing data, while
GPR158 was filtered out in the deep sequencing data due to VAF over 0.5.
The WGS tree required a sum condition relaxation of ε = 0.048.

WGS (right) datasets.

Additionally, omitting the mutations we filter out due to
VAF over 0.5, the CLL trees we identified match exactly
with those found by other methods of clonal tree inference,
namely CITUP [10] and PhyloSub [12]. Our CLL077 tree also
includes the two mutational branches found by AncesTree [9].
In particular, our tree for CLL003, which was generated using
the approximate ancestry graph and the relaxed sum condition,
agrees exactly with those reported by PhyloSub and CITUP.

Notably, the same trees that obeyed the sum condition in the
CLL006 and CLL077 deep sequencing data violated it in the
WGS data, by margins of 0.101 and 0.048. This shows that
adding noise led to significant violations of the sum condition
and to the non-existence of strict solutions. The agreement of
the approximate trees generated from noisy WGS data with
the trees generated from high-coverage data provides evidence
that the relaxed sum condition and approximate ancestry graph
allow us to correctly identify likely clonal trees even when
noise makes the sum condition unsatisfiable. It is worth noting
that the CLL trees had a small number of clusters: either 4
or 5. This is in the regime found in simulated data in which
the approximate approach outperforms the strict approach (see
Fig. 4).
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IV. DISCUSSION

We explored the inference of tumor evolutionary history
from SNV frequency data obtained from multi-sample bulk se-
quencing using the ancestry graph method of [9]. This method
is founded on the infinite sites assumption (ISA) and further
simplifies the problem by ignoring copy number aberrations.
We evaluated the effect of noise on the existence and quality
of candidate clonal trees. We also defined the partial transitive
reduction of a graph and showed that it can be used to simplify
the ancestry graph while on average preserving spanning trees
similar to the underlying evolutionary tree. We applied these
methods to real cancer datasets, confirming our findings in
simulated data about the existence of strict solutions and the
viability of the approximate approach.

In simulated data, we confirmed that high noise decreases
the probability of strict clonal tree existence. However, in the
rare case that trees can be identified in high-noise data, they
tend to be better than the more common trees found from low-
noise data. This shows that trees similar to the underlying tree
are more robust to noise than dissimilar trees. Meanwhile, we
showed that the approximate ancestry graph method provides
better trees than the strict approach when there are few muta-
tions and worse trees when there are many mutations. We hope
that our analysis here will be useful to those analyzing and
interpreting real tumor phylogenies constructed using methods
that rely on the infinite sites assumption.

Several unanswered questions remain. For instance, we
observed that higher coverage decreased the average number
of correctly reported ancestral relationships. We are curious
to know if this trend continues with more extreme coverages
and to understand why this occurs. We are also interested in
how the topology of the underlying evolutionary tree affects
the ancestry graph method. Early results indicate that wide,
shallow evolutionary trees are better represented by T (GF ),
but more investigation is needed to characterize and interpret
this effect. Future work should also address the impact of
noise on methods that relax the ISA or that consider mutations
more complex than SNVs. Finally, the analysis of long-read
and single-cell sequencing data will need further attention as
these technologies become increasingly feasible, since both
show promise in improving phylogeny inference [20].
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