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Clonal theory (Nowell 1976)
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Inferring tumor phylogeny

How can we reconstruct a tumor’s clonal tree from its genome?
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Why is this important?

1 Personalized medicine (Greaves 2015), (McGranahan and Swanton
2017)

2 Improved understanding of cancer development
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SNVs and CNAs/structural variants:

SubcloneSeeker (Qiao et al. 2014)

PhyloWGS (Deshwar et al. 2015)

SPRUCE (El-Kebir et al. 2016)

Canopy (Jiang et al. 2016)

PASTRI (Satas and Raphael 2017)

Single-cell and bulk data:

ddClone (Salehi et al. 2017)

B-SCITE (Malikic et al. 2018)

and many more....
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Enumeration Variant Allele Factorization 
Problem (E-VAFFP)
Given: A VAF matrix F.

Find: The set !(GF) of all clonal trees that span 
the ancestry graph GF and satisfy the sum 
condition. 

Goal: Given variant allele frequencies, infer the evolutionary history of mutations.

Ancestry Graph (AG) 
• Node for each mutation j ∈ {1, …, n}

• Edge from j to k if j appears more 

frequently than k in all samples 

Infinite Sites Assumption  
(Kimura 1969)

Genome is large, mutations are rare.

⇒ Mutations only occur once.  
⇒ Mutations don’t disappear.
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Fig. 1. Overview of the clonal tree inference process. From left to right: several samples are taken from a heterogeneous tumor, either from different parts
of the tumor or from different time points; the samples are sequenced, the resulting reads are aligned to a reference genome, and variants are identified in the
aligned reads of each sample; the variant and reference read counts are used to build the VAF matrix; we construct the ancestry graph of the VAF matrix;
each spanning tree of the ancestry graph adhering to the sum condition is a possible clonal tree, two of which are displayed. Note that the second tree shown
would be eliminated if we could determine the coincidence of mutations, since the dark blue mutation always appears with the green mutation in the tumor.

an upper bound on the number of possible clonal trees, and
present relaxations and simplifications to the problem.

A. Problem Formalization

1) Definitions: Let s be the number of samples taken from
a tumor and let n be the total number of observed mutations
across all samples. Mutations are labeled 1, . . . , n in arbitrary
order. The s⇥n variant allele frequency (VAF) matrix F stores
in Fij the fraction of reads from sample i that contain mutation
j. A clonal tree T is a rooted tree on n nodes with each node
labeled by a distinct mutation. More generally, nodes may be
labeled with disjoint sets of mutations, with a corresponding
decrease in the number of nodes. Each node represents a cell
population containing all mutations along its root-node path.
The infinite sites assumption guarantees that a clonal tree is a
perfect phylogeny, so we can also store the tree as an n⇥n n-
clonal matrix B, where B`j = 1 if cell population ` contains
mutation j and 0 otherwise. Finally, samples from the tumor
contain mixtures of cell populations: the s ⇥ n usage matrix
U stores in Ui` the frequency of cells from population ` in
sample i.

2) VAFFP: We formalize the problem of inferring tumor
phylogeny as the Variant Allele Frequency Factorization Prob-
lem [5], also called the Perfect Phylogeny Mixture Problem in
[13].

Given: A VAF matrix F .
Find: A usage matrix U and an n-clonal matrix B such

that:
F =

1

2
UB (1)

The factor of 1/2 arises because all mutations are assumed
to be heterozygous SNVs. VAFFP is known to be NP-complete
[5]. In practice, many datasets are small enough that finding
solutions is feasible.

3) Ancestry Graph Solution: In [5], El-Kebir, Oesper,
Acheson-Field, and Raphael present an approach for solving
VAFFP using the ancestry graph of F (see Fig. 1 for a visual
overview of this method). The ancestry graph GF contains n
nodes, one labeled by each mutation. GF includes a directed
edge from node j to node k if Fij � Fik 8i 2 {1, . . . , s}.
These edges encode the ancestry condition: under infinite sites,
an ancestral mutation must be more frequent than a descendant

mutation in all samples. The possible clonal trees are exactly
the set of directed spanning trees of GF that adhere to the sum
condition (2). Using C(j) to denote the children of mutation
j in a clonal tree T , the sum condition requires that:

X

k2C(j)

Fik  Fij 8i 2 {1, . . . , s} (2)

That is, the sum of observed frequencies of children mutations
in a clonal tree cannot exceed the frequency of their parent
mutation in any sample.

Each spanning tree T of GF adhering to the sum condition
yields a solution to VAFFP (see the rightmost part of Fig. 1
for examples). We can straightforwardly construct B from T
by tracing edge labels along each root-node path. We can then
efficiently compute U without the need for back-substitution
[5]:

Uij = 2
⇣
Fij �

X

k2C(j)

Fik

⌘
(3)

4) EVAFFP: We extend VAFFP to the Enumeration Variant
Allele Frequency Factorization Problem:

Given: A VAF matrix F .
Find: The set T (GF ) of all trees that span the ancestry

graph GF and adhere to the sum condition.
When T (GF ) 6= ;, we say that an EVAFFP solution exists

or that F admits an EVAFFP solution. In this paper, we
explore the relationship between T (GF ) and the true tumor
evolutionary tree and investigate relaxations and extensions to
EVAFFP.

B. Finding and Counting EVAFFP Solutions

To solve EVAFFP, we use a modified version of the Gabow-
Myers algorithm [14], the same method employed in [8], [9],
and [13]. This algorithm recursively constructs all spanning
trees of a graph through a structured depth-first search. It is
straightforward to add the sum condition to Gabow-Myers to
avoid execution branches violating the sum condition.

We can place an upper bound on the size of T (GF ) by
counting the number of spanning trees of GF . Tutte’s Matrix-
Tree Theorem [15] provides a polynomial-time method of
counting the spanning trees of a directed graph from the
graph’s Laplacian matrix. The Laplacian matrix is obtained

children of j  
in the tree


samples

Theorem (El-Kebir et al. 2015) 
With perfect data, the spanning trees of the ancestry graph satisfying the sum 
condition are exactly the clonal trees that could have generated F under the infinite 
sites assumption.

frequency of mutation j 

in sample i

*Introduces noise/error

Issue: Noise introduced in sequencing makes strict E-VAFFP solutions rare.

Goal: Find likely clonal trees even when noise is present. 

0.99

0.87

0.99

0.34 0.73

0.01

Approximate Ancestry Graph 
• Complete weighted digraph, nodes are mutations

• Edges weighted by probability of ancestry, 

determined from beta-binomial model

• Allows novel tree topologies and orders clonal trees


Relaxed Sum Condition: 

modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:

X

k2C(j)

Fik  Fij + " 8i 2 {1, . . . , s} (4)

III. RESULTS

We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)

⇢
fj (6)

� =
(1 � ⇢)

⇢
(1 � fj) (7)

where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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Issue: The number of ancestry graph spanning trees grows exponentially with n. This 
makes finding !(GF) very slow when there are many mutations. 

Goal: Reduce the number of spanning trees of GF while preserving general structure.
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Transitive Reduction (Aho et al. 1972) 
The smallest subgraph of G with the same 
directed path matrix (i.e. reachability) as G.


k Partial Transitive Reduction (k-PTR) 
The subgraph of G resulting from removing all ≥k-transitive edges from G.

2-transitive
3-transitive

3-PTR of G 2-PTR of GG

Note:

2-PTR = transitive reduction

Algorithm 3 Approximate Sum-Constrained Directed Spanning Tree Algorithm

1: globals: graph G = (V, E), tree T , stack[edge] F , map[node, int] P , map[node, int] H, frequency matrix M

2: function gabow-myers-approximate(G, r, M)
3: initialize T to contain r
4: push all edges (r, v) 2 E onto F
5: grow-approximate()
6: end function

7: function grow-approximate()
8: if T has |V | vertices then
9: store T as the best tree

10: store the badness of T
11: P  map from each node in T to its index in a preorder traversal of T
12: H  map from each node in T to the highest preorder index among its descendants
13: else
14: b False
15: FF  empty stack
16: while F is not empty and b is False do
17: pop edge e = (u, v) from F
18: add e to T
19: if e does not cause T to exceed the sum constraint by more than the best tree then
20: store a copy of F
21: push every edge (v, w) s.t. w /2 T onto F
22: remove every edge (w, v) s.t. w 2 T from F
23: grow()
24: restore F from copy
25: end if
26: remove e from T and from G
27: push e onto FF
28: if P is uninitialized then
29: continue
30: end if
31: if there is no edge (w, v) 2 G with P [v]  P [w]  H[v] then
32: b True
33: end if
34: end while
35: pop each edge from FF , push it onto F , and add it to G
36: end if
37: end function

Algorithm k-PTR

1: compute transitive reduction R of G using Hsu’s Algorithm (1975).
2: for node u in R do
3: breadth-first search starting at u to find shortest path from u to every other node in R
4: end for
5: for edge (u, v) in G do
6: if the path from u to v in R has length � k then
7: remove (u, v) from G
8: end if
9: end for

4

A "(n3) Algorithm for k-PTR
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Proportion of Solvable Trials 
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Noisy Data Simulation Trial 
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modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:
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III. RESULTS

We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)

⇢
fj (6)

� =
(1 � ⇢)

⇢
(1 � fj) (7)

where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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• The fewer valid spanning trees exist, the faster this algorithm is (even when the total number of
spanning trees is large), since it terminates the search in a sub-tree once a sum constraint violation is
made. This can have a considerable positive e↵ect in practice, even if the worst-case running time is
slower due to the additional checks.

Lemma 1. Algorithm 2 finds all spanning trees of G rooted at r that satisfy the sum condition.

Proof. We must show that spanning tree is outputted by Algorithm 2 if and only if it satisfies the sum
constraint.

()): Suppose a spanning tree T is outputted by Algorithm 2. The only way T could have grown to have
|V | vertices was for grow to be repeatedly called on line 22, once for each edge added to T . Thus, the test
on line 18 must have passed every time a new edge was added to T . This means that no edge violating the
sum constraint was added to T . In other words, T satisfies the sum constraint.

()): Suppose a spanning tree T satisfies the sum constraint. Then, every subtree T 0 of T also satisfies the
sum constraint. So, at no point along the recursive execution of grow-constrained will line 18 prevent us
from adding an edge to the current subtree of T and eventually outputting T . The execution of the algorithm
on a valid tree is therefore identical to unconstrained Gabow-Myers, which is known to be correct.

Lemma 2. With s samples and N total spanning trees, Algorithm 2 takes O(sN |E|) time.

Proof. Unconstrained Gabow-Myers is known to take O(N |E|) time. Testing for the sum constraint at each
recursive call takes ⌦(s) steps, since we need to check the frequency in every sample. It can be done in ⇥(s)
time by storing the current “spare” frequency of each sample in the parent node. When we add a child,
we subtract its frequencies in each sample from the parent’s spare frequency. If any drop below 0, the sum
constraint is violated. The spare frequencies of a leaf are equal to the node’s frequencies. Using this system,
Algorithm 2 adds ⇥(s) work at each recursive call for a total running time of O(sN |E|).
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Ancestor-Descendant Distance (Govek et al. 2018) 
Number of pairs of mutations with different ancestral relationships in two trees.

Solution Quality: 
Mean A-D Improvement 

AD(random) - AD(!(GF))

AD(random)


AD(·) = mean A-D distance 
between trees in a set and the 
underlying tree

Bigger VAF matrix and more noise make solutions rarer:

Noise doesn’t hurt clonal tree quality (!). More samples helps:

PTR simplifies AG with minor 
impact to clonal tree quality:

Approximate AG outperforms strict AG for 
small n, underperforms for large n:

Key measures:

All other parameters had the 
same effect on the approximate 
method as the strict.

Datasets 
• 3 chronic lymphocytic leukemia 

patients (Schuh et al. 2012)

• 8 renal cancer patients 

(Gerlinger et al. 2014)
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Process 
• Cluster mutations by VAF using 

k-means

• Use strict and approximate 

ancestry graph to find clonal 
trees

Findings 
• Strict solutions are rare (2/11 patients)

• Strict solutions exist more often in high-coverage, low-noise data (2/3 vs. 0/8)

• Approximate and strict solutions agree with each other on the same data (see above)

• Approximate solutions agree with previous phylogeny inference methods  

(Malikic et al. 2015, Jiao et al. 2014)

Clonal composition of each sample 

(Chemotherapy administered between samples 4 and 5.

Purple clone with MAP2K1 mutation possibly resistant.)
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Fig. 1. Overview of the clonal tree inference process. From left to right: several samples are taken from a heterogeneous tumor, either from different parts
of the tumor or from different time points; the samples are sequenced, the resulting reads are aligned to a reference genome, and variants are identified in the
aligned reads of each sample; the variant and reference read counts are used to build the VAF matrix; we construct the ancestry graph of the VAF matrix;
each spanning tree of the ancestry graph adhering to the sum condition is a possible clonal tree, two of which are displayed. Note that the second tree shown
would be eliminated if we could determine the coincidence of mutations, since the dark blue mutation always appears with the green mutation in the tumor.

an upper bound on the number of possible clonal trees, and
present relaxations and simplifications to the problem.

A. Problem Formalization

1) Definitions: Let s be the number of samples taken from
a tumor and let n be the total number of observed mutations
across all samples. Mutations are labeled 1, . . . , n in arbitrary
order. The s⇥n variant allele frequency (VAF) matrix F stores
in Fij the fraction of reads from sample i that contain mutation
j. A clonal tree T is a rooted tree on n nodes with each node
labeled by a distinct mutation. More generally, nodes may be
labeled with disjoint sets of mutations, with a corresponding
decrease in the number of nodes. Each node represents a cell
population containing all mutations along its root-node path.
The infinite sites assumption guarantees that a clonal tree is a
perfect phylogeny, so we can also store the tree as an n⇥n n-
clonal matrix B, where B`j = 1 if cell population ` contains
mutation j and 0 otherwise. Finally, samples from the tumor
contain mixtures of cell populations: the s ⇥ n usage matrix
U stores in Ui` the frequency of cells from population ` in
sample i.

2) VAFFP: We formalize the problem of inferring tumor
phylogeny as the Variant Allele Frequency Factorization Prob-
lem [5], also called the Perfect Phylogeny Mixture Problem in
[13].

Given: A VAF matrix F .
Find: A usage matrix U and an n-clonal matrix B such

that:
F =

1

2
UB (1)

The factor of 1/2 arises because all mutations are assumed
to be heterozygous SNVs. VAFFP is known to be NP-complete
[5]. In practice, many datasets are small enough that finding
solutions is feasible.

3) Ancestry Graph Solution: In [5], El-Kebir, Oesper,
Acheson-Field, and Raphael present an approach for solving
VAFFP using the ancestry graph of F (see Fig. 1 for a visual
overview of this method). The ancestry graph GF contains n
nodes, one labeled by each mutation. GF includes a directed
edge from node j to node k if Fij � Fik 8i 2 {1, . . . , s}.
These edges encode the ancestry condition: under infinite sites,
an ancestral mutation must be more frequent than a descendant

mutation in all samples. The possible clonal trees are exactly
the set of directed spanning trees of GF that adhere to the sum
condition (2). Using C(j) to denote the children of mutation
j in a clonal tree T , the sum condition requires that:

X

k2C(j)

Fik  Fij 8i 2 {1, . . . , s} (2)

That is, the sum of observed frequencies of children mutations
in a clonal tree cannot exceed the frequency of their parent
mutation in any sample.

Each spanning tree T of GF adhering to the sum condition
yields a solution to VAFFP (see the rightmost part of Fig. 1
for examples). We can straightforwardly construct B from T
by tracing edge labels along each root-node path. We can then
efficiently compute U without the need for back-substitution
[5]:

Uij = 2
⇣
Fij �

X

k2C(j)

Fik

⌘
(3)

4) EVAFFP: We extend VAFFP to the Enumeration Variant
Allele Frequency Factorization Problem:

Given: A VAF matrix F .
Find: The set T (GF ) of all trees that span the ancestry

graph GF and adhere to the sum condition.
When T (GF ) 6= ;, we say that an EVAFFP solution exists

or that F admits an EVAFFP solution. In this paper, we
explore the relationship between T (GF ) and the true tumor
evolutionary tree and investigate relaxations and extensions to
EVAFFP.

B. Finding and Counting EVAFFP Solutions

To solve EVAFFP, we use a modified version of the Gabow-
Myers algorithm [14], the same method employed in [8], [9],
and [13]. This algorithm recursively constructs all spanning
trees of a graph through a structured depth-first search. It is
straightforward to add the sum condition to Gabow-Myers to
avoid execution branches violating the sum condition.

We can place an upper bound on the size of T (GF ) by
counting the number of spanning trees of GF . Tutte’s Matrix-
Tree Theorem [15] provides a polynomial-time method of
counting the spanning trees of a directed graph from the
graph’s Laplacian matrix. The Laplacian matrix is obtained

children of j  
in the tree


samples

Theorem (El-Kebir et al. 2015) 
With perfect data, the spanning trees of the ancestry graph satisfying the sum 
condition are exactly the clonal trees that could have generated F under the infinite 
sites assumption.

frequency of mutation j 

in sample i

*Introduces noise/error

Issue: Noise introduced in sequencing makes strict E-VAFFP solutions rare.

Goal: Find likely clonal trees even when noise is present. 
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Relaxed Sum Condition: 

modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:

X

k2C(j)

Fik  Fij + " 8i 2 {1, . . . , s} (4)

III. RESULTS

We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)
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fj (6)
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where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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makes finding !(GF) very slow when there are many mutations. 
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Algorithm 3 Approximate Sum-Constrained Directed Spanning Tree Algorithm

1: globals: graph G = (V, E), tree T , stack[edge] F , map[node, int] P , map[node, int] H, frequency matrix M

2: function gabow-myers-approximate(G, r, M)
3: initialize T to contain r
4: push all edges (r, v) 2 E onto F
5: grow-approximate()
6: end function

7: function grow-approximate()
8: if T has |V | vertices then
9: store T as the best tree

10: store the badness of T
11: P  map from each node in T to its index in a preorder traversal of T
12: H  map from each node in T to the highest preorder index among its descendants
13: else
14: b False
15: FF  empty stack
16: while F is not empty and b is False do
17: pop edge e = (u, v) from F
18: add e to T
19: if e does not cause T to exceed the sum constraint by more than the best tree then
20: store a copy of F
21: push every edge (v, w) s.t. w /2 T onto F
22: remove every edge (w, v) s.t. w 2 T from F
23: grow()
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25: end if
26: remove e from T and from G
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28: if P is uninitialized then
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31: if there is no edge (w, v) 2 G with P [v]  P [w]  H[v] then
32: b True
33: end if
34: end while
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36: end if
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Algorithm k-PTR

1: compute transitive reduction R of G using Hsu’s Algorithm (1975).
2: for node u in R do
3: breadth-first search starting at u to find shortest path from u to every other node in R
4: end for
5: for edge (u, v) in G do
6: if the path from u to v in R has length � k then
7: remove (u, v) from G
8: end if
9: end for
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modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:
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levels in the simulated VAF matrix.
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and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
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simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1
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~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)
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fj (6)
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where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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• The fewer valid spanning trees exist, the faster this algorithm is (even when the total number of
spanning trees is large), since it terminates the search in a sub-tree once a sum constraint violation is
made. This can have a considerable positive e↵ect in practice, even if the worst-case running time is
slower due to the additional checks.

Lemma 1. Algorithm 2 finds all spanning trees of G rooted at r that satisfy the sum condition.

Proof. We must show that spanning tree is outputted by Algorithm 2 if and only if it satisfies the sum
constraint.

()): Suppose a spanning tree T is outputted by Algorithm 2. The only way T could have grown to have
|V | vertices was for grow to be repeatedly called on line 22, once for each edge added to T . Thus, the test
on line 18 must have passed every time a new edge was added to T . This means that no edge violating the
sum constraint was added to T . In other words, T satisfies the sum constraint.

()): Suppose a spanning tree T satisfies the sum constraint. Then, every subtree T 0 of T also satisfies the
sum constraint. So, at no point along the recursive execution of grow-constrained will line 18 prevent us
from adding an edge to the current subtree of T and eventually outputting T . The execution of the algorithm
on a valid tree is therefore identical to unconstrained Gabow-Myers, which is known to be correct.

Lemma 2. With s samples and N total spanning trees, Algorithm 2 takes O(sN |E|) time.

Proof. Unconstrained Gabow-Myers is known to take O(N |E|) time. Testing for the sum constraint at each
recursive call takes ⌦(s) steps, since we need to check the frequency in every sample. It can be done in ⇥(s)
time by storing the current “spare” frequency of each sample in the parent node. When we add a child,
we subtract its frequencies in each sample from the parent’s spare frequency. If any drop below 0, the sum
constraint is violated. The spare frequencies of a leaf are equal to the node’s frequencies. Using this system,
Algorithm 2 adds ⇥(s) work at each recursive call for a total running time of O(sN |E|).
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Proof. We must show that spanning tree is outputted by Algorithm 2 if and only if it satisfies the sum
constraint.

()): Suppose a spanning tree T is outputted by Algorithm 2. The only way T could have grown to have
|V | vertices was for grow to be repeatedly called on line 22, once for each edge added to T . Thus, the test
on line 18 must have passed every time a new edge was added to T . This means that no edge violating the
sum constraint was added to T . In other words, T satisfies the sum constraint.

()): Suppose a spanning tree T satisfies the sum constraint. Then, every subtree T 0 of T also satisfies the
sum constraint. So, at no point along the recursive execution of grow-constrained will line 18 prevent us
from adding an edge to the current subtree of T and eventually outputting T . The execution of the algorithm
on a valid tree is therefore identical to unconstrained Gabow-Myers, which is known to be correct.

Lemma 2. With s samples and N total spanning trees, Algorithm 2 takes O(sN |E|) time.

Proof. Unconstrained Gabow-Myers is known to take O(N |E|) time. Testing for the sum constraint at each
recursive call takes ⌦(s) steps, since we need to check the frequency in every sample. It can be done in ⇥(s)
time by storing the current “spare” frequency of each sample in the parent node. When we add a child,
we subtract its frequencies in each sample from the parent’s spare frequency. If any drop below 0, the sum
constraint is violated. The spare frequencies of a leaf are equal to the node’s frequencies. Using this system,
Algorithm 2 adds ⇥(s) work at each recursive call for a total running time of O(sN |E|).

f̃j ⇠ Beta(↵, �)

vij ⇠ Binom(rij , f̃j)
P

i ui = 1

3

Ancestor-Descendant Distance (Govek et al. 2018) 
Number of pairs of mutations with different ancestral relationships in two trees.

Solution Quality: 
Mean A-D Improvement 

AD(random) - AD(!(GF))

AD(random)


AD(·) = mean A-D distance 
between trees in a set and the 
underlying tree

Bigger VAF matrix and more noise make solutions rarer:

Noise doesn’t hurt clonal tree quality (!). More samples helps:

PTR simplifies AG with minor 
impact to clonal tree quality:

Approximate AG outperforms strict AG for 
small n, underperforms for large n:

Key measures:

All other parameters had the 
same effect on the approximate 
method as the strict.

Datasets 
• 3 chronic lymphocytic leukemia 

patients (Schuh et al. 2012)

• 8 renal cancer patients 

(Gerlinger et al. 2014)
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Process 
• Cluster mutations by VAF using 

k-means

• Use strict and approximate 

ancestry graph to find clonal 
trees

Findings 
• Strict solutions are rare (2/11 patients)

• Strict solutions exist more often in high-coverage, low-noise data (2/3 vs. 0/8)

• Approximate and strict solutions agree with each other on the same data (see above)

• Approximate solutions agree with previous phylogeny inference methods  

(Malikic et al. 2015, Jiao et al. 2014)

Clonal composition of each sample 

(Chemotherapy administered between samples 4 and 5.

Purple clone with MAP2K1 mutation possibly resistant.)

1 Complete weighted digraph

2 Posterior robability of ancestry: beta-binomial model (El-Kebir et al.
2015)

3 Enumerate spanning trees in weight order (Camerini et al. 1980)
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Partial transitive reduction
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Partial transitive reduction Cell
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Simulated data: solution existence
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Simulated data: solution quality
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Simulated data: approximate vs strict

2 4 6 8 10 12
Number of Mutations

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 A

-D
 I
m

p
ro

v
e
m

e
n
t

strict

approximate

First driver

mutation

Time

Tumor composition

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

0.99

0.87

0.99

0.34 0.73

0.01

First driver

mutation

Time

Tumor composition

Cells

Heterogeneous tumor Clonal tree

Reference

genome

Tumor reads

Normal reads

Mutations
Goal: simplify ancestry graph

2-transitive

3-transitive

G 3-PTR of G 2-PTR of G

0.99

0.87

0.99

0.34 0.73

0.01

Tomlinson and Oesper (Carleton College) Tumor Phylogeny Inference Dec. 4, 2018 18 / 24



Simulated data: PTR
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Real data

Chronic lymphocytic leukemia (Schuh et al. 2012)

3 patients (CLL003, CLL006, CLL077)

5 samples each, spaced over time

WGS (40× coverage) and deep sequencing (100000× coverage)

Clear cell renal carcinoma (Gerlinger et al. 2014)

8 patients (EV003, EV005, EV006, EV007, RK26, RMH002,
RMH004, RMH008)

5-11 samples from different regions

Amplicon sequencing (> 400× coverage)
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Real data: strict solution rarity

Patient Samples Mutations1 # Clusters |T (GF )|
CLL003 (deep) 5 15/20 4 0
CLL003 (WGS) 5 13/30 4 0
CLL006 (deep) 5 5/10 5 2
CLL006 (WGS) 5 6/16 5 0
CLL077 (deep) 5 12/16 4 1
CLL077 (WGS) 5 16/20 4 0
EV003 8 12/16 4, 5, 6 0
EV005 7 61/64 5, 6 0
EV006 9 52/57 5 0
EV007 8 54/56 4, 5 0
RK26 11 62/62 4, 5, 6 0
RMH002 5 48/48 5, 6 0
RMH004 6 126/126 5, 6 0
RMH008 8 69/71 5, 6 0

1After/before filtering out mutations with VAF above 0.5.
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Conclusions

1 Strict ISA-based trees are rare in simulated and real data

2 Overdispersion makes solutions rarer, but not worse

3 Approximate AG and relaxed sum condition increase robustness

4 PTR simplifies AG with minor quality impact (skews topology)

5 Approximate AG outperforms strict for few mutations and vice versa
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Enumeration Variant Allele Factorization 
Problem (E-VAFFP)
Given: A VAF matrix F.

Find: The set !(GF) of all clonal trees that span 
the ancestry graph GF and satisfy the sum 
condition. 

Goal: Given variant allele frequencies, infer the evolutionary history of mutations.

Ancestry Graph (AG) 
• Node for each mutation j ∈ {1, …, n}

• Edge from j to k if j appears more 

frequently than k in all samples 

Infinite Sites Assumption  
(Kimura 1969)

Genome is large, mutations are rare.

⇒ Mutations only occur once.  
⇒ Mutations don’t disappear.


Sum Condition 

Sample 1

(S1)

Sample 2 
(S2)

REFERENCES

[1] M. Kimura, “The number of heterozygous nucleotide sites maintained
in a finite population due to steady flux of mutations,” Genetics, vol. 61,
no. 4, pp. 893–903, Apr. 1969.

[2] M. El-Kebir, L. Oesper, H. Acheson-Field, and B. J. Raphael, “Re-
construction of clonal trees and tumor composition from multi-sample
sequencing data,” Bioinformatics, vol. 31, no. 12, pp. i62–i70, Jun. 2015.

[3] D. Pradhan and M. El-Kebir, “On the non-uniqueness of solutions
to the perfect phylogeny mixture problem,” accepted by RECOMB
Comparative Genomics, Oct. 2018, in press.

[4] H. N. Gabow and E. W. Myers, “Finding all spanning trees of directed
and undirected graphs,” SIAM J. Comput., vol. 7, no. 3, pp. 280–287,
Aug. 1978.

[5] V. Popic, R. Salari, I. Hajirasouliha, D. Kashef-Haghighi, R. B. West,
and S. Batzoglou, “Fast and scalable inference of multi-sample cancer
lineages,” Genome Biology, vol. 16, p. 91, May 2015.

[6] M. El-Kebir, G. Satas, L. Oesper, and B. J. Raphael, “Fast and scalable
inference of multi-sample cancer lineages,” Cell Systems, vol. 3, pp.
43–53, Jul. 2016.

[7] W. T. Tutte, “The dissection of equilateral triangles into equilateral
triangles,” Proc. Cambridge Philosoph. Soc., vol. 44, no. 4, pp. 463–482,
Oct. 1948.

[8] P. M. Camerini, L. Fratta, and F. Maffioli, “The k best spanning
arborescences of a network,” Networks, vol. 10, pp. 91–110, 1980.

[9] H. T. Hsu, “An algorithm for finding a minimal equivalent graph of a
digraph,” J. ACM, vol. 22, no. 1, pp. 11–16, Jan. 1975.

[10] A. Schuh et al., “Monitoring chronic lymphocytic leukemia progression
by whole genome sequencing reveals heterogeneous clonal evolution
patterns,” Blood, vol. 120, no. 20, pp. 4191–4196, Nov. 2012.

[11] M. Gerlinger et al., “Genomic architecture and evolution of clear
cell renal cell carcinomas defined by multiregion sequencing,” Nature
Genetics, vol. 46, no. 3, pp. 225–233, Feb. 2014.

[12] L. Devroye, Non-Uniform Random Variate Generation. New York, NY:
Springer-Verlag, 1986, p. 568.

[13] S. Malikic, A. W. McPherson, N. Donmez, and C. S. Sahinalp, “Clonal-
ity inference in multiple tumor samples using phylogeny,” Bioinformat-
ics, vol. 31, no. 9, pp. 1349–1356, May 2015.

[14] W. Jiao, S. Vembu, A. G. Deshwar, L. Stein, and Q. Morris, “Inferring
clonal evolution of tumors from single nucleotide somatic mutations,”
BMC Bioinformatics, vol. 15, p. 35, Feb. 2014.

�
0.5 0.17 0.33 0.17 0
0.5 0 0.25 0.25 0.25

�
(9)

S1
S2

Heterogeneous tumor Aligned reads VAF matrix  Ancestry graph Clonal trees

S2

S1

Fig. 1. Overview of the clonal tree inference process. From left to right: several samples are taken from a heterogeneous tumor, either from different parts
of the tumor or from different time points; the samples are sequenced, the resulting reads are aligned to a reference genome, and variants are identified in the
aligned reads of each sample; the variant and reference read counts are used to build the VAF matrix; we construct the ancestry graph of the VAF matrix;
each spanning tree of the ancestry graph adhering to the sum condition is a possible clonal tree, two of which are displayed. Note that the second tree shown
would be eliminated if we could determine the coincidence of mutations, since the dark blue mutation always appears with the green mutation in the tumor.

an upper bound on the number of possible clonal trees, and
present relaxations and simplifications to the problem.

A. Problem Formalization

1) Definitions: Let s be the number of samples taken from
a tumor and let n be the total number of observed mutations
across all samples. Mutations are labeled 1, . . . , n in arbitrary
order. The s⇥n variant allele frequency (VAF) matrix F stores
in Fij the fraction of reads from sample i that contain mutation
j. A clonal tree T is a rooted tree on n nodes with each node
labeled by a distinct mutation. More generally, nodes may be
labeled with disjoint sets of mutations, with a corresponding
decrease in the number of nodes. Each node represents a cell
population containing all mutations along its root-node path.
The infinite sites assumption guarantees that a clonal tree is a
perfect phylogeny, so we can also store the tree as an n⇥n n-
clonal matrix B, where B`j = 1 if cell population ` contains
mutation j and 0 otherwise. Finally, samples from the tumor
contain mixtures of cell populations: the s ⇥ n usage matrix
U stores in Ui` the frequency of cells from population ` in
sample i.

2) VAFFP: We formalize the problem of inferring tumor
phylogeny as the Variant Allele Frequency Factorization Prob-
lem [5], also called the Perfect Phylogeny Mixture Problem in
[13].

Given: A VAF matrix F .
Find: A usage matrix U and an n-clonal matrix B such

that:
F =

1

2
UB (1)

The factor of 1/2 arises because all mutations are assumed
to be heterozygous SNVs. VAFFP is known to be NP-complete
[5]. In practice, many datasets are small enough that finding
solutions is feasible.

3) Ancestry Graph Solution: In [5], El-Kebir, Oesper,
Acheson-Field, and Raphael present an approach for solving
VAFFP using the ancestry graph of F (see Fig. 1 for a visual
overview of this method). The ancestry graph GF contains n
nodes, one labeled by each mutation. GF includes a directed
edge from node j to node k if Fij � Fik 8i 2 {1, . . . , s}.
These edges encode the ancestry condition: under infinite sites,
an ancestral mutation must be more frequent than a descendant

mutation in all samples. The possible clonal trees are exactly
the set of directed spanning trees of GF that adhere to the sum
condition (2). Using C(j) to denote the children of mutation
j in a clonal tree T , the sum condition requires that:

X

k2C(j)

Fik  Fij 8i 2 {1, . . . , s} (2)

That is, the sum of observed frequencies of children mutations
in a clonal tree cannot exceed the frequency of their parent
mutation in any sample.

Each spanning tree T of GF adhering to the sum condition
yields a solution to VAFFP (see the rightmost part of Fig. 1
for examples). We can straightforwardly construct B from T
by tracing edge labels along each root-node path. We can then
efficiently compute U without the need for back-substitution
[5]:

Uij = 2
⇣
Fij �

X

k2C(j)

Fik

⌘
(3)

4) EVAFFP: We extend VAFFP to the Enumeration Variant
Allele Frequency Factorization Problem:

Given: A VAF matrix F .
Find: The set T (GF ) of all trees that span the ancestry

graph GF and adhere to the sum condition.
When T (GF ) 6= ;, we say that an EVAFFP solution exists

or that F admits an EVAFFP solution. In this paper, we
explore the relationship between T (GF ) and the true tumor
evolutionary tree and investigate relaxations and extensions to
EVAFFP.

B. Finding and Counting EVAFFP Solutions

To solve EVAFFP, we use a modified version of the Gabow-
Myers algorithm [14], the same method employed in [8], [9],
and [13]. This algorithm recursively constructs all spanning
trees of a graph through a structured depth-first search. It is
straightforward to add the sum condition to Gabow-Myers to
avoid execution branches violating the sum condition.

We can place an upper bound on the size of T (GF ) by
counting the number of spanning trees of GF . Tutte’s Matrix-
Tree Theorem [15] provides a polynomial-time method of
counting the spanning trees of a directed graph from the
graph’s Laplacian matrix. The Laplacian matrix is obtained

children of j  
in the tree


samples

Theorem (El-Kebir et al. 2015) 
With perfect data, the spanning trees of the ancestry graph satisfying the sum 
condition are exactly the clonal trees that could have generated F under the infinite 
sites assumption.

frequency of mutation j 

in sample i

*Introduces noise/error

Issue: Noise introduced in sequencing makes strict E-VAFFP solutions rare.

Goal: Find likely clonal trees even when noise is present. 
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Approximate Ancestry Graph 
• Complete weighted digraph, nodes are mutations

• Edges weighted by probability of ancestry, 

determined from beta-binomial model

• Allows novel tree topologies and orders clonal trees


Relaxed Sum Condition: 

modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:

X

k2C(j)

Fik  Fij + " 8i 2 {1, . . . , s} (4)

III. RESULTS

We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)

⇢
fj (6)

� =
(1 � ⇢)

⇢
(1 � fj) (7)

where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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II. Bulk Sequencing

Issue: The number of ancestry graph spanning trees grows exponentially with n. This 
makes finding !(GF) very slow when there are many mutations. 

Goal: Reduce the number of spanning trees of GF while preserving general structure.

k-Transitive Edges 
An edge (u, v) is k-transitive if ∃ a 
path from u to v of length k and is 
≥k-transitive if ∃ a path of length ≥k.

2-transitive
3-transitive


(and ≥2-transitive)

Transitive Reduction (Aho et al. 1972) 
The smallest subgraph of G with the same 
directed path matrix (i.e. reachability) as G.


k Partial Transitive Reduction (k-PTR) 
The subgraph of G resulting from removing all ≥k-transitive edges from G.

2-transitive
3-transitive

3-PTR of G 2-PTR of GG

Note:

2-PTR = transitive reduction

Algorithm 3 Approximate Sum-Constrained Directed Spanning Tree Algorithm

1: globals: graph G = (V, E), tree T , stack[edge] F , map[node, int] P , map[node, int] H, frequency matrix M

2: function gabow-myers-approximate(G, r, M)
3: initialize T to contain r
4: push all edges (r, v) 2 E onto F
5: grow-approximate()
6: end function

7: function grow-approximate()
8: if T has |V | vertices then
9: store T as the best tree

10: store the badness of T
11: P  map from each node in T to its index in a preorder traversal of T
12: H  map from each node in T to the highest preorder index among its descendants
13: else
14: b False
15: FF  empty stack
16: while F is not empty and b is False do
17: pop edge e = (u, v) from F
18: add e to T
19: if e does not cause T to exceed the sum constraint by more than the best tree then
20: store a copy of F
21: push every edge (v, w) s.t. w /2 T onto F
22: remove every edge (w, v) s.t. w 2 T from F
23: grow()
24: restore F from copy
25: end if
26: remove e from T and from G
27: push e onto FF
28: if P is uninitialized then
29: continue
30: end if
31: if there is no edge (w, v) 2 G with P [v]  P [w]  H[v] then
32: b True
33: end if
34: end while
35: pop each edge from FF , push it onto F , and add it to G
36: end if
37: end function

Algorithm k-PTR

1: compute transitive reduction R of G using Hsu’s Algorithm (1975).
2: for node u in R do
3: breadth-first search starting at u to find shortest path from u to every other node in R
4: end for
5: for edge (u, v) in G do
6: if the path from u to v in R has length � k then
7: remove (u, v) from G
8: end if
9: end for

4

A "(n3) Algorithm for k-PTR

Solution Existence: 
Proportion of Solvable Trials 

# of trials with |!(GF)| ≥ 1

total # of trials

Noisy Data Simulation Trial 
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modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:

X

k2C(j)

Fik  Fij + " 8i 2 {1, . . . , s} (4)

III. RESULTS

We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)

⇢
fj (6)

� =
(1 � ⇢)

⇢
(1 � fj) (7)

where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.

modification. Using this method, we can potentially find the
most probable clonal tree without the need to enumerate every
tree. The disadvantage of the algorithm from [18] is that it is
much slower when no solutions exist.

Note that the approximate ancestry graph does not admit
more EVAFFP solutions than the strict ancestry graph. This
is because any tree violating the sum condition in the strict
graph will necessarily it in the approximate graph; moreover,
any spanning tree of the approximate graph that does not exist
in the strict graph must violate the ancestry condition, and
thus the sum condition. The key benefits of the approximate
ancestry graph are that it provides an ordering on solutions
and that it allows the exploration of novel tree topologies not
present in the strict graph. To make use of these topologies,
however, we need to weaken the sum condition.

2) Relaxed Sum Condition: Adding leniency to the sum
condition allows the identification of possible clonal trees
obscured by noise. For a small threshold ", we can relax the
sum condition to require that:
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We investigated EVAFFP solutions in simulated noisy data
and comparatively assessed the strict and approximate ancestry
graph approaches on two real datasets of 11 leukemia and
renal cancer patients. In particular, we examine the effect of
noise on the degree to which trees in T (GF ) reflect the true
evolutionary tree. In addition to the findings presented here, we
also simulated error-free data and reproduced the relationships
between n, s, and the size of T (GF ) reported in [13].

A. Simulated Data

On simulated data, we present findings on the existence and
quality of strict and approximate EVAFFP solutions in the
presence of noise. We also evaluate the usefulness of pruning
transitive edges from the ancestry graph. We first describe our
data simulation procedure.

1) Simulating VAF Data: Our data simulation process
consists of four steps: generating the true evolutionary tree,
choosing the cellular frequencies, determining the mutation
frequencies, and finally drawing variant reads from a binomial
distribution. We also describe our method of varying noise
levels in the simulated VAF matrix.

Given a number of mutations n, a number of samples s,
and an average coverage c, we generate a random tumor
phylogenetic tree T and an s⇥ n VAF matrix consistent with
T . T is constructed iteratively by adding each mutation as
the child of a random node already in T . From T , we can
construct the n-clonal matrix B as in Section II-A3. We then
choose the frequency of each of the n clones in the simulated
tumor. clone i is assigned frequency ui such that

P
i ui = 1.

To choose u1, . . . , un, we sample uniformly from the standard
simplex, the set of points in Rn whose coordinates are non-
negative and have sum 1, using a method described in [19].
We draw n� 1 random values uniformly distributed on [0, 1],

add in the values 0 and 1, and sort them. The n gaps between
the n + 1 numbers have sum 1 and are uniformly distributed
on the standard simplex.

We then calculate the frequencies of the n mutations in the
tumor. Storing the mutation and cellular frequencies in the row
vectors ~f and ~u, respectively, we find ~f using (1):

~f =
1

2
~uB (5)

The last step is to simulate reads in each of the s samples.
For simplicity, we model a thoroughly mixed tumor, in which
the expected cellular composition of every sample matches
that of the tumor as a whole. For each sample i and for each
mutation j, we simulate rij ⇠ Poisson(c) reads. The number
of variant reads vij of mutation j in sample i is drawn from a
binomial distribution: vij ⇠ Binom(rij , fj). The s ⇥ n VAF
matrix F then contains entries Fij = vij/rij .

We simulate additional noise in the sampling and se-
quencing process by adding overdispersion to the binomial
distribution. We replace fj with a beta distributed random
variable whose mean is fj . The parameters ↵ and � of the
beta distribution are chosen to be:

↵ =
(1 � ⇢)

⇢
fj (6)

� =
(1 � ⇢)

⇢
(1 � fj) (7)

where ⇢ is the overdispersion parameter. This results in a beta
distribution with mean fj and with variance proportional to ⇢.
By varying ⇢, we can simulate sequencing data with more or
less noise.

2) Existence of EVAFFP Solutions: Under this data simula-
tion process, we find that in many cases, no spanning trees of
GF satisfy the sum condition. The rarity of EVAFFP solutions
is exacerbated by having many mutations, many samples, low
coverage, and high noise. We ran 10000 trials of the data
simulation and ancestry graph procedure for each parameter
setting (n from 3 to 12, s from 1 to 15, coverage from 50⇥
to 200⇥, and ⇢ from 0 to 0.09) and measured the fraction of
trials in which T (GF ) contained at least one possible clonal
tree. We refer to these as solvable trials. By default, we used
n = 10, s = 5, 60⇥ coverage, and no overdispersion. Each
parameter was tested independently, using the default values
for the parameters held constant.

At the default parameter settings, only 14% of trials had
any valid clonal trees. Higher coverage significantly increased
the fraction of solvable trials, up to 47% at 200⇥ coverage
(Fig. 3c). Meanwhile, more mutations and samples both sig-
nificantly decreased the proportion of solvable trials (Figs. 3a
and 3b), as did adding overdispersion (Fig. 3d). At ⇢ = 0.09,
VAFFP solutions existed in only 89 of the 10000 trials. A high
number of samples exhibited a similarly strong effect, with just
103 solvable trials at s = 15. We also found VAFFP solutions
to be rare in real datasets (see section III-B), confirming this
result.
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• The fewer valid spanning trees exist, the faster this algorithm is (even when the total number of
spanning trees is large), since it terminates the search in a sub-tree once a sum constraint violation is
made. This can have a considerable positive e↵ect in practice, even if the worst-case running time is
slower due to the additional checks.

Lemma 1. Algorithm 2 finds all spanning trees of G rooted at r that satisfy the sum condition.

Proof. We must show that spanning tree is outputted by Algorithm 2 if and only if it satisfies the sum
constraint.

()): Suppose a spanning tree T is outputted by Algorithm 2. The only way T could have grown to have
|V | vertices was for grow to be repeatedly called on line 22, once for each edge added to T . Thus, the test
on line 18 must have passed every time a new edge was added to T . This means that no edge violating the
sum constraint was added to T . In other words, T satisfies the sum constraint.

()): Suppose a spanning tree T satisfies the sum constraint. Then, every subtree T 0 of T also satisfies the
sum constraint. So, at no point along the recursive execution of grow-constrained will line 18 prevent us
from adding an edge to the current subtree of T and eventually outputting T . The execution of the algorithm
on a valid tree is therefore identical to unconstrained Gabow-Myers, which is known to be correct.

Lemma 2. With s samples and N total spanning trees, Algorithm 2 takes O(sN |E|) time.

Proof. Unconstrained Gabow-Myers is known to take O(N |E|) time. Testing for the sum constraint at each
recursive call takes ⌦(s) steps, since we need to check the frequency in every sample. It can be done in ⇥(s)
time by storing the current “spare” frequency of each sample in the parent node. When we add a child,
we subtract its frequencies in each sample from the parent’s spare frequency. If any drop below 0, the sum
constraint is violated. The spare frequencies of a leaf are equal to the node’s frequencies. Using this system,
Algorithm 2 adds ⇥(s) work at each recursive call for a total running time of O(sN |E|).
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Ancestor-Descendant Distance (Govek et al. 2018) 
Number of pairs of mutations with different ancestral relationships in two trees.

Solution Quality: 
Mean A-D Improvement 

AD(random) - AD(!(GF))

AD(random)


AD(·) = mean A-D distance 
between trees in a set and the 
underlying tree

Bigger VAF matrix and more noise make solutions rarer:

Noise doesn’t hurt clonal tree quality (!). More samples helps:

PTR simplifies AG with minor 
impact to clonal tree quality:

Approximate AG outperforms strict AG for 
small n, underperforms for large n:

Key measures:

All other parameters had the 
same effect on the approximate 
method as the strict.

Datasets 
• 3 chronic lymphocytic leukemia 

patients (Schuh et al. 2012)

• 8 renal cancer patients 

(Gerlinger et al. 2014)
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Process 
• Cluster mutations by VAF using 

k-means

• Use strict and approximate 

ancestry graph to find clonal 
trees

Findings 
• Strict solutions are rare (2/11 patients)

• Strict solutions exist more often in high-coverage, low-noise data (2/3 vs. 0/8)

• Approximate and strict solutions agree with each other on the same data (see above)

• Approximate solutions agree with previous phylogeny inference methods  

(Malikic et al. 2015, Jiao et al. 2014)

Clonal composition of each sample 

(Chemotherapy administered between samples 4 and 5.

Purple clone with MAP2K1 mutation possibly resistant.)
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Conclusions

1 Strict ISA-based trees are rare in simulated and real data

2 Overdispersion makes solutions rarer, but not worse

3 Approximate AG and relaxed sum condition increase robustness

4 PTR simplifies AG with minor quality impact (skews topology)

5 Approximate AG outperforms strict for few mutations and vice versa
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